1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1993, David Greenman 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_capsicum.h" 33 #include "opt_hwpmc_hooks.h" 34 #include "opt_ktrace.h" 35 #include "opt_vm.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/acct.h> 40 #include <sys/asan.h> 41 #include <sys/capsicum.h> 42 #include <sys/compressor.h> 43 #include <sys/eventhandler.h> 44 #include <sys/exec.h> 45 #include <sys/fcntl.h> 46 #include <sys/filedesc.h> 47 #include <sys/imgact.h> 48 #include <sys/imgact_elf.h> 49 #include <sys/kernel.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mman.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/namei.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/reg.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sched.h> 63 #include <sys/sdt.h> 64 #include <sys/sf_buf.h> 65 #include <sys/shm.h> 66 #include <sys/signalvar.h> 67 #include <sys/smp.h> 68 #include <sys/stat.h> 69 #include <sys/syscallsubr.h> 70 #include <sys/sysctl.h> 71 #include <sys/sysent.h> 72 #include <sys/sysproto.h> 73 #include <sys/timers.h> 74 #include <sys/umtxvar.h> 75 #include <sys/vnode.h> 76 #include <sys/wait.h> 77 #ifdef KTRACE 78 #include <sys/ktrace.h> 79 #endif 80 81 #include <vm/vm.h> 82 #include <vm/vm_param.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_kern.h> 87 #include <vm/vm_extern.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_pager.h> 90 91 #ifdef HWPMC_HOOKS 92 #include <sys/pmckern.h> 93 #endif 94 95 #include <security/audit/audit.h> 96 #include <security/mac/mac_framework.h> 97 98 #ifdef KDTRACE_HOOKS 99 #include <sys/dtrace_bsd.h> 100 dtrace_execexit_func_t dtrace_fasttrap_exec; 101 #endif 102 103 SDT_PROVIDER_DECLARE(proc); 104 SDT_PROBE_DEFINE1(proc, , , exec, "char *"); 105 SDT_PROBE_DEFINE1(proc, , , exec__failure, "int"); 106 SDT_PROBE_DEFINE1(proc, , , exec__success, "char *"); 107 108 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments"); 109 110 int coredump_pack_fileinfo = 1; 111 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN, 112 &coredump_pack_fileinfo, 0, 113 "Enable file path packing in 'procstat -f' coredump notes"); 114 115 int coredump_pack_vmmapinfo = 1; 116 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN, 117 &coredump_pack_vmmapinfo, 0, 118 "Enable file path packing in 'procstat -v' coredump notes"); 119 120 static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS); 121 static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS); 122 static int sysctl_kern_stacktop(SYSCTL_HANDLER_ARGS); 123 static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS); 124 static int do_execve(struct thread *td, struct image_args *args, 125 struct mac *mac_p, struct vmspace *oldvmspace); 126 127 /* XXX This should be vm_size_t. */ 128 SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD| 129 CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU", 130 "Location of process' ps_strings structure"); 131 132 /* XXX This should be vm_size_t. */ 133 SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD| 134 CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU", 135 "Top of process stack"); 136 137 SYSCTL_PROC(_kern, KERN_STACKTOP, stacktop, CTLTYPE_ULONG | CTLFLAG_RD | 138 CTLFLAG_CAPRD | CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_stacktop, "LU", 139 "Top of process stack with stack gap."); 140 141 SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE, 142 NULL, 0, sysctl_kern_stackprot, "I", 143 "Stack memory permissions"); 144 145 u_long ps_arg_cache_limit = PAGE_SIZE / 16; 146 SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, 147 &ps_arg_cache_limit, 0, 148 "Process' command line characters cache limit"); 149 150 static int disallow_high_osrel; 151 SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW, 152 &disallow_high_osrel, 0, 153 "Disallow execution of binaries built for higher version of the world"); 154 155 static int map_at_zero = 0; 156 SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0, 157 "Permit processes to map an object at virtual address 0."); 158 159 static int core_dump_can_intr = 1; 160 SYSCTL_INT(_kern, OID_AUTO, core_dump_can_intr, CTLFLAG_RWTUN, 161 &core_dump_can_intr, 0, 162 "Core dumping interruptible with SIGKILL"); 163 164 static int 165 sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS) 166 { 167 struct proc *p; 168 int error; 169 170 p = curproc; 171 #ifdef SCTL_MASK32 172 if (req->flags & SCTL_MASK32) { 173 unsigned int val; 174 val = (unsigned int)p->p_sysent->sv_psstrings; 175 error = SYSCTL_OUT(req, &val, sizeof(val)); 176 } else 177 #endif 178 error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings, 179 sizeof(p->p_sysent->sv_psstrings)); 180 return error; 181 } 182 183 static int 184 sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS) 185 { 186 struct proc *p; 187 int error; 188 189 p = curproc; 190 #ifdef SCTL_MASK32 191 if (req->flags & SCTL_MASK32) { 192 unsigned int val; 193 val = (unsigned int)p->p_sysent->sv_usrstack; 194 error = SYSCTL_OUT(req, &val, sizeof(val)); 195 } else 196 #endif 197 error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack, 198 sizeof(p->p_sysent->sv_usrstack)); 199 return (error); 200 } 201 202 static int 203 sysctl_kern_stacktop(SYSCTL_HANDLER_ARGS) 204 { 205 vm_offset_t stacktop; 206 struct proc *p; 207 int error; 208 209 p = curproc; 210 #ifdef SCTL_MASK32 211 if (req->flags & SCTL_MASK32) { 212 unsigned int val; 213 214 val = (unsigned int)(p->p_sysent->sv_usrstack - 215 p->p_vmspace->vm_stkgap); 216 error = SYSCTL_OUT(req, &val, sizeof(val)); 217 } else 218 #endif 219 { 220 stacktop = p->p_sysent->sv_usrstack - p->p_vmspace->vm_stkgap; 221 error = SYSCTL_OUT(req, &stacktop, sizeof(stacktop)); 222 } 223 return (error); 224 } 225 226 static int 227 sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS) 228 { 229 struct proc *p; 230 231 p = curproc; 232 return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot, 233 sizeof(p->p_sysent->sv_stackprot))); 234 } 235 236 /* 237 * Each of the items is a pointer to a `const struct execsw', hence the 238 * double pointer here. 239 */ 240 static const struct execsw **execsw; 241 242 #ifndef _SYS_SYSPROTO_H_ 243 struct execve_args { 244 char *fname; 245 char **argv; 246 char **envv; 247 }; 248 #endif 249 250 int 251 sys_execve(struct thread *td, struct execve_args *uap) 252 { 253 struct image_args args; 254 struct vmspace *oldvmspace; 255 int error; 256 257 error = pre_execve(td, &oldvmspace); 258 if (error != 0) 259 return (error); 260 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, 261 uap->argv, uap->envv); 262 if (error == 0) 263 error = kern_execve(td, &args, NULL, oldvmspace); 264 post_execve(td, error, oldvmspace); 265 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 266 return (error); 267 } 268 269 #ifndef _SYS_SYSPROTO_H_ 270 struct fexecve_args { 271 int fd; 272 char **argv; 273 char **envv; 274 }; 275 #endif 276 int 277 sys_fexecve(struct thread *td, struct fexecve_args *uap) 278 { 279 struct image_args args; 280 struct vmspace *oldvmspace; 281 int error; 282 283 error = pre_execve(td, &oldvmspace); 284 if (error != 0) 285 return (error); 286 error = exec_copyin_args(&args, NULL, UIO_SYSSPACE, 287 uap->argv, uap->envv); 288 if (error == 0) { 289 args.fd = uap->fd; 290 error = kern_execve(td, &args, NULL, oldvmspace); 291 } 292 post_execve(td, error, oldvmspace); 293 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 294 return (error); 295 } 296 297 #ifndef _SYS_SYSPROTO_H_ 298 struct __mac_execve_args { 299 char *fname; 300 char **argv; 301 char **envv; 302 struct mac *mac_p; 303 }; 304 #endif 305 306 int 307 sys___mac_execve(struct thread *td, struct __mac_execve_args *uap) 308 { 309 #ifdef MAC 310 struct image_args args; 311 struct vmspace *oldvmspace; 312 int error; 313 314 error = pre_execve(td, &oldvmspace); 315 if (error != 0) 316 return (error); 317 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, 318 uap->argv, uap->envv); 319 if (error == 0) 320 error = kern_execve(td, &args, uap->mac_p, oldvmspace); 321 post_execve(td, error, oldvmspace); 322 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 323 return (error); 324 #else 325 return (ENOSYS); 326 #endif 327 } 328 329 int 330 pre_execve(struct thread *td, struct vmspace **oldvmspace) 331 { 332 struct proc *p; 333 int error; 334 335 KASSERT(td == curthread, ("non-current thread %p", td)); 336 error = 0; 337 p = td->td_proc; 338 if ((p->p_flag & P_HADTHREADS) != 0) { 339 PROC_LOCK(p); 340 if (thread_single(p, SINGLE_BOUNDARY) != 0) 341 error = ERESTART; 342 PROC_UNLOCK(p); 343 } 344 KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0, 345 ("nested execve")); 346 *oldvmspace = p->p_vmspace; 347 return (error); 348 } 349 350 void 351 post_execve(struct thread *td, int error, struct vmspace *oldvmspace) 352 { 353 struct proc *p; 354 355 KASSERT(td == curthread, ("non-current thread %p", td)); 356 p = td->td_proc; 357 if ((p->p_flag & P_HADTHREADS) != 0) { 358 PROC_LOCK(p); 359 /* 360 * If success, we upgrade to SINGLE_EXIT state to 361 * force other threads to suicide. 362 */ 363 if (error == EJUSTRETURN) 364 thread_single(p, SINGLE_EXIT); 365 else 366 thread_single_end(p, SINGLE_BOUNDARY); 367 PROC_UNLOCK(p); 368 } 369 exec_cleanup(td, oldvmspace); 370 } 371 372 /* 373 * kern_execve() has the astonishing property of not always returning to 374 * the caller. If sufficiently bad things happen during the call to 375 * do_execve(), it can end up calling exit1(); as a result, callers must 376 * avoid doing anything which they might need to undo (e.g., allocating 377 * memory). 378 */ 379 int 380 kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p, 381 struct vmspace *oldvmspace) 382 { 383 384 TSEXEC(td->td_proc->p_pid, args->begin_argv); 385 AUDIT_ARG_ARGV(args->begin_argv, args->argc, 386 exec_args_get_begin_envv(args) - args->begin_argv); 387 AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc, 388 args->endp - exec_args_get_begin_envv(args)); 389 return (do_execve(td, args, mac_p, oldvmspace)); 390 } 391 392 static void 393 execve_nosetid(struct image_params *imgp) 394 { 395 imgp->credential_setid = false; 396 if (imgp->newcred != NULL) { 397 crfree(imgp->newcred); 398 imgp->newcred = NULL; 399 } 400 } 401 402 /* 403 * In-kernel implementation of execve(). All arguments are assumed to be 404 * userspace pointers from the passed thread. 405 */ 406 static int 407 do_execve(struct thread *td, struct image_args *args, struct mac *mac_p, 408 struct vmspace *oldvmspace) 409 { 410 struct proc *p = td->td_proc; 411 struct nameidata nd; 412 struct ucred *oldcred; 413 struct uidinfo *euip = NULL; 414 uintptr_t stack_base; 415 struct image_params image_params, *imgp; 416 struct vattr attr; 417 int (*img_first)(struct image_params *); 418 struct pargs *oldargs = NULL, *newargs = NULL; 419 struct sigacts *oldsigacts = NULL, *newsigacts = NULL; 420 #ifdef KTRACE 421 struct ktr_io_params *kiop; 422 #endif 423 struct vnode *oldtextvp = NULL, *newtextvp; 424 int credential_changing; 425 #ifdef MAC 426 struct label *interpvplabel = NULL; 427 int will_transition; 428 #endif 429 #ifdef HWPMC_HOOKS 430 struct pmckern_procexec pe; 431 #endif 432 int error, i, orig_osrel; 433 uint32_t orig_fctl0; 434 Elf_Brandinfo *orig_brandinfo; 435 static const char fexecv_proc_title[] = "(fexecv)"; 436 437 imgp = &image_params; 438 #ifdef KTRACE 439 kiop = NULL; 440 #endif 441 442 /* 443 * Lock the process and set the P_INEXEC flag to indicate that 444 * it should be left alone until we're done here. This is 445 * necessary to avoid race conditions - e.g. in ptrace() - 446 * that might allow a local user to illicitly obtain elevated 447 * privileges. 448 */ 449 PROC_LOCK(p); 450 KASSERT((p->p_flag & P_INEXEC) == 0, 451 ("%s(): process already has P_INEXEC flag", __func__)); 452 p->p_flag |= P_INEXEC; 453 PROC_UNLOCK(p); 454 455 /* 456 * Initialize part of the common data 457 */ 458 bzero(imgp, sizeof(*imgp)); 459 imgp->proc = p; 460 imgp->attr = &attr; 461 imgp->args = args; 462 oldcred = p->p_ucred; 463 orig_osrel = p->p_osrel; 464 orig_fctl0 = p->p_fctl0; 465 orig_brandinfo = p->p_elf_brandinfo; 466 467 #ifdef MAC 468 error = mac_execve_enter(imgp, mac_p); 469 if (error) 470 goto exec_fail; 471 #endif 472 473 /* 474 * Translate the file name. namei() returns a vnode pointer 475 * in ni_vp among other things. 476 * 477 * XXXAUDIT: It would be desirable to also audit the name of the 478 * interpreter if this is an interpreted binary. 479 */ 480 if (args->fname != NULL) { 481 NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW | 482 SAVENAME | AUDITVNODE1, UIO_SYSSPACE, args->fname, td); 483 } 484 485 SDT_PROBE1(proc, , , exec, args->fname); 486 487 interpret: 488 if (args->fname != NULL) { 489 #ifdef CAPABILITY_MODE 490 /* 491 * While capability mode can't reach this point via direct 492 * path arguments to execve(), we also don't allow 493 * interpreters to be used in capability mode (for now). 494 * Catch indirect lookups and return a permissions error. 495 */ 496 if (IN_CAPABILITY_MODE(td)) { 497 error = ECAPMODE; 498 goto exec_fail; 499 } 500 #endif 501 error = namei(&nd); 502 if (error) 503 goto exec_fail; 504 505 newtextvp = nd.ni_vp; 506 imgp->vp = newtextvp; 507 } else { 508 AUDIT_ARG_FD(args->fd); 509 /* 510 * Descriptors opened only with O_EXEC or O_RDONLY are allowed. 511 */ 512 error = fgetvp_exec(td, args->fd, &cap_fexecve_rights, &newtextvp); 513 if (error) 514 goto exec_fail; 515 vn_lock(newtextvp, LK_SHARED | LK_RETRY); 516 AUDIT_ARG_VNODE1(newtextvp); 517 imgp->vp = newtextvp; 518 } 519 520 /* 521 * Check file permissions. Also 'opens' file and sets its vnode to 522 * text mode. 523 */ 524 error = exec_check_permissions(imgp); 525 if (error) 526 goto exec_fail_dealloc; 527 528 imgp->object = imgp->vp->v_object; 529 if (imgp->object != NULL) 530 vm_object_reference(imgp->object); 531 532 error = exec_map_first_page(imgp); 533 if (error) 534 goto exec_fail_dealloc; 535 536 imgp->proc->p_osrel = 0; 537 imgp->proc->p_fctl0 = 0; 538 imgp->proc->p_elf_brandinfo = NULL; 539 540 /* 541 * Implement image setuid/setgid. 