1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysproto.h> 47 #include <sys/capsicum.h> 48 #include <sys/eventhandler.h> 49 #include <sys/kernel.h> 50 #include <sys/malloc.h> 51 #include <sys/lock.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/procdesc.h> 55 #include <sys/pioctl.h> 56 #include <sys/jail.h> 57 #include <sys/tty.h> 58 #include <sys/wait.h> 59 #include <sys/vmmeter.h> 60 #include <sys/vnode.h> 61 #include <sys/racct.h> 62 #include <sys/resourcevar.h> 63 #include <sys/sbuf.h> 64 #include <sys/signalvar.h> 65 #include <sys/sched.h> 66 #include <sys/sx.h> 67 #include <sys/syscallsubr.h> 68 #include <sys/syslog.h> 69 #include <sys/ptrace.h> 70 #include <sys/acct.h> /* for acct_process() function prototype */ 71 #include <sys/filedesc.h> 72 #include <sys/sdt.h> 73 #include <sys/shm.h> 74 #include <sys/sem.h> 75 #include <sys/umtx.h> 76 #ifdef KTRACE 77 #include <sys/ktrace.h> 78 #endif 79 80 #include <security/audit/audit.h> 81 #include <security/mac/mac_framework.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_extern.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/uma.h> 90 91 #ifdef KDTRACE_HOOKS 92 #include <sys/dtrace_bsd.h> 93 dtrace_execexit_func_t dtrace_fasttrap_exit; 94 #endif 95 96 SDT_PROVIDER_DECLARE(proc); 97 SDT_PROBE_DEFINE1(proc, , , exit, "int"); 98 99 /* Hook for NFS teardown procedure. */ 100 void (*nlminfo_release_p)(struct proc *p); 101 102 EVENTHANDLER_LIST_DECLARE(process_exit); 103 104 struct proc * 105 proc_realparent(struct proc *child) 106 { 107 struct proc *p, *parent; 108 109 sx_assert(&proctree_lock, SX_LOCKED); 110 if ((child->p_treeflag & P_TREE_ORPHANED) == 0) 111 return (child->p_pptr->p_pid == child->p_oppid ? 112 child->p_pptr : initproc); 113 for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) { 114 /* Cannot use LIST_PREV(), since the list head is not known. */ 115 p = __containerof(p->p_orphan.le_prev, struct proc, 116 p_orphan.le_next); 117 KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0, 118 ("missing P_ORPHAN %p", p)); 119 } 120 parent = __containerof(p->p_orphan.le_prev, struct proc, 121 p_orphans.lh_first); 122 return (parent); 123 } 124 125 void 126 reaper_abandon_children(struct proc *p, bool exiting) 127 { 128 struct proc *p1, *p2, *ptmp; 129 130 sx_assert(&proctree_lock, SX_LOCKED); 131 KASSERT(p != initproc, ("reaper_abandon_children for initproc")); 132 if ((p->p_treeflag & P_TREE_REAPER) == 0) 133 return; 134 p1 = p->p_reaper; 135 LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) { 136 LIST_REMOVE(p2, p_reapsibling); 137 p2->p_reaper = p1; 138 p2->p_reapsubtree = p->p_reapsubtree; 139 LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling); 140 if (exiting && p2->p_pptr == p) { 141 PROC_LOCK(p2); 142 proc_reparent(p2, p1, true); 143 PROC_UNLOCK(p2); 144 } 145 } 146 KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty")); 147 p->p_treeflag &= ~P_TREE_REAPER; 148 } 149 150 static void 151 reaper_clear(struct proc *p) 152 { 153 struct proc *p1; 154 bool clear; 155 156 sx_assert(&proctree_lock, SX_LOCKED); 157 LIST_REMOVE(p, p_reapsibling); 158 if (p->p_reapsubtree == 1) 159 return; 160 clear = true; 161 LIST_FOREACH(p1, &p->p_reaper->p_reaplist, p_reapsibling) { 162 if (p1->p_reapsubtree == p->p_reapsubtree) { 163 clear = false; 164 break; 165 } 166 } 167 if (clear) 168 proc_id_clear(PROC_ID_REAP, p->p_reapsubtree); 169 } 170 171 static void 172 clear_orphan(struct proc *p) 173 { 174 struct proc *p1; 175 176 sx_assert(&proctree_lock, SA_XLOCKED); 177 if ((p->p_treeflag & P_TREE_ORPHANED) == 0) 178 return; 179 if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) { 180 p1 = LIST_NEXT(p, p_orphan); 181 if (p1 != NULL) 182 p1->p_treeflag |= P_TREE_FIRST_ORPHAN; 183 p->p_treeflag &= ~P_TREE_FIRST_ORPHAN; 184 } 185 LIST_REMOVE(p, p_orphan); 186 p->p_treeflag &= ~P_TREE_ORPHANED; 187 } 188 189 /* 190 * exit -- death of process. 191 */ 192 void 193 sys_sys_exit(struct thread *td, struct sys_exit_args *uap) 194 { 195 196 exit1(td, uap->rval, 0); 197 /* NOTREACHED */ 198 } 199 200 /* 201 * Exit: deallocate address space and other resources, change proc state to 202 * zombie, and unlink proc from allproc and parent's lists. Save exit status 203 * and rusage for wait(). Check for child processes and orphan them. 204 */ 205 void 206 exit1(struct thread *td, int rval, int signo) 207 { 208 struct proc *p, *nq, *q, *t; 209 struct thread *tdt; 210 ksiginfo_t *ksi, *ksi1; 211 int signal_parent; 212 213 mtx_assert(&Giant, MA_NOTOWNED); 214 KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo)); 215 216 p = td->td_proc; 217 /* 218 * XXX in case we're rebooting we just let init die in order to 219 * work around an unsolved stack overflow seen very late during 220 * shutdown on sparc64 when the gmirror worker process exists. 