542 * 543 * Determine new credentials before attempting image activators 544 * so that it can be used by process_exec handlers to determine 545 * credential/setid changes. 546 * 547 * Don't honor setuid/setgid if the filesystem prohibits it or if 548 * the process is being traced. 549 * 550 * We disable setuid/setgid/etc in capability mode on the basis 551 * that most setugid applications are not written with that 552 * environment in mind, and will therefore almost certainly operate 553 * incorrectly. In principle there's no reason that setugid 554 * applications might not be useful in capability mode, so we may want 555 * to reconsider this conservative design choice in the future. 556 * 557 * XXXMAC: For the time being, use NOSUID to also prohibit 558 * transitions on the file system. 559 */ 560 credential_changing = 0; 561 credential_changing |= (attr.va_mode & S_ISUID) && 562 oldcred->cr_uid != attr.va_uid; 563 credential_changing |= (attr.va_mode & S_ISGID) && 564 oldcred->cr_gid != attr.va_gid; 565 #ifdef MAC 566 will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp, 567 interpvplabel, imgp); 568 credential_changing |= will_transition; 569 #endif 570 571 /* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */ 572 if (credential_changing) 573 imgp->proc->p_pdeathsig = 0; 574 575 if (credential_changing && 576 #ifdef CAPABILITY_MODE 577 ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) && 578 #endif 579 (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 && 580 (p->p_flag & P_TRACED) == 0) { 581 imgp->credential_setid = true; 582 VOP_UNLOCK(imgp->vp); 583 imgp->newcred = crdup(oldcred); 584 if (attr.va_mode & S_ISUID) { 585 euip = uifind(attr.va_uid); 586 change_euid(imgp->newcred, euip); 587 } 588 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 589 if (attr.va_mode & S_ISGID) 590 change_egid(imgp->newcred, attr.va_gid); 591 /* 592 * Implement correct POSIX saved-id behavior. 593 * 594 * XXXMAC: Note that the current logic will save the 595 * uid and gid if a MAC domain transition occurs, even 596 * though maybe it shouldn't. 597 */ 598 change_svuid(imgp->newcred, imgp->newcred->cr_uid); 599 change_svgid(imgp->newcred, imgp->newcred->cr_gid); 600 } else { 601 /* 602 * Implement correct POSIX saved-id behavior. 603 * 604 * XXX: It's not clear that the existing behavior is 605 * POSIX-compliant. A number of sources indicate that the 606 * saved uid/gid should only be updated if the new ruid is 607 * not equal to the old ruid, or the new euid is not equal 608 * to the old euid and the new euid is not equal to the old 609 * ruid. The FreeBSD code always updates the saved uid/gid. 610 * Also, this code uses the new (replaced) euid and egid as 611 * the source, which may or may not be the right ones to use. 612 */ 613 if (oldcred->cr_svuid != oldcred->cr_uid || 614 oldcred->cr_svgid != oldcred->cr_gid) { 615 VOP_UNLOCK(imgp->vp); 616 imgp->newcred = crdup(oldcred); 617 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 618 change_svuid(imgp->newcred, imgp->newcred->cr_uid); 619 change_svgid(imgp->newcred, imgp->newcred->cr_gid); 620 } 621 } 622 /* The new credentials are installed into the process later. */ 623 624 /* 625 * Do the best to calculate the full path to the image file. 626 */ 627 if (args->fname != NULL && args->fname[0] == '/') 628 imgp->execpath = args->fname; 629 else { 630 VOP_UNLOCK(imgp->vp); 631 if (vn_fullpath(imgp->vp, &imgp->execpath, &imgp->freepath) != 0) 632 imgp->execpath = args->fname; 633 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 634 } 635 636 /* 637 * If the current process has a special image activator it 638 * wants to try first, call it. For example, emulating shell 639 * scripts differently. 640 */ 641 error = -1; 642 if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL) 643 error = img_first(imgp); 644 645 /* 646 * Loop through the list of image activators, calling each one. 647 * An activator returns -1 if there is no match, 0 on success, 648 * and an error otherwise. 649 */ 650 for (i = 0; error == -1 && execsw[i]; ++i) { 651 if (execsw[i]->ex_imgact == NULL || 652 execsw[i]->ex_imgact == img_first) { 653 continue; 654 } 655 error = (*execsw[i]->ex_imgact)(imgp); 656 } 657 658 if (error) { 659 if (error == -1) 660 error = ENOEXEC; 661 goto exec_fail_dealloc; 662 } 663 664 /* 665 * Special interpreter operation, cleanup and loop up to try to 666 * activate the interpreter. 667 */ 668 if (imgp->interpreted) { 669 exec_unmap_first_page(imgp); 670 /* 671 * The text reference needs to be removed for scripts. 672 * There is a short period before we determine that 673 * something is a script where text reference is active. 674 * The vnode lock is held over this entire period 675 * so nothing should illegitimately be blocked. 676 */ 677 MPASS(imgp->textset); 678 VOP_UNSET_TEXT_CHECKED(newtextvp); 679 imgp->textset = false; 680 /* free name buffer and old vnode */ 681 if (args->fname != NULL) 682 NDFREE(&nd, NDF_ONLY_PNBUF); 683 #ifdef MAC 684 mac_execve_interpreter_enter(newtextvp, &interpvplabel); 685 #endif 686 if (imgp->opened) { 687 VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td); 688 imgp->opened = 0; 689 } 690 vput(newtextvp); 691 vm_object_deallocate(imgp->object); 692 imgp->object = NULL; 693 execve_nosetid(imgp); 694 imgp->execpath = NULL; 695 free(imgp->freepath, M_TEMP); 696 imgp->freepath = NULL; 697 /* set new name to that of the interpreter */ 698 NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW | 699 SAVENAME, UIO_SYSSPACE, imgp->interpreter_name, td); 700 args->fname = imgp->interpreter_name; 701 goto interpret; 702 } 703 704 /* 705 * NB: We unlock the vnode here because it is believed that none 706 * of the sv_copyout_strings/sv_fixup operations require the vnode. 707 */ 708 VOP_UNLOCK(imgp->vp); 709 710 if (disallow_high_osrel && 711 P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) { 712 error = ENOEXEC; 713 uprintf("Osrel %d for image %s too high\n", p->p_osrel, 714 imgp->execpath != NULL ? imgp->execpath : "<unresolved>"); 715 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 716 goto exec_fail_dealloc; 717 } 718 719 /* 720 * Copy out strings (args and env) and initialize stack base. 721 */ 722 error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base); 723 if (error != 0) { 724 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 725 goto exec_fail_dealloc; 726 } 727 728 /* 729 * Stack setup. 730 */ 731 error = (*p->p_sysent->sv_fixup)(&stack_base, imgp); 732 if (error != 0) { 733 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 734 goto exec_fail_dealloc; 735 } 736 737 /* 738 * For security and other reasons, the file descriptor table cannot be 739 * shared after an exec. 740 */ 741 fdunshare(td); 742 pdunshare(td); 743 /* close files on exec */ 744 fdcloseexec(td); 745 746 /* 747 * Malloc things before we need locks. 748 */ 749 i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv; 750 /* Cache arguments if they fit inside our allowance */ 751 if (ps_arg_cache_limit >= i + sizeof(struct pargs)) { 752 newargs = pargs_alloc(i); 753 bcopy(imgp->args->begin_argv, newargs->ar_args, i); 754 } 755 756 /* 757 * For security and other reasons, signal handlers cannot 758 * be shared after an exec. The new process gets a copy of the old 759 * handlers. In execsigs(), the new process will have its signals 760 * reset. 761 */ 762 if (sigacts_shared(p->p_sigacts)) { 763 oldsigacts = p->p_sigacts; 764 newsigacts = sigacts_alloc(); 765 sigacts_copy(newsigacts, oldsigacts); 766 } 767 768 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 769 770 PROC_LOCK(p); 771 if (oldsigacts) 772 p->p_sigacts = newsigacts; 773 /* Stop profiling */ 774 stopprofclock(p); 775 776 /* reset caught signals */ 777 execsigs(p); 778 779 /* name this process - nameiexec(p, ndp) */ 780 bzero(p->p_comm, sizeof(p->p_comm)); 781 if (args->fname) 782 bcopy(nd.ni_cnd.cn_nameptr, p->p_comm, 783 min(nd.ni_cnd.cn_namelen, MAXCOMLEN)); 784 else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0) 785 bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title)); 786 bcopy(p->p_comm, td->td_name, sizeof(td->td_name)); 787 #ifdef KTR 788 sched_clear_tdname(td); 789 #endif 790 791 /* 792 * mark as execed, wakeup the process that vforked (if any) and tell 793 * it that it now has its own resources back 794 */ 795 p->p_flag |= P_EXEC; 796 if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0) 797 p->p_flag2 &= ~P2_NOTRACE; 798 if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0) 799 p->p_flag2 &= ~P2_STKGAP_DISABLE; 800 if (p->p_flag & P_PPWAIT) { 801 p->p_flag &= ~(P_PPWAIT | P_PPTRACE); 802 cv_broadcast(&p->p_pwait); 803 /* STOPs are no longer ignored, arrange for AST */ 804 signotify(td); 805 } 806 807 if ((imgp->sysent->sv_setid_allowed != NULL && 808 !(*imgp->sysent->sv_setid_allowed)(td, imgp)) || 809 (p->p_flag2 & P2_NO_NEW_PRIVS) != 0) 810 execve_nosetid(imgp); 811 812 /* 813 * Implement image setuid/setgid installation. 814 */ 815 if (imgp->credential_setid) { 816 /* 817 * Turn off syscall tracing for set-id programs, except for 818 * root. Record any set-id flags first to make sure that 819 * we do not regain any tracing during a possible block. 820 */ 821 setsugid(p); 822 #ifdef KTRACE 823 kiop = ktrprocexec(p); 824 #endif 825 /* 826 * Close any file descriptors 0..2 that reference procfs, 827 * then make sure file descriptors 0..2 are in use. 828 * 829 * Both fdsetugidsafety() and fdcheckstd() may call functions 830 * taking sleepable locks, so temporarily drop our locks. 831 */ 832 PROC_UNLOCK(p); 833 VOP_UNLOCK(imgp->vp); 834 fdsetugidsafety(td); 835 error = fdcheckstd(td); 836 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 837 if (error != 0) 838 goto exec_fail_dealloc; 839 PROC_LOCK(p); 840 #ifdef MAC 841 if (will_transition) { 842 mac_vnode_execve_transition(oldcred, imgp->newcred, 843 imgp->vp, interpvplabel, imgp); 844 } 845 #endif 846 } else { 847 if (oldcred->cr_uid == oldcred->cr_ruid && 848 oldcred->cr_gid == oldcred->cr_rgid) 849 p->p_flag &= ~P_SUGID; 850 } 851 /* 852 * Set the new credentials. 853 */ 854 if (imgp->newcred != NULL) { 855 proc_set_cred(p, imgp->newcred); 856 crfree(oldcred); 857 oldcred = NULL; 858 } 859 860 /* 861 * Store the vp for use in procfs. This vnode was referenced by namei 862 * or fgetvp_exec. 863 */ 864 oldtextvp = p->p_textvp; 865 p->p_textvp = newtextvp; 866 867 #ifdef KDTRACE_HOOKS 868 /* 869 * Tell the DTrace fasttrap provider about the exec if it 870 * has declared an interest. 871 */ 872 if (dtrace_fasttrap_exec) 873 dtrace_fasttrap_exec(p); 874 #endif 875 876 /* 877 * Notify others that we exec'd, and clear the P_INEXEC flag 878 * as we're now a bona fide freshly-execed process. 879 */ 880 KNOTE_LOCKED(p->p_klist, NOTE_EXEC); 881 p->p_flag &= ~P_INEXEC; 882 883 /* clear "fork but no exec" flag, as we _are_ execing */ 884 p->p_acflag &= ~AFORK; 885 886 /* 887 * Free any previous argument cache and replace it with 888 * the new argument cache, if any. 889 */ 890 oldargs = p->p_args; 891 p->p_args = newargs; 892 newargs = NULL; 893 894 PROC_UNLOCK(p); 895 896 #ifdef HWPMC_HOOKS 897 /* 898 * Check if system-wide sampling is in effect or if the 899 * current process is using PMCs. If so, do exec() time 900 * processing. This processing needs to happen AFTER the 901 * P_INEXEC flag is cleared. 902 */ 903 if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) { 904 VOP_UNLOCK(imgp->vp); 905 pe.pm_credentialschanged = credential_changing; 906 pe.pm_entryaddr = imgp->entry_addr; 907 908 PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe); 909 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 910 } 911 #endif 912 913 /* Set values passed into the program in registers. */ 914 (*p->p_sysent->sv_setregs)(td, imgp, stack_base); 915 916 VOP_MMAPPED(imgp->vp); 917 918 SDT_PROBE1(proc, , , exec__success, args->fname); 919 920 exec_fail_dealloc: 921 if (error != 0) { 922 p->p_osrel = orig_osrel; 923 p->p_fctl0 = orig_fctl0; 924 p->p_elf_brandinfo = orig_brandinfo; 925 } 926 927 if (imgp->firstpage != NULL) 928 exec_unmap_first_page(imgp); 929 930 if (imgp->vp != NULL) { 931 if (args->fname) 932 NDFREE(&nd, NDF_ONLY_PNBUF); 933 if (imgp->opened) 934 VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td); 935 if (imgp->textset) 936 VOP_UNSET_TEXT_CHECKED(imgp->vp); 937 if (error != 0) 938 vput(imgp->vp); 939 else 940 VOP_UNLOCK(imgp->vp); 941 } 942 943 if (imgp->object != NULL) 944 vm_object_deallocate(imgp->object); 945 946 free(imgp->freepath, M_TEMP); 947 948 if (error == 0) { 949 if (p->p_ptevents & PTRACE_EXEC) { 950 PROC_LOCK(p); 951 if (p->p_ptevents & PTRACE_EXEC) 952 td->td_dbgflags |= TDB_EXEC; 953 PROC_UNLOCK(p); 954 } 955 } else { 956 exec_fail: 957 /* we're done here, clear P_INEXEC */ 958 PROC_LOCK(p); 959 p->p_flag &= ~P_INEXEC; 960 PROC_UNLOCK(p); 961 962 SDT_PROBE1(proc, , , exec__failure, error); 963 } 964 965 if (imgp->newcred != NULL && oldcred != NULL) 966 crfree(imgp->newcred); 967 968 #ifdef MAC 969 mac_execve_exit(imgp); 970 mac_execve_interpreter_exit(interpvplabel); 971 #endif 972 exec_free_args(args); 973 974 /* 975 * Handle deferred decrement of ref counts. 976 */ 977 if (oldtextvp != NULL) 978 vrele(oldtextvp); 979 #ifdef KTRACE 980 ktr_io_params_free(kiop); 981 #endif 982 pargs_drop(oldargs); 983 pargs_drop(newargs); 984 if (oldsigacts != NULL) 985 sigacts_free(oldsigacts); 986 if (euip != NULL) 987 uifree(euip); 988 989 if (error && imgp->vmspace_destroyed) { 990 /* sorry, no more process anymore. exit gracefully */ 991 exec_cleanup(td, oldvmspace); 992 exit1(td, 0, SIGABRT); 993 /* NOT REACHED */ 994 } 995 996 #ifdef KTRACE 997 if (error == 0) 998 ktrprocctor(p); 999 #endif 1000 1001 /* 1002 * We don't want cpu_set_syscall_retval() to overwrite any of 1003 * the register values put in place by exec_setregs(). 