221 */ 222 if (p == initproc && rebooting == 0) { 223 printf("init died (signal %d, exit %d)\n", signo, rval); 224 panic("Going nowhere without my init!"); 225 } 226 227 /* 228 * Deref SU mp, since the thread does not return to userspace. 229 */ 230 td_softdep_cleanup(td); 231 232 /* 233 * MUST abort all other threads before proceeding past here. 234 */ 235 PROC_LOCK(p); 236 /* 237 * First check if some other thread or external request got 238 * here before us. If so, act appropriately: exit or suspend. 239 * We must ensure that stop requests are handled before we set 240 * P_WEXIT. 241 */ 242 thread_suspend_check(0); 243 while (p->p_flag & P_HADTHREADS) { 244 /* 245 * Kill off the other threads. This requires 246 * some co-operation from other parts of the kernel 247 * so it may not be instantaneous. With this state set 248 * any thread entering the kernel from userspace will 249 * thread_exit() in trap(). Any thread attempting to 250 * sleep will return immediately with EINTR or EWOULDBLOCK 251 * which will hopefully force them to back out to userland 252 * freeing resources as they go. Any thread attempting 253 * to return to userland will thread_exit() from userret(). 254 * thread_exit() will unsuspend us when the last of the 255 * other threads exits. 256 * If there is already a thread singler after resumption, 257 * calling thread_single will fail; in that case, we just 258 * re-check all suspension request, the thread should 259 * either be suspended there or exit. 260 */ 261 if (!thread_single(p, SINGLE_EXIT)) 262 /* 263 * All other activity in this process is now 264 * stopped. Threading support has been turned 265 * off. 266 */ 267 break; 268 /* 269 * Recheck for new stop or suspend requests which 270 * might appear while process lock was dropped in 271 * thread_single(). 272 */ 273 thread_suspend_check(0); 274 } 275 KASSERT(p->p_numthreads == 1, 276 ("exit1: proc %p exiting with %d threads", p, p->p_numthreads)); 277 racct_sub(p, RACCT_NTHR, 1); 278 279 /* Let event handler change exit status */ 280 p->p_xexit = rval; 281 p->p_xsig = signo; 282 283 /* 284 * Wakeup anyone in procfs' PIOCWAIT. They should have a hold 285 * on our vmspace, so we should block below until they have 286 * released their reference to us. Note that if they have 287 * requested S_EXIT stops we will block here until they ack 288 * via PIOCCONT. 289 */ 290 _STOPEVENT(p, S_EXIT, 0); 291 292 /* 293 * Ignore any pending request to stop due to a stop signal. 294 * Once P_WEXIT is set, future requests will be ignored as 295 * well. 296 */ 297 p->p_flag &= ~P_STOPPED_SIG; 298 KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped")); 299 300 /* 301 * Note that we are exiting and do another wakeup of anyone in 302 * PIOCWAIT in case they aren't listening for S_EXIT stops or 303 * decided to wait again after we told them we are exiting. 304 */ 305 p->p_flag |= P_WEXIT; 306 wakeup(&p->p_stype); 307 308 /* 309 * Wait for any processes that have a hold on our vmspace to 310 * release their reference. 311 */ 312 while (p->p_lock > 0) 313 msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0); 314 315 PROC_UNLOCK(p); 316 /* Drain the limit callout while we don't have the proc locked */ 317 callout_drain(&p->p_limco); 318 319 #ifdef AUDIT 320 /* 321 * The Sun BSM exit token contains two components: an exit status as 322 * passed to exit(), and a return value to indicate what sort of exit 323 * it was. The exit status is WEXITSTATUS(rv), but it's not clear 324 * what the return value is. 325 */ 326 AUDIT_ARG_EXIT(rval, 0); 327 AUDIT_SYSCALL_EXIT(0, td); 328 #endif 329 330 /* Are we a task leader with peers? */ 331 if (p->p_peers != NULL && p == p->p_leader) { 332 mtx_lock(&ppeers_lock); 333 q = p->p_peers; 334 while (q != NULL) { 335 PROC_LOCK(q); 336 kern_psignal(q, SIGKILL); 337 PROC_UNLOCK(q); 338 q = q->p_peers; 339 } 340 while (p->p_peers != NULL) 341 msleep(p, &ppeers_lock, PWAIT, "exit1", 0); 342 mtx_unlock(&ppeers_lock); 343 } 344 345 /* 346 * Check if any loadable modules need anything done at process exit. 347 * E.g. SYSV IPC stuff. 348 * Event handler could change exit status. 349 * XXX what if one of these generates an error? 350 */ 351 EVENTHANDLER_DIRECT_INVOKE(process_exit, p); 352 353 /* 354 * If parent is waiting for us to exit or exec, 355 * P_PPWAIT is set; we will wakeup the parent below. 356 */ 357 PROC_LOCK(p); 358 stopprofclock(p); 359 p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE); 360 p->p_ptevents = 0; 361 362 /* 363 * Stop the real interval timer. If the handler is currently 364 * executing, prevent it from rearming itself and let it finish. 365 */ 366 if (timevalisset(&p->p_realtimer.it_value) && 367 _callout_stop_safe(&p->p_itcallout, CS_EXECUTING, NULL) == 0) { 368 timevalclear(&p->p_realtimer.it_interval); 369 msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0); 370 KASSERT(!timevalisset(&p->p_realtimer.it_value), 371 ("realtime timer is still armed")); 372 } 373 374 PROC_UNLOCK(p); 375 376 umtx_thread_exit(td); 377 378 /* 379 * Reset any sigio structures pointing to us as a result of 380 * F_SETOWN with our pid. 381 */ 382 funsetownlst(&p->p_sigiolst); 383 384 /* 385 * If this process has an nlminfo data area (for lockd), release it 386 */ 387 if (nlminfo_release_p != NULL && p->p_nlminfo != NULL) 388 (*nlminfo_release_p)(p); 389 390 /* 391 * Close open files and release open-file table. 392 * This may block! 393 */ 394 fdescfree(td); 395 396 /* 397 * If this thread tickled GEOM, we need to wait for the giggling to 398 * stop before we return to userland 399 */ 400 if (td->td_pflags & TDP_GEOM) 401 g_waitidle(); 402 403 /* 404 * Remove ourself from our leader's peer list and wake our leader. 405 */ 406 if (p->p_leader->p_peers != NULL) { 407 mtx_lock(&ppeers_lock); 408 if (p->p_leader->p_peers != NULL) { 409 q = p->p_leader; 410 while (q->p_peers != p) 411 q = q->p_peers; 412 q->p_peers = p->p_peers; 413 wakeup(p->p_leader); 414 } 415 mtx_unlock(&ppeers_lock); 416 } 417 418 vmspace_exit(td); 419 killjobc(); 420 (void)acct_process(td); 421 422 #ifdef KTRACE 423 ktrprocexit(td); 424 #endif 425 /* 426 * Release reference to text vnode 427 */ 428 if (p->p_textvp != NULL) { 429 vrele(p->p_textvp); 430 p->p_textvp = NULL; 431 } 432 433 /* 434 * Release our limits structure. 435 */ 436 lim_free(p->p_limit); 437 p->p_limit = NULL; 438 439 tidhash_remove(td); 440 441 /* 442 * Call machine-dependent code to release any 443 * machine-dependent resources other than the address space. 444 * The address space is released by "vmspace_exitfree(p)" in 445 * vm_waitproc(). 446 */ 447 cpu_exit(td); 448 449 WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid); 450 451 /* 452 * Move proc from allproc queue to zombproc. 453 */ 454 sx_xlock(&allproc_lock); 455 sx_xlock(&zombproc_lock); 456 LIST_REMOVE(p, p_list); 457 LIST_INSERT_HEAD(&zombproc, p, p_list); 458 sx_xunlock(&zombproc_lock); 459 sx_xunlock(&allproc_lock); 460 461 sx_xlock(&proctree_lock); 462 463 /* 464 * Reparent all children processes: 465 * - traced ones to the original parent (or init if we are that parent) 466 * - the rest to init 467 */ 468 q = LIST_FIRST(&p->p_children); 469 if (q != NULL) /* only need this if any child is S_ZOMB */ 470 wakeup(q->p_reaper); 471 for (; q != NULL; q = nq) { 472 nq = LIST_NEXT(q, p_sibling); 473 ksi = ksiginfo_alloc(TRUE); 474 PROC_LOCK(q); 475 q->p_sigparent = SIGCHLD; 476 477 if (!(q->p_flag & P_TRACED)) { 478 proc_reparent(q, q->p_reaper, true); 479 if (q->p_state == PRS_ZOMBIE) { 480 /* 481 * Inform reaper about the reparented 482 * zombie, since wait(2) has something 483 * new to report. Guarantee queueing 484 * of the SIGCHLD signal, similar to 485 * the _exit() behaviour, by providing 486 * our ksiginfo. Ksi is freed by the 487 * signal delivery. 488 */ 489 if (q->p_ksi == NULL) { 490 ksi1 = NULL; 491 } else { 492 ksiginfo_copy(q->p_ksi, ksi); 493 ksi->ksi_flags |= KSI_INS; 494 ksi1 = ksi; 495 ksi = NULL; 496 } 497 PROC_LOCK(q->p_reaper); 498 pksignal(q->p_reaper, SIGCHLD, ksi1); 499 PROC_UNLOCK(q->p_reaper); 500 } else if (q->p_pdeathsig > 0) { 501 /* 502 * The child asked to received a signal 503 * when we exit. 504 */ 505 kern_psignal(q, q->p_pdeathsig); 506 } 507 } else { 508 /* 509 * Traced processes are killed since their existence 510 * means someone is screwing up. 511 */ 512 t = proc_realparent(q); 513 if (t == p) { 514 proc_reparent(q, q->p_reaper, true); 515 } else { 516 PROC_LOCK(t); 517 proc_reparent(q, t, true); 518 PROC_UNLOCK(t); 519 } 520 /* 521 * Since q was found on our children list, the 522 * proc_reparent() call moved q to the orphan 523 * list due to present P_TRACED flag. Clear 524 * orphan link for q now while q is locked. 