1004 * Implementations of cpu_set_syscall_retval() will leave 1005 * registers unmodified when returning EJUSTRETURN. 1006 */ 1007 return (error == 0 ? EJUSTRETURN : error); 1008 } 1009 1010 void 1011 exec_cleanup(struct thread *td, struct vmspace *oldvmspace) 1012 { 1013 if ((td->td_pflags & TDP_EXECVMSPC) != 0) { 1014 KASSERT(td->td_proc->p_vmspace != oldvmspace, 1015 ("oldvmspace still used")); 1016 vmspace_free(oldvmspace); 1017 td->td_pflags &= ~TDP_EXECVMSPC; 1018 } 1019 } 1020 1021 int 1022 exec_map_first_page(struct image_params *imgp) 1023 { 1024 vm_object_t object; 1025 vm_page_t m; 1026 int error; 1027 1028 if (imgp->firstpage != NULL) 1029 exec_unmap_first_page(imgp); 1030 1031 object = imgp->vp->v_object; 1032 if (object == NULL) 1033 return (EACCES); 1034 #if VM_NRESERVLEVEL > 0 1035 if ((object->flags & OBJ_COLORED) == 0) { 1036 VM_OBJECT_WLOCK(object); 1037 vm_object_color(object, 0); 1038 VM_OBJECT_WUNLOCK(object); 1039 } 1040 #endif 1041 error = vm_page_grab_valid_unlocked(&m, object, 0, 1042 VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) | 1043 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); 1044 1045 if (error != VM_PAGER_OK) 1046 return (EIO); 1047 imgp->firstpage = sf_buf_alloc(m, 0); 1048 imgp->image_header = (char *)sf_buf_kva(imgp->firstpage); 1049 1050 return (0); 1051 } 1052 1053 void 1054 exec_unmap_first_page(struct image_params *imgp) 1055 { 1056 vm_page_t m; 1057 1058 if (imgp->firstpage != NULL) { 1059 m = sf_buf_page(imgp->firstpage); 1060 sf_buf_free(imgp->firstpage); 1061 imgp->firstpage = NULL; 1062 vm_page_unwire(m, PQ_ACTIVE); 1063 } 1064 } 1065 1066 void 1067 exec_onexec_old(struct thread *td) 1068 { 1069 sigfastblock_clear(td); 1070 umtx_exec(td->td_proc); 1071 } 1072 1073 /* 1074 * Destroy old address space, and allocate a new stack. 1075 * The new stack is only sgrowsiz large because it is grown 1076 * automatically on a page fault. 1077 */ 1078 int 1079 exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv) 1080 { 1081 int error; 1082 struct proc *p = imgp->proc; 1083 struct vmspace *vmspace = p->p_vmspace; 1084 struct thread *td = curthread; 1085 vm_object_t obj; 1086 struct rlimit rlim_stack; 1087 vm_offset_t sv_minuser, stack_addr; 1088 vm_map_t map; 1089 vm_prot_t stack_prot; 1090 u_long ssiz; 1091 1092 imgp->vmspace_destroyed = 1; 1093 imgp->sysent = sv; 1094 1095 if (p->p_sysent->sv_onexec_old != NULL) 1096 p->p_sysent->sv_onexec_old(td); 1097 itimers_exec(p); 1098 1099 EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp); 1100 1101 /* 1102 * Blow away entire process VM, if address space not shared, 1103 * otherwise, create a new VM space so that other threads are 1104 * not disrupted 1105 */ 1106 map = &vmspace->vm_map; 1107 if (map_at_zero) 1108 sv_minuser = sv->sv_minuser; 1109 else 1110 sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE); 1111 if (refcount_load(&vmspace->vm_refcnt) == 1 && 1112 vm_map_min(map) == sv_minuser && 1113 vm_map_max(map) == sv->sv_maxuser && 1114 cpu_exec_vmspace_reuse(p, map)) { 1115 shmexit(vmspace); 1116 pmap_remove_pages(vmspace_pmap(vmspace)); 1117 vm_map_remove(map, vm_map_min(map), vm_map_max(map)); 1118 /* 1119 * An exec terminates mlockall(MCL_FUTURE). 1120 * ASLR and W^X states must be re-evaluated. 1121 */ 1122 vm_map_lock(map); 1123 vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR | 1124 MAP_ASLR_IGNSTART | MAP_WXORX); 1125 vm_map_unlock(map); 1126 } else { 1127 error = vmspace_exec(p, sv_minuser, sv->sv_maxuser); 1128 if (error) 1129 return (error); 1130 vmspace = p->p_vmspace; 1131 map = &vmspace->vm_map; 1132 } 1133 map->flags |= imgp->map_flags; 1134 1135 /* Map a shared page */ 1136 obj = sv->sv_shared_page_obj; 1137 if (obj != NULL) { 1138 vm_object_reference(obj); 1139 error = vm_map_fixed(map, obj, 0, 1140 sv->sv_shared_page_base, sv->sv_shared_page_len, 1141 VM_PROT_READ | VM_PROT_EXECUTE, 1142 VM_PROT_READ | VM_PROT_EXECUTE, 1143 MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE); 1144 if (error != KERN_SUCCESS) { 1145 vm_object_deallocate(obj); 1146 return (vm_mmap_to_errno(error)); 1147 } 1148 } 1149 1150 /* Allocate a new stack */ 1151 if (imgp->stack_sz != 0) { 1152 ssiz = trunc_page(imgp->stack_sz); 1153 PROC_LOCK(p); 1154 lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack); 1155 PROC_UNLOCK(p); 1156 if (ssiz > rlim_stack.rlim_max) 1157 ssiz = rlim_stack.rlim_max; 1158 if (ssiz > rlim_stack.rlim_cur) { 1159 rlim_stack.rlim_cur = ssiz; 1160 kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack); 1161 } 1162 } else if (sv->sv_maxssiz != NULL) { 1163 ssiz = *sv->sv_maxssiz; 1164 } else { 1165 ssiz = maxssiz; 1166 } 1167 imgp->eff_stack_sz = lim_cur(curthread, RLIMIT_STACK); 1168 if (ssiz < imgp->eff_stack_sz) 1169 imgp->eff_stack_sz = ssiz; 1170 stack_addr = sv->sv_usrstack - ssiz; 1171 stack_prot = obj != NULL && imgp->stack_prot != 0 ? 1172 imgp->stack_prot : sv->sv_stackprot; 1173 error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz, stack_prot, 1174 VM_PROT_ALL, MAP_STACK_GROWS_DOWN); 1175 if (error != KERN_SUCCESS) { 1176 uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x " 1177 "failed mach error %d errno %d\n", (uintmax_t)ssiz, 1178 stack_prot, error, vm_mmap_to_errno(error)); 1179 return (vm_mmap_to_errno(error)); 1180 } 1181 vmspace->vm_stkgap = 0; 1182 1183 /* 1184 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they 1185 * are still used to enforce the stack rlimit on the process stack. 1186 */ 1187 vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT; 1188 vmspace->vm_maxsaddr = (char *)stack_addr; 1189 1190 return (sv->sv_onexec != NULL ? sv->sv_onexec(p, imgp) : 0); 1191 } 1192 1193 /* 1194 * Copy out argument and environment strings from the old process address 1195 * space into the temporary string buffer. 1196 */ 1197 int 1198 exec_copyin_args(struct image_args *args, const char *fname, 1199 enum uio_seg segflg, char **argv, char **envv) 1200 { 1201 u_long arg, env; 1202 int error; 1203 1204 bzero(args, sizeof(*args)); 1205 if (argv == NULL) 1206 return (EFAULT); 1207 1208 /* 1209 * Allocate demand-paged memory for the file name, argument, and 1210 * environment strings. 