525 */ 526 clear_orphan(q); 527 q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE); 528 q->p_flag2 &= ~P2_PTRACE_FSTP; 529 q->p_ptevents = 0; 530 FOREACH_THREAD_IN_PROC(q, tdt) { 531 tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG | 532 TDB_FSTP); 533 } 534 kern_psignal(q, SIGKILL); 535 } 536 PROC_UNLOCK(q); 537 if (ksi != NULL) 538 ksiginfo_free(ksi); 539 } 540 541 /* 542 * Also get rid of our orphans. 543 */ 544 while ((q = LIST_FIRST(&p->p_orphans)) != NULL) { 545 PROC_LOCK(q); 546 /* 547 * If we are the real parent of this process 548 * but it has been reparented to a debugger, then 549 * check if it asked for a signal when we exit. 550 */ 551 if (q->p_pdeathsig > 0) 552 kern_psignal(q, q->p_pdeathsig); 553 CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid, 554 q->p_pid); 555 clear_orphan(q); 556 PROC_UNLOCK(q); 557 } 558 559 /* Save exit status. */ 560 PROC_LOCK(p); 561 p->p_xthread = td; 562 563 #ifdef KDTRACE_HOOKS 564 /* 565 * Tell the DTrace fasttrap provider about the exit if it 566 * has declared an interest. 567 */ 568 if (dtrace_fasttrap_exit) 569 dtrace_fasttrap_exit(p); 570 #endif 571 572 /* 573 * Notify interested parties of our demise. 574 */ 575 KNOTE_LOCKED(p->p_klist, NOTE_EXIT); 576 577 #ifdef KDTRACE_HOOKS 578 int reason = CLD_EXITED; 579 if (WCOREDUMP(signo)) 580 reason = CLD_DUMPED; 581 else if (WIFSIGNALED(signo)) 582 reason = CLD_KILLED; 583 SDT_PROBE1(proc, , , exit, reason); 584 #endif 585 586 /* 587 * If this is a process with a descriptor, we may not need to deliver 588 * a signal to the parent. proctree_lock is held over 589 * procdesc_exit() to serialize concurrent calls to close() and 590 * exit(). 591 */ 592 signal_parent = 0; 593 if (p->p_procdesc == NULL || procdesc_exit(p)) { 594 /* 595 * Notify parent that we're gone. If parent has the 596 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN, 597 * notify process 1 instead (and hope it will handle this 598 * situation). 599 */ 600 PROC_LOCK(p->p_pptr); 601 mtx_lock(&p->p_pptr->p_sigacts->ps_mtx); 602 if (p->p_pptr->p_sigacts->ps_flag & 603 (PS_NOCLDWAIT | PS_CLDSIGIGN)) { 604 struct proc *pp; 605 606 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); 607 pp = p->p_pptr; 608 PROC_UNLOCK(pp); 609 proc_reparent(p, p->p_reaper, true); 610 p->p_sigparent = SIGCHLD; 611 PROC_LOCK(p->p_pptr); 612 613 /* 614 * Notify parent, so in case he was wait(2)ing or 615 * executing waitpid(2) with our pid, he will 616 * continue. 617 */ 618 wakeup(pp); 619 } else 620 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); 621 622 if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) { 623 signal_parent = 1; 624 } else if (p->p_sigparent != 0) { 625 if (p->p_sigparent == SIGCHLD) { 626 signal_parent = 1; 627 } else { /* LINUX thread */ 628 signal_parent = 2; 629 } 630 } 631 } else 632 PROC_LOCK(p->p_pptr); 633 sx_xunlock(&proctree_lock); 634 635 if (signal_parent == 1) { 636 childproc_exited(p); 637 } else if (signal_parent == 2) { 638 kern_psignal(p->p_pptr, p->p_sigparent); 639 } 640 641 /* Tell the prison that we are gone. */ 642 prison_proc_free(p->p_ucred->cr_prison); 643 644 /* 645 * The state PRS_ZOMBIE prevents other proesses from sending 646 * signal to the process, to avoid memory leak, we free memory 647 * for signal queue at the time when the state is set. 648 */ 649 sigqueue_flush(&p->p_sigqueue); 650 sigqueue_flush(&td->td_sigqueue); 651 652 /* 653 * We have to wait until after acquiring all locks before 654 * changing p_state. We need to avoid all possible context 655 * switches (including ones from blocking on a mutex) while 656 * marked as a zombie. We also have to set the zombie state 657 * before we release the parent process' proc lock to avoid 658 * a lost wakeup. So, we first call wakeup, then we grab the 659 * sched lock, update the state, and release the parent process' 660 * proc lock. 661 */ 662 wakeup(p->p_pptr); 663 cv_broadcast(&p->p_pwait); 664 sched_exit(p->p_pptr, td); 665 PROC_SLOCK(p); 666 p->p_state = PRS_ZOMBIE; 667 PROC_UNLOCK(p->p_pptr); 668 669 /* 670 * Save our children's rusage information in our exit rusage. 671 */ 672 PROC_STATLOCK(p); 673 ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux); 674 PROC_STATUNLOCK(p); 675 676 /* 677 * Make sure the scheduler takes this thread out of its tables etc. 678 * This will also release this thread's reference to the ucred. 679 * Other thread parts to release include pcb bits and such. 680 */ 681 thread_exit(); 682 } 683 684 685 #ifndef _SYS_SYSPROTO_H_ 686 struct abort2_args { 687 char *why; 688 int nargs; 689 void **args; 690 }; 691 #endif 692 693 int 694 sys_abort2(struct thread *td, struct abort2_args *uap) 695 { 696 struct proc *p = td->td_proc; 697 struct sbuf *sb; 698 void *uargs[16]; 699 int error, i, sig; 700 701 /* 702 * Do it right now so we can log either proper call of abort2(), or 703 * note, that invalid argument was passed. 