1211 */ 1212 error = exec_alloc_args(args); 1213 if (error != 0) 1214 return (error); 1215 1216 /* 1217 * Copy the file name. 1218 */ 1219 error = exec_args_add_fname(args, fname, segflg); 1220 if (error != 0) 1221 goto err_exit; 1222 1223 /* 1224 * extract arguments first 1225 */ 1226 for (;;) { 1227 error = fueword(argv++, &arg); 1228 if (error == -1) { 1229 error = EFAULT; 1230 goto err_exit; 1231 } 1232 if (arg == 0) 1233 break; 1234 error = exec_args_add_arg(args, (char *)(uintptr_t)arg, 1235 UIO_USERSPACE); 1236 if (error != 0) 1237 goto err_exit; 1238 } 1239 1240 /* 1241 * extract environment strings 1242 */ 1243 if (envv) { 1244 for (;;) { 1245 error = fueword(envv++, &env); 1246 if (error == -1) { 1247 error = EFAULT; 1248 goto err_exit; 1249 } 1250 if (env == 0) 1251 break; 1252 error = exec_args_add_env(args, 1253 (char *)(uintptr_t)env, UIO_USERSPACE); 1254 if (error != 0) 1255 goto err_exit; 1256 } 1257 } 1258 1259 return (0); 1260 1261 err_exit: 1262 exec_free_args(args); 1263 return (error); 1264 } 1265 1266 struct exec_args_kva { 1267 vm_offset_t addr; 1268 u_int gen; 1269 SLIST_ENTRY(exec_args_kva) next; 1270 }; 1271 1272 DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva); 1273 1274 static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist; 1275 static struct mtx exec_args_kva_mtx; 1276 static u_int exec_args_gen; 1277 1278 static void 1279 exec_prealloc_args_kva(void *arg __unused) 1280 { 1281 struct exec_args_kva *argkva; 1282 u_int i; 1283 1284 SLIST_INIT(&exec_args_kva_freelist); 1285 mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF); 1286 for (i = 0; i < exec_map_entries; i++) { 1287 argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK); 1288 argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size); 1289 argkva->gen = exec_args_gen; 1290 SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); 1291 } 1292 } 1293 SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL); 1294 1295 static vm_offset_t 1296 exec_alloc_args_kva(void **cookie) 1297 { 1298 struct exec_args_kva *argkva; 1299 1300 argkva = (void *)atomic_readandclear_ptr( 1301 (uintptr_t *)DPCPU_PTR(exec_args_kva)); 1302 if (argkva == NULL) { 1303 mtx_lock(&exec_args_kva_mtx); 1304 while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL) 1305 (void)mtx_sleep(&exec_args_kva_freelist, 1306 &exec_args_kva_mtx, 0, "execkva", 0); 1307 SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next); 1308 mtx_unlock(&exec_args_kva_mtx); 1309 } 1310 kasan_mark((void *)argkva->addr, exec_map_entry_size, 1311 exec_map_entry_size, 0); 1312 *(struct exec_args_kva **)cookie = argkva; 1313 return (argkva->addr); 1314 } 1315 1316 static void 1317 exec_release_args_kva(struct exec_args_kva *argkva, u_int gen) 1318 { 1319 vm_offset_t base; 1320 1321 base = argkva->addr; 1322 kasan_mark((void *)argkva->addr, 0, exec_map_entry_size, 1323 KASAN_EXEC_ARGS_FREED); 1324 if (argkva->gen != gen) { 1325 (void)vm_map_madvise(exec_map, base, base + exec_map_entry_size, 1326 MADV_FREE); 1327 argkva->gen = gen; 1328 } 1329 if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva), 1330 (uintptr_t)NULL, (uintptr_t)argkva)) { 1331 mtx_lock(&exec_args_kva_mtx); 1332 SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); 1333 wakeup_one(&exec_args_kva_freelist); 1334 mtx_unlock(&exec_args_kva_mtx); 1335 } 1336 } 1337 1338 static void 1339 exec_free_args_kva(void *cookie) 1340 { 1341 1342 exec_release_args_kva(cookie, exec_args_gen); 1343 } 1344 1345 static void 1346 exec_args_kva_lowmem(void *arg __unused) 1347 { 1348 SLIST_HEAD(, exec_args_kva) head; 1349 struct exec_args_kva *argkva; 1350 u_int gen; 1351 int i; 1352 1353 gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1; 1354 1355 /* 1356 * Force an madvise of each KVA range. Any currently allocated ranges 1357 * will have MADV_FREE applied once they are freed. 1358 */ 1359 SLIST_INIT(&head); 1360 mtx_lock(&exec_args_kva_mtx); 1361 SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva); 1362 mtx_unlock(&exec_args_kva_mtx); 1363 while ((argkva = SLIST_FIRST(&head)) != NULL) { 1364 SLIST_REMOVE_HEAD(&head, next); 1365 exec_release_args_kva(argkva, gen); 1366 } 1367 1368 CPU_FOREACH(i) { 1369 argkva = (void *)atomic_readandclear_ptr( 1370 (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva)); 1371 if (argkva != NULL) 1372 exec_release_args_kva(argkva, gen); 1373 } 1374 } 1375 EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL, 1376 EVENTHANDLER_PRI_ANY); 1377 1378 /* 1379 * Allocate temporary demand-paged, zero-filled memory for the file name, 1380 * argument, and environment strings. 1381 */ 1382 int 1383 exec_alloc_args(struct image_args *args) 1384 { 1385 1386 args->buf = (char *)exec_alloc_args_kva(&args->bufkva); 1387 return (0); 1388 } 1389 1390 void 1391 exec_free_args(struct image_args *args) 1392 { 1393 1394 if (args->buf != NULL) { 1395 exec_free_args_kva(args->bufkva); 1396 args->buf = NULL; 1397 } 1398 if (args->fname_buf != NULL) { 1399 free(args->fname_buf, M_TEMP); 1400 args->fname_buf = NULL; 1401 } 1402 } 1403 1404 /* 1405 * A set to functions to fill struct image args. 1406 * 1407 * NOTE: exec_args_add_fname() must be called (possibly with a NULL 1408 * fname) before the other functions. All exec_args_add_arg() calls must 1409 * be made before any exec_args_add_env() calls. exec_args_adjust_args() 1410 * may be called any time after exec_args_add_fname(). 1411 * 1412 * exec_args_add_fname() - install path to be executed 1413 * exec_args_add_arg() - append an argument string 1414 * exec_args_add_env() - append an env string 1415 * exec_args_adjust_args() - adjust location of the argument list to 1416 * allow new arguments to be prepended 1417 */ 1418 int 1419 exec_args_add_fname(struct image_args *args, const char *fname, 1420 enum uio_seg segflg) 1421 { 1422 int error; 1423 size_t length; 1424 1425 KASSERT(args->fname == NULL, ("fname already appended")); 1426 KASSERT(args->endp == NULL, ("already appending to args")); 1427 1428 if (fname != NULL) { 1429 args->fname = args->buf; 1430 error = segflg == UIO_SYSSPACE ? 1431 copystr(fname, args->fname, PATH_MAX, &length) : 1432 copyinstr(fname, args->fname, PATH_MAX, &length); 1433 if (error != 0) 1434 return (error == ENAMETOOLONG ? E2BIG : error); 1435 } else 1436 length = 0; 1437 1438 /* Set up for _arg_*()/_env_*() */ 1439 args->endp = args->buf + length; 1440 /* begin_argv must be set and kept updated */ 1441 args->begin_argv = args->endp; 1442 KASSERT(exec_map_entry_size - length >= ARG_MAX, 1443 ("too little space remaining for arguments %zu < %zu", 1444 exec_map_entry_size - length, (size_t)ARG_MAX)); 1445 args->stringspace = ARG_MAX; 1446 1447 return (0); 1448 } 1449 1450 static int 1451 exec_args_add_str(struct image_args *args, const char *str, 1452 enum uio_seg segflg, int *countp) 1453 { 1454 int error; 1455 size_t length; 1456 1457 KASSERT(args->endp != NULL, ("endp not initialized")); 1458 KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); 1459 1460 error = (segflg == UIO_SYSSPACE) ? 