512 is big enough to 704 * handle 16 arguments' descriptions with additional comments. 705 */ 706 sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN); 707 sbuf_clear(sb); 708 sbuf_printf(sb, "%s(pid %d uid %d) aborted: ", 709 p->p_comm, p->p_pid, td->td_ucred->cr_uid); 710 /* 711 * Since we can't return from abort2(), send SIGKILL in cases, where 712 * abort2() was called improperly 713 */ 714 sig = SIGKILL; 715 /* Prevent from DoSes from user-space. */ 716 if (uap->nargs < 0 || uap->nargs > 16) 717 goto out; 718 if (uap->nargs > 0) { 719 if (uap->args == NULL) 720 goto out; 721 error = copyin(uap->args, uargs, uap->nargs * sizeof(void *)); 722 if (error != 0) 723 goto out; 724 } 725 /* 726 * Limit size of 'reason' string to 128. Will fit even when 727 * maximal number of arguments was chosen to be logged. 728 */ 729 if (uap->why != NULL) { 730 error = sbuf_copyin(sb, uap->why, 128); 731 if (error < 0) 732 goto out; 733 } else { 734 sbuf_printf(sb, "(null)"); 735 } 736 if (uap->nargs > 0) { 737 sbuf_printf(sb, "("); 738 for (i = 0;i < uap->nargs; i++) 739 sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]); 740 sbuf_printf(sb, ")"); 741 } 742 /* 743 * Final stage: arguments were proper, string has been 744 * successfully copied from userspace, and copying pointers 745 * from user-space succeed. 746 */ 747 sig = SIGABRT; 748 out: 749 if (sig == SIGKILL) { 750 sbuf_trim(sb); 751 sbuf_printf(sb, " (Reason text inaccessible)"); 752 } 753 sbuf_cat(sb, "\n"); 754 sbuf_finish(sb); 755 log(LOG_INFO, "%s", sbuf_data(sb)); 756 sbuf_delete(sb); 757 exit1(td, 0, sig); 758 return (0); 759 } 760 761 762 #ifdef COMPAT_43 763 /* 764 * The dirty work is handled by kern_wait(). 765 */ 766 int 767 owait(struct thread *td, struct owait_args *uap __unused) 768 { 769 int error, status; 770 771 error = kern_wait(td, WAIT_ANY, &status, 0, NULL); 772 if (error == 0) 773 td->td_retval[1] = status; 774 return (error); 775 } 776 #endif /* COMPAT_43 */ 777 778 /* 779 * The dirty work is handled by kern_wait(). 780 */ 781 int 782 sys_wait4(struct thread *td, struct wait4_args *uap) 783 { 784 struct rusage ru, *rup; 785 int error, status; 786 787 if (uap->rusage != NULL) 788 rup = &ru; 789 else 790 rup = NULL; 791 error = kern_wait(td, uap->pid, &status, uap->options, rup); 792 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) 793 error = copyout(&status, uap->status, sizeof(status)); 794 if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0) 795 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 796 return (error); 797 } 798 799 int 800 sys_wait6(struct thread *td, struct wait6_args *uap) 801 { 802 struct __wrusage wru, *wrup; 803 siginfo_t si, *sip; 804 idtype_t idtype; 805 id_t id; 806 int error, status; 807 808 idtype = uap->idtype; 809 id = uap->id; 810 811 if (uap->wrusage != NULL) 812 wrup = &wru; 813 else 814 wrup = NULL; 815 816 if (uap->info != NULL) { 817 sip = &si; 818 bzero(sip, sizeof(*sip)); 819 } else 820 sip = NULL; 821 822 /* 823 * We expect all callers of wait6() to know about WEXITED and 824 * WTRAPPED. 825 */ 826 error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip); 827 828 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) 829 error = copyout(&status, uap->status, sizeof(status)); 830 if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0) 831 error = copyout(&wru, uap->wrusage, sizeof(wru)); 832 if (uap->info != NULL && error == 0) 833 error = copyout(&si, uap->info, sizeof(si)); 834 return (error); 835 } 836 837 /* 838 * Reap the remains of a zombie process and optionally return status and 839 * rusage. Asserts and will release both the proctree_lock and the process 840 * lock as part of its work. 841 */ 842 void 843 proc_reap(struct thread *td, struct proc *p, int *status, int options) 844 { 845 struct proc *q, *t; 846 847 sx_assert(&proctree_lock, SA_XLOCKED); 848 PROC_LOCK_ASSERT(p, MA_OWNED); 849 KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE")); 850 851 mtx_spin_wait_unlocked(&p->p_slock); 852 853 q = td->td_proc; 854 855 if (status) 856 *status = KW_EXITCODE(p->p_xexit, p->p_xsig); 857 if (options & WNOWAIT) { 858 /* 859 * Only poll, returning the status. Caller does not wish to 860 * release the proc struct just yet. 861 */ 862 PROC_UNLOCK(p); 863 sx_xunlock(&proctree_lock); 864 return; 865 } 866 867 PROC_LOCK(q); 868 sigqueue_take(p->p_ksi); 869 PROC_UNLOCK(q); 870 871 /* 872 * If we got the child via a ptrace 'attach', we need to give it back 873 * to the old parent. 