1461 copystr(str, args->endp, args->stringspace, &length) : 1462 copyinstr(str, args->endp, args->stringspace, &length); 1463 if (error != 0) 1464 return (error == ENAMETOOLONG ? E2BIG : error); 1465 args->stringspace -= length; 1466 args->endp += length; 1467 (*countp)++; 1468 1469 return (0); 1470 } 1471 1472 int 1473 exec_args_add_arg(struct image_args *args, const char *argp, 1474 enum uio_seg segflg) 1475 { 1476 1477 KASSERT(args->envc == 0, ("appending args after env")); 1478 1479 return (exec_args_add_str(args, argp, segflg, &args->argc)); 1480 } 1481 1482 int 1483 exec_args_add_env(struct image_args *args, const char *envp, 1484 enum uio_seg segflg) 1485 { 1486 1487 if (args->envc == 0) 1488 args->begin_envv = args->endp; 1489 1490 return (exec_args_add_str(args, envp, segflg, &args->envc)); 1491 } 1492 1493 int 1494 exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend) 1495 { 1496 ssize_t offset; 1497 1498 KASSERT(args->endp != NULL, ("endp not initialized")); 1499 KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); 1500 1501 offset = extend - consume; 1502 if (args->stringspace < offset) 1503 return (E2BIG); 1504 memmove(args->begin_argv + extend, args->begin_argv + consume, 1505 args->endp - args->begin_argv + consume); 1506 if (args->envc > 0) 1507 args->begin_envv += offset; 1508 args->endp += offset; 1509 args->stringspace -= offset; 1510 return (0); 1511 } 1512 1513 char * 1514 exec_args_get_begin_envv(struct image_args *args) 1515 { 1516 1517 KASSERT(args->endp != NULL, ("endp not initialized")); 1518 1519 if (args->envc > 0) 1520 return (args->begin_envv); 1521 return (args->endp); 1522 } 1523 1524 void 1525 exec_stackgap(struct image_params *imgp, uintptr_t *dp) 1526 { 1527 struct proc *p = imgp->proc; 1528 1529 if (imgp->sysent->sv_stackgap == NULL || 1530 (p->p_fctl0 & (NT_FREEBSD_FCTL_ASLR_DISABLE | 1531 NT_FREEBSD_FCTL_ASG_DISABLE)) != 0 || 1532 (imgp->map_flags & MAP_ASLR) == 0) { 1533 p->p_vmspace->vm_stkgap = 0; 1534 return; 1535 } 1536 p->p_vmspace->vm_stkgap = imgp->sysent->sv_stackgap(imgp, dp); 1537 } 1538 1539 /* 1540 * Copy strings out to the new process address space, constructing new arg 1541 * and env vector tables. Return a pointer to the base so that it can be used 1542 * as the initial stack pointer. 1543 */ 1544 int 1545 exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 1546 { 1547 int argc, envc; 1548 char **vectp; 1549 char *stringp; 1550 uintptr_t destp, ustringp; 1551 struct ps_strings *arginfo; 1552 struct proc *p; 1553 size_t execpath_len; 1554 int error, szsigcode, szps; 1555 char canary[sizeof(long) * 8]; 1556 1557 szps = sizeof(pagesizes[0]) * MAXPAGESIZES; 1558 /* 1559 * Calculate string base and vector table pointers. 1560 * Also deal with signal trampoline code for this exec type. 1561 */ 1562 if (imgp->execpath != NULL && imgp->auxargs != NULL) 1563 execpath_len = strlen(imgp->execpath) + 1; 1564 else 1565 execpath_len = 0; 1566 p = imgp->proc; 1567 szsigcode = 0; 1568 arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings; 1569 imgp->ps_strings = arginfo; 1570 if (p->p_sysent->sv_sigcode_base == 0) { 1571 if (p->p_sysent->sv_szsigcode != NULL) 1572 szsigcode = *(p->p_sysent->sv_szsigcode); 1573 } 1574 destp = (uintptr_t)arginfo; 1575 1576 /* 1577 * install sigcode 1578 */ 1579 if (szsigcode != 0) { 1580 destp -= szsigcode; 1581 destp = rounddown2(destp, sizeof(void *)); 1582 error = copyout(p->p_sysent->sv_sigcode, (void *)destp, 1583 szsigcode); 1584 if (error != 0) 1585 return (error); 1586 } 1587 1588 /* 1589 * Copy the image path for the rtld. 1590 */ 1591 if (execpath_len != 0) { 1592 destp -= execpath_len; 1593 destp = rounddown2(destp, sizeof(void *)); 1594 imgp->execpathp = (void *)destp; 1595 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 1596 if (error != 0) 1597 return (error); 1598 } 1599 1600 /* 1601 * Prepare the canary for SSP. 1602 */ 1603 arc4rand(canary, sizeof(canary), 0); 1604 destp -= sizeof(canary); 1605 imgp->canary = (void *)destp; 1606 error = copyout(canary, imgp->canary, sizeof(canary)); 1607 if (error != 0) 1608 return (error); 1609 imgp->canarylen = sizeof(canary); 1610 1611 /* 1612 * Prepare the pagesizes array. 1613 */ 1614 destp -= szps; 1615 destp = rounddown2(destp, sizeof(void *)); 1616 imgp->pagesizes = (void *)destp; 1617 error = copyout(pagesizes, imgp->pagesizes, szps); 1618 if (error != 0) 1619 return (error); 1620 imgp->pagesizeslen = szps; 1621 1622 /* 1623 * Allocate room for the argument and environment strings. 1624 */ 1625 destp -= ARG_MAX - imgp->args->stringspace; 1626 destp = rounddown2(destp, sizeof(void *)); 1627 ustringp = destp; 1628 1629 exec_stackgap(imgp, &destp); 1630 1631 if (imgp->auxargs) { 1632 /* 1633 * Allocate room on the stack for the ELF auxargs 1634 * array. It has up to AT_COUNT entries. 1635 */ 1636 destp -= AT_COUNT * sizeof(Elf_Auxinfo); 1637 destp = rounddown2(destp, sizeof(void *)); 1638 } 1639 1640 vectp = (char **)destp; 1641 1642 /* 1643 * Allocate room for the argv[] and env vectors including the 1644 * terminating NULL pointers. 1645 */ 1646 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 1647 1648 /* 1649 * vectp also becomes our initial stack base 1650 */ 1651 *stack_base = (uintptr_t)vectp; 1652 1653 stringp = imgp->args->begin_argv; 1654 argc = imgp->args->argc; 1655 envc = imgp->args->envc; 1656 1657 /* 1658 * Copy out strings - arguments and environment. 1659 */ 1660 error = copyout(stringp, (void *)ustringp, 1661 ARG_MAX - imgp->args->stringspace); 1662 if (error != 0) 1663 return (error); 1664 1665 /* 1666 * Fill in "ps_strings" struct for ps, w, etc. 1667 */ 1668 imgp->argv = vectp; 1669 if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 || 1670 suword32(&arginfo->ps_nargvstr, argc) != 0) 1671 return (EFAULT); 1672 1673 /* 1674 * Fill in argument portion of vector table. 1675 */ 1676 for (; argc > 0; --argc) { 1677 if (suword(vectp++, ustringp) != 0) 1678 return (EFAULT); 1679 while (*stringp++ != 0) 1680 ustringp++; 1681 ustringp++; 1682 } 1683 1684 /* a null vector table pointer separates the argp's from the envp's */ 1685 if (suword(vectp++, 0) != 0) 1686 return (EFAULT); 1687 1688 imgp->envv = vectp; 1689 if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 || 1690 suword32(&arginfo->ps_nenvstr, envc) != 0) 1691 return (EFAULT); 1692 1693 /* 1694 * Fill in environment portion of vector table. 1695 */ 1696 for (; envc > 0; --envc) { 1697 if (suword(vectp++, ustringp) != 0) 1698 return (EFAULT); 1699 while (*stringp++ != 0) 1700 ustringp++; 1701 ustringp++; 1702 } 1703 1704 /* end of vector table is a null pointer */ 1705 if (suword(vectp, 0) != 0) 1706 return (EFAULT); 1707 1708 if (imgp->auxargs) { 1709 vectp++; 1710 error = imgp->sysent->sv_copyout_auxargs(imgp, 1711 (uintptr_t)vectp); 1712 if (error != 0) 1713 return (error); 1714 } 1715 1716 return (0); 1717 } 1718 1719 /* 1720 * Check permissions of file to execute. 1721 * Called with imgp->vp locked. 1722 * Return 0 for success or error code on failure. 1723 */ 1724 int 1725 exec_check_permissions(struct image_params *imgp) 1726 { 1727 struct vnode *vp = imgp->vp; 1728 struct vattr *attr = imgp->attr; 1729 struct thread *td; 1730 int error; 1731 1732 td = curthread; 1733 1734 /* Get file attributes */ 1735 error = VOP_GETATTR(vp, attr, td->td_ucred); 1736 if (error) 1737 return (error); 1738 1739 #ifdef MAC 1740 error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp); 1741 if (error) 1742 return (error); 1743 #endif 1744 1745 /* 1746 * 1) Check if file execution is disabled for the filesystem that 1747 * this file resides on. 1748 * 2) Ensure that at least one execute bit is on. Otherwise, a 1749 * privileged user will always succeed, and we don't want this 1750 * to happen unless the file really is executable. 