874 */ 875 if (p->p_oppid != p->p_pptr->p_pid) { 876 PROC_UNLOCK(p); 877 t = proc_realparent(p); 878 PROC_LOCK(t); 879 PROC_LOCK(p); 880 CTR2(KTR_PTRACE, 881 "wait: traced child %d moved back to parent %d", p->p_pid, 882 t->p_pid); 883 proc_reparent(p, t, false); 884 PROC_UNLOCK(p); 885 pksignal(t, SIGCHLD, p->p_ksi); 886 wakeup(t); 887 cv_broadcast(&p->p_pwait); 888 PROC_UNLOCK(t); 889 sx_xunlock(&proctree_lock); 890 return; 891 } 892 PROC_UNLOCK(p); 893 894 /* 895 * Remove other references to this process to ensure we have an 896 * exclusive reference. 897 */ 898 sx_xlock(&zombproc_lock); 899 LIST_REMOVE(p, p_list); /* off zombproc */ 900 sx_xunlock(&zombproc_lock); 901 sx_xlock(PIDHASHLOCK(p->p_pid)); 902 LIST_REMOVE(p, p_hash); 903 sx_xunlock(PIDHASHLOCK(p->p_pid)); 904 LIST_REMOVE(p, p_sibling); 905 reaper_abandon_children(p, true); 906 reaper_clear(p); 907 proc_id_clear(PROC_ID_PID, p->p_pid); 908 PROC_LOCK(p); 909 clear_orphan(p); 910 PROC_UNLOCK(p); 911 leavepgrp(p); 912 if (p->p_procdesc != NULL) 913 procdesc_reap(p); 914 sx_xunlock(&proctree_lock); 915 916 PROC_LOCK(p); 917 knlist_detach(p->p_klist); 918 p->p_klist = NULL; 919 PROC_UNLOCK(p); 920 921 /* 922 * Removal from allproc list and process group list paired with 923 * PROC_LOCK which was executed during that time should guarantee 924 * nothing can reach this process anymore. As such further locking 925 * is unnecessary. 926 */ 927 p->p_xexit = p->p_xsig = 0; /* XXX: why? */ 928 929 PROC_LOCK(q); 930 ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux); 931 PROC_UNLOCK(q); 932 933 /* 934 * Decrement the count of procs running with this uid. 935 */ 936 (void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); 937 938 /* 939 * Destroy resource accounting information associated with the process. 940 */ 941 #ifdef RACCT 942 if (racct_enable) { 943 PROC_LOCK(p); 944 racct_sub(p, RACCT_NPROC, 1); 945 PROC_UNLOCK(p); 946 } 947 #endif 948 racct_proc_exit(p); 949 950 /* 951 * Free credentials, arguments, and sigacts. 952 */ 953 crfree(p->p_ucred); 954 proc_set_cred(p, NULL); 955 pargs_drop(p->p_args); 956 p->p_args = NULL; 957 sigacts_free(p->p_sigacts); 958 p->p_sigacts = NULL; 959 960 /* 961 * Do any thread-system specific cleanups. 962 */ 963 thread_wait(p); 964 965 /* 966 * Give vm and machine-dependent layer a chance to free anything that 967 * cpu_exit couldn't release while still running in process context. 968 */ 969 vm_waitproc(p); 970 #ifdef MAC 971 mac_proc_destroy(p); 972 #endif 973 974 KASSERT(FIRST_THREAD_IN_PROC(p), 975 ("proc_reap: no residual thread!")); 976 uma_zfree(proc_zone, p); 977 atomic_add_int(&nprocs, -1); 978 } 979 980 static int 981 proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id, 982 int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo, 983 int check_only) 984 { 985 struct rusage *rup; 986 987 sx_assert(&proctree_lock, SA_XLOCKED); 988 989 PROC_LOCK(p); 990 991 switch (idtype) { 992 case P_ALL: 993 if (p->p_procdesc != NULL) { 994 PROC_UNLOCK(p); 995 return (0); 996 } 997 break; 998 case P_PID: 999 if (p->p_pid != (pid_t)id) { 1000 PROC_UNLOCK(p); 1001 return (0); 1002 } 1003 break; 1004 case P_PGID: 1005 if (p->p_pgid != (pid_t)id) { 1006 PROC_UNLOCK(p); 1007 return (0); 1008 } 1009 break; 1010 case P_SID: 1011 if (p->p_session->s_sid != (pid_t)id) { 1012 PROC_UNLOCK(p); 1013 return (0); 1014 } 1015 break; 1016 case P_UID: 1017 if (p->p_ucred->cr_uid != (uid_t)id) { 1018 PROC_UNLOCK(p); 1019 return (0); 1020 } 1021 break; 1022 case P_GID: 1023 if (p->p_ucred->cr_gid != (gid_t)id) { 1024 PROC_UNLOCK(p); 1025 return (0); 1026 } 1027 break; 1028 case P_JAILID: 1029 if (p->p_ucred->cr_prison->pr_id != (int)id) { 1030 PROC_UNLOCK(p); 1031 return (0); 1032 } 1033 break; 1034 /* 1035 * It seems that the thread structures get zeroed out 1036 * at process exit. This makes it impossible to 1037 * support P_SETID, P_CID or P_CPUID. 1038 */ 1039 default: 1040 PROC_UNLOCK(p); 1041 return (0); 1042 } 1043 1044 if (p_canwait(td, p)) { 1045 PROC_UNLOCK(p); 1046 return (0); 1047 } 1048 1049 if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) { 1050 PROC_UNLOCK(p); 1051 return (0); 1052 } 1053 1054 /* 1055 * This special case handles a kthread spawned by linux_clone 1056 * (see linux_misc.c). The linux_wait4 and linux_waitpid 1057 * functions need to be able to distinguish between waiting 1058 * on a process and waiting on a thread. It is a thread if 1059 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option 1060 * signifies we want to wait for threads and not processes. 