1751 * 3) Ensure that the file is a regular file. 1752 */ 1753 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || 1754 (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 || 1755 (attr->va_type != VREG)) 1756 return (EACCES); 1757 1758 /* 1759 * Zero length files can't be exec'd 1760 */ 1761 if (attr->va_size == 0) 1762 return (ENOEXEC); 1763 1764 /* 1765 * Check for execute permission to file based on current credentials. 1766 */ 1767 error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); 1768 if (error) 1769 return (error); 1770 1771 /* 1772 * Check number of open-for-writes on the file and deny execution 1773 * if there are any. 1774 * 1775 * Add a text reference now so no one can write to the 1776 * executable while we're activating it. 1777 * 1778 * Remember if this was set before and unset it in case this is not 1779 * actually an executable image. 1780 */ 1781 error = VOP_SET_TEXT(vp); 1782 if (error != 0) 1783 return (error); 1784 imgp->textset = true; 1785 1786 /* 1787 * Call filesystem specific open routine (which does nothing in the 1788 * general case). 1789 */ 1790 error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); 1791 if (error == 0) 1792 imgp->opened = 1; 1793 return (error); 1794 } 1795 1796 /* 1797 * Exec handler registration 1798 */ 1799 int 1800 exec_register(const struct execsw *execsw_arg) 1801 { 1802 const struct execsw **es, **xs, **newexecsw; 1803 u_int count = 2; /* New slot and trailing NULL */ 1804 1805 if (execsw) 1806 for (es = execsw; *es; es++) 1807 count++; 1808 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); 1809 xs = newexecsw; 1810 if (execsw) 1811 for (es = execsw; *es; es++) 1812 *xs++ = *es; 1813 *xs++ = execsw_arg; 1814 *xs = NULL; 1815 if (execsw) 1816 free(execsw, M_TEMP); 1817 execsw = newexecsw; 1818 return (0); 1819 } 1820 1821 int 1822 exec_unregister(const struct execsw *execsw_arg) 1823 { 1824 const struct execsw **es, **xs, **newexecsw; 1825 int count = 1; 1826 1827 if (execsw == NULL) 1828 panic("unregister with no handlers left?\n"); 1829 1830 for (es = execsw; *es; es++) { 1831 if (*es == execsw_arg) 1832 break; 1833 } 1834 if (*es == NULL) 1835 return (ENOENT); 1836 for (es = execsw; *es; es++) 1837 if (*es != execsw_arg) 1838 count++; 1839 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); 1840 xs = newexecsw; 1841 for (es = execsw; *es; es++) 1842 if (*es != execsw_arg) 1843 *xs++ = *es; 1844 *xs = NULL; 1845 if (execsw) 1846 free(execsw, M_TEMP); 1847 execsw = newexecsw; 1848 return (0); 1849 } 1850 1851 /* 1852 * Write out a core segment to the compression stream. 1853 */ 1854 static int 1855 compress_chunk(struct coredump_params *cp, char *base, char *buf, size_t len) 1856 { 1857 size_t chunk_len; 1858 int error; 1859 1860 while (len > 0) { 1861 chunk_len = MIN(len, CORE_BUF_SIZE); 1862 1863 /* 1864 * We can get EFAULT error here. 1865 * In that case zero out the current chunk of the segment. 1866 */ 1867 error = copyin(base, buf, chunk_len); 1868 if (error != 0) 1869 bzero(buf, chunk_len); 1870 error = compressor_write(cp->comp, buf, chunk_len); 1871 if (error != 0) 1872 break; 1873 base += chunk_len; 1874 len -= chunk_len; 1875 } 1876 return (error); 1877 } 1878 1879 int 1880 core_write(struct coredump_params *cp, const void *base, size_t len, 1881 off_t offset, enum uio_seg seg, size_t *resid) 1882 { 1883 1884 return (vn_rdwr_inchunks(UIO_WRITE, cp->vp, __DECONST(void *, base), 1885 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1886 cp->active_cred, cp->file_cred, resid, cp->td)); 1887 } 1888 1889 int 1890 core_output(char *base, size_t len, off_t offset, struct coredump_params *cp, 1891 void *tmpbuf) 1892 { 1893 vm_map_t map; 1894 struct mount *mp; 1895 size_t resid, runlen; 1896 int error; 1897 bool success; 1898 1899 KASSERT((uintptr_t)base % PAGE_SIZE == 0, 1900 ("%s: user address %p is not page-aligned", __func__, base)); 1901 1902 if (cp->comp != NULL) 1903 return (compress_chunk(cp, base, tmpbuf, len)); 1904 1905 map = &cp->td->td_proc->p_vmspace->vm_map; 1906 for (; len > 0; base += runlen, offset += runlen, len -= runlen) { 1907 /* 1908 * Attempt to page in all virtual pages in the range. If a 1909 * virtual page is not backed by the pager, it is represented as 1910 * a hole in the file. This can occur with zero-filled 1911 * anonymous memory or truncated files, for example. 1912 */ 1913 for (runlen = 0; runlen < len; runlen += PAGE_SIZE) { 1914 if (core_dump_can_intr && curproc_sigkilled()) 1915 return (EINTR); 1916 error = vm_fault(map, (uintptr_t)base + runlen, 1917 VM_PROT_READ, VM_FAULT_NOFILL, NULL); 1918 if (runlen == 0) 1919 success = error == KERN_SUCCESS; 1920 else if ((error == KERN_SUCCESS) != success) 1921 break; 1922 } 1923 1924 if (success) { 1925 error = core_write(cp, base, runlen, offset, 1926 UIO_USERSPACE, &resid); 1927 if (error != 0) { 1928 if (error != EFAULT) 1929 break; 1930 1931 /* 1932 * EFAULT may be returned if the user mapping 1933 * could not be accessed, e.g., because a mapped 1934 * file has been truncated. Skip the page if no 1935 * progress was made, to protect against a 1936 * hypothetical scenario where vm_fault() was 1937 * successful but core_write() returns EFAULT 1938 * anyway. 1939 */ 1940 runlen -= resid; 1941 if (runlen == 0) { 1942 success = false; 1943 runlen = PAGE_SIZE; 1944 } 1945 } 1946 } 1947 if (!success) { 1948 error = vn_start_write(cp->vp, &mp, V_WAIT); 1949 if (error != 0) 1950 break; 1951 vn_lock(cp->vp, LK_EXCLUSIVE | LK_RETRY); 1952 error = vn_truncate_locked(cp->vp, offset + runlen, 1953 false, cp->td->td_ucred); 1954 VOP_UNLOCK(cp->vp); 1955 vn_finished_write(mp); 1956 if (error != 0) 1957 break; 1958 } 1959 } 1960 return (error); 1961 } 1962 1963 /* 1964 * Drain into a core file. 1965 */ 1966 int 1967 sbuf_drain_core_output(void *arg, const char *data, int len) 1968 { 1969 struct coredump_params *cp; 1970 struct proc *p; 1971 int error, locked; 1972 1973 cp = arg; 1974 p = cp->td->td_proc; 1975 1976 /* 1977 * Some kern_proc out routines that print to this sbuf may 1978 * call us with the process lock held. Draining with the 1979 * non-sleepable lock held is unsafe. The lock is needed for 1980 * those routines when dumping a live process. In our case we 1981 * can safely release the lock before draining and acquire 1982 * again after. 1983 */ 1984 locked = PROC_LOCKED(p); 1985 if (locked) 1986 PROC_UNLOCK(p); 1987 if (cp->comp != NULL) 1988 error = compressor_write(cp->comp, __DECONST(char *, data), len); 1989 else 1990 error = core_write(cp, __DECONST(void *, data), len, cp->offset, 1991 UIO_SYSSPACE, NULL); 1992 if (locked) 1993 PROC_LOCK(p); 1994 if (error != 0) 1995 return (-error); 1996 cp->offset += len; 1997 return (len); 1998 } 1999