1061 */ 1062 if ((p->p_sigparent != SIGCHLD) ^ 1063 ((options & WLINUXCLONE) != 0)) { 1064 PROC_UNLOCK(p); 1065 return (0); 1066 } 1067 1068 if (siginfo != NULL) { 1069 bzero(siginfo, sizeof(*siginfo)); 1070 siginfo->si_errno = 0; 1071 1072 /* 1073 * SUSv4 requires that the si_signo value is always 1074 * SIGCHLD. Obey it despite the rfork(2) interface 1075 * allows to request other signal for child exit 1076 * notification. 1077 */ 1078 siginfo->si_signo = SIGCHLD; 1079 1080 /* 1081 * This is still a rough estimate. We will fix the 1082 * cases TRAPPED, STOPPED, and CONTINUED later. 1083 */ 1084 if (WCOREDUMP(p->p_xsig)) { 1085 siginfo->si_code = CLD_DUMPED; 1086 siginfo->si_status = WTERMSIG(p->p_xsig); 1087 } else if (WIFSIGNALED(p->p_xsig)) { 1088 siginfo->si_code = CLD_KILLED; 1089 siginfo->si_status = WTERMSIG(p->p_xsig); 1090 } else { 1091 siginfo->si_code = CLD_EXITED; 1092 siginfo->si_status = p->p_xexit; 1093 } 1094 1095 siginfo->si_pid = p->p_pid; 1096 siginfo->si_uid = p->p_ucred->cr_uid; 1097 1098 /* 1099 * The si_addr field would be useful additional 1100 * detail, but apparently the PC value may be lost 1101 * when we reach this point. bzero() above sets 1102 * siginfo->si_addr to NULL. 1103 */ 1104 } 1105 1106 /* 1107 * There should be no reason to limit resources usage info to 1108 * exited processes only. A snapshot about any resources used 1109 * by a stopped process may be exactly what is needed. 1110 */ 1111 if (wrusage != NULL) { 1112 rup = &wrusage->wru_self; 1113 *rup = p->p_ru; 1114 PROC_STATLOCK(p); 1115 calcru(p, &rup->ru_utime, &rup->ru_stime); 1116 PROC_STATUNLOCK(p); 1117 1118 rup = &wrusage->wru_children; 1119 *rup = p->p_stats->p_cru; 1120 calccru(p, &rup->ru_utime, &rup->ru_stime); 1121 } 1122 1123 if (p->p_state == PRS_ZOMBIE && !check_only) { 1124 proc_reap(td, p, status, options); 1125 return (-1); 1126 } 1127 return (1); 1128 } 1129 1130 int 1131 kern_wait(struct thread *td, pid_t pid, int *status, int options, 1132 struct rusage *rusage) 1133 { 1134 struct __wrusage wru, *wrup; 1135 idtype_t idtype; 1136 id_t id; 1137 int ret; 1138 1139 /* 1140 * Translate the special pid values into the (idtype, pid) 1141 * pair for kern_wait6. The WAIT_MYPGRP case is handled by 1142 * kern_wait6() on its own. 1143 */ 1144 if (pid == WAIT_ANY) { 1145 idtype = P_ALL; 1146 id = 0; 1147 } else if (pid < 0) { 1148 idtype = P_PGID; 1149 id = (id_t)-pid; 1150 } else { 1151 idtype = P_PID; 1152 id = (id_t)pid; 1153 } 1154 1155 if (rusage != NULL) 1156 wrup = &wru; 1157 else 1158 wrup = NULL; 1159 1160 /* 1161 * For backward compatibility we implicitly add flags WEXITED 1162 * and WTRAPPED here. 1163 */ 1164 options |= WEXITED | WTRAPPED; 1165 ret = kern_wait6(td, idtype, id, status, options, wrup, NULL); 1166 if (rusage != NULL) 1167 *rusage = wru.wru_self; 1168 return (ret); 1169 } 1170 1171 static void 1172 report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo, 1173 int *status, int options, int si_code) 1174 { 1175 bool cont; 1176 1177 PROC_LOCK_ASSERT(p, MA_OWNED); 1178 sx_assert(&proctree_lock, SA_XLOCKED); 1179 MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED || 1180 si_code == CLD_CONTINUED); 1181 1182 cont = si_code == CLD_CONTINUED; 1183 if ((options & WNOWAIT) == 0) { 1184 if (cont) 1185 p->p_flag &= ~P_CONTINUED; 1186 else 1187 p->p_flag |= P_WAITED; 1188 PROC_LOCK(td->td_proc); 1189 sigqueue_take(p->p_ksi); 1190 PROC_UNLOCK(td->td_proc); 1191 } 1192 sx_xunlock(&proctree_lock); 1193 if (siginfo != NULL) { 1194 siginfo->si_code = si_code; 1195 siginfo->si_status = cont ? SIGCONT : p->p_xsig; 1196 } 1197 if (status != NULL) 1198 *status = cont ? SIGCONT : W_STOPCODE(p->p_xsig); 1199 PROC_UNLOCK(p); 1200 td->td_retval[0] = p->p_pid; 1201 } 1202 1203 int 1204 kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status, 1205 int options, struct __wrusage *wrusage, siginfo_t *siginfo) 1206 { 1207 struct proc *p, *q; 1208 pid_t pid; 1209 int error, nfound, ret; 1210 bool report; 1211 1212 AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */ 1213 AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */ 1214 AUDIT_ARG_VALUE(options); 1215 1216 q = td->td_proc; 1217 1218 if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) { 1219 PROC_LOCK(q); 1220 id = (id_t)q->p_pgid; 1221 PROC_UNLOCK(q); 1222 idtype = P_PGID; 1223 } 1224 1225 /* If we don't know the option, just return. */ 1226 if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT | 1227 WEXITED | WTRAPPED | WLINUXCLONE)) != 0) 1228 return (EINVAL); 1229 if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) { 1230 /* 1231 * We will be unable to find any matching processes, 1232 * because there are no known events to look for. 1233 * Prefer to return error instead of blocking 1234 * indefinitely. 1235 */ 1236 return (EINVAL); 1237 } 1238 1239 loop: 1240 if (q->p_flag & P_STATCHILD) { 1241 PROC_LOCK(q); 1242 q->p_flag &= ~P_STATCHILD; 1243 PROC_UNLOCK(q); 1244 } 1245 sx_xlock(&proctree_lock); 1246 loop_locked: 1247 nfound = 0; 1248 LIST_FOREACH(p, &q->p_children, p_sibling) { 1249 pid = p->p_pid; 1250 ret = proc_to_reap(td, p, idtype, id, status, options, 1251 wrusage, siginfo, 0); 1252 if (ret == 0) 1253 continue; 1254 else if (ret != 1) { 1255 td->td_retval[0] = pid; 1256 return (0); 1257 } 1258 1259 nfound++; 1260 PROC_LOCK_ASSERT(p, MA_OWNED); 1261 1262 if ((options & WTRAPPED) != 0 && 1263 (p->p_flag & P_TRACED) != 0) { 1264 PROC_SLOCK(p); 1265 report = 1266 ((p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) && 1267 p->p_suspcount == p->p_numthreads && 1268 (p->p_flag & P_WAITED) == 0); 1269 PROC_SUNLOCK(p); 1270 if (report) { 1271 CTR4(KTR_PTRACE, 1272 "wait: returning trapped pid %d status %#x " 1273 "(xstat %d) xthread %d", 1274 p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig, 1275 p->p_xthread != NULL ? 1276 p->p_xthread->td_tid : -1); 1277 report_alive_proc(td, p, siginfo, status, 1278 options, CLD_TRAPPED); 1279 return (0); 1280 } 1281 } 1282 if ((options & WUNTRACED) != 0 && 1283 (p->p_flag & P_STOPPED_SIG) != 0) { 1284 PROC_SLOCK(p); 1285 report = (p->p_suspcount == p->p_numthreads && 1286 ((p->p_flag & P_WAITED) == 0)); 1287 PROC_SUNLOCK(p); 1288 if (report) { 1289 report_alive_proc(td, p, siginfo, status, 1290 options, CLD_STOPPED); 1291 return (0); 1292 } 1293 } 1294 if ((options & WCONTINUED) != 0 && 1295 (p->p_flag & P_CONTINUED) != 0) { 1296 report_alive_proc(td, p, siginfo, status, options, 1297 CLD_CONTINUED); 1298 return (0); 1299 } 1300 PROC_UNLOCK(p); 1301 } 1302 1303 /* 1304 * Look in the orphans list too, to allow the parent to 1305 * collect it's child exit status even if child is being 1306 * debugged. 1307 * 1308 * Debugger detaches from the parent upon successful 1309 * switch-over from parent to child. At this point due to 1310 * re-parenting the parent loses the child to debugger and a 1311 * wait4(2) call would report that it has no children to wait 1312 * for. By maintaining a list of orphans we allow the parent 1313 * to successfully wait until the child becomes a zombie. 1314 */ 1315 if (nfound == 0) { 1316 LIST_FOREACH(p, &q->p_orphans, p_orphan) { 1317 ret = proc_to_reap(td, p, idtype, id, NULL, options, 1318 NULL, NULL, 1); 1319 if (ret != 0) { 1320 KASSERT(ret != -1, ("reaped an orphan (pid %d)", 1321 (int)td->td_retval[0])); 1322 PROC_UNLOCK(p); 1323 nfound++; 1324 break; 1325 } 1326 } 1327 } 1328 if (nfound == 0) { 1329 sx_xunlock(&proctree_lock); 1330 return (ECHILD); 1331 } 1332 if (options & WNOHANG) { 1333 sx_xunlock(&proctree_lock); 1334 td->td_retval[0] = 0; 1335 return (0); 1336 } 1337 PROC_LOCK(q); 1338 if (q->p_flag & P_STATCHILD) { 1339 q->p_flag &= ~P_STATCHILD; 1340 PROC_UNLOCK(q); 1341 goto loop_locked; 1342 } 1343 sx_xunlock(&proctree_lock); 1344 error = msleep(q, &q->p_mtx, PWAIT | PCATCH | PDROP, "wait", 0); 1345 if (error) 1346 return (error); 1347 goto loop; 1348 } 1349 1350 /* 1351 * Make process 'parent' the new parent of process 'child'. 1352 * Must be called with an exclusive hold of proctree lock. 1353 */ 1354 void 1355 proc_reparent(struct proc *child, struct proc *parent, bool set_oppid) 1356 { 1357 1358 sx_assert(&proctree_lock, SX_XLOCKED); 1359 PROC_LOCK_ASSERT(child, MA_OWNED); 1360 if (child->p_pptr == parent) 1361 return; 1362 1363 PROC_LOCK(child->p_pptr); 1364 sigqueue_take(child->p_ksi); 1365 PROC_UNLOCK(child->p_pptr); 1366 LIST_REMOVE(child, p_sibling); 1367 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); 1368 1369 clear_orphan(child); 1370 if (child->p_flag & P_TRACED) { 1371 if (LIST_EMPTY(&child->p_pptr->p_orphans)) { 1372 child->p_treeflag |= P_TREE_FIRST_ORPHAN; 1373 LIST_INSERT_HEAD(&child->p_pptr->p_orphans, child, 1374 p_orphan); 1375 } else { 1376 LIST_INSERT_AFTER(LIST_FIRST(&child->p_pptr->p_orphans), 1377 child, p_orphan); 1378 } 1379 child->p_treeflag |= P_TREE_ORPHANED; 1380 } 1381 1382 child->p_pptr = parent; 1383 if (set_oppid) 1384 child->p_oppid = parent->p_pid; 1385 } 1386