xref: /freebsd/sys/kern/kern_exec.c (revision 31ba4ce8898f9dfa5e7f054fdbc26e50a599a6e3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1993, David Greenman
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_capsicum.h"
33 #include "opt_hwpmc_hooks.h"
34 #include "opt_ktrace.h"
35 #include "opt_vm.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/acct.h>
40 #include <sys/asan.h>
41 #include <sys/capsicum.h>
42 #include <sys/compressor.h>
43 #include <sys/eventhandler.h>
44 #include <sys/exec.h>
45 #include <sys/fcntl.h>
46 #include <sys/filedesc.h>
47 #include <sys/imgact.h>
48 #include <sys/imgact_elf.h>
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/namei.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/resourcevar.h>
60 #include <sys/rwlock.h>
61 #include <sys/sched.h>
62 #include <sys/sdt.h>
63 #include <sys/sf_buf.h>
64 #include <sys/shm.h>
65 #include <sys/signalvar.h>
66 #include <sys/smp.h>
67 #include <sys/stat.h>
68 #include <sys/syscallsubr.h>
69 #include <sys/sysctl.h>
70 #include <sys/sysent.h>
71 #include <sys/sysproto.h>
72 #include <sys/timers.h>
73 #include <sys/umtxvar.h>
74 #include <sys/vnode.h>
75 #include <sys/wait.h>
76 #ifdef KTRACE
77 #include <sys/ktrace.h>
78 #endif
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_kern.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 
90 #ifdef	HWPMC_HOOKS
91 #include <sys/pmckern.h>
92 #endif
93 
94 #include <machine/reg.h>
95 
96 #include <security/audit/audit.h>
97 #include <security/mac/mac_framework.h>
98 
99 #ifdef KDTRACE_HOOKS
100 #include <sys/dtrace_bsd.h>
101 dtrace_execexit_func_t	dtrace_fasttrap_exec;
102 #endif
103 
104 SDT_PROVIDER_DECLARE(proc);
105 SDT_PROBE_DEFINE1(proc, , , exec, "char *");
106 SDT_PROBE_DEFINE1(proc, , , exec__failure, "int");
107 SDT_PROBE_DEFINE1(proc, , , exec__success, "char *");
108 
109 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
110 
111 int coredump_pack_fileinfo = 1;
112 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN,
113     &coredump_pack_fileinfo, 0,
114     "Enable file path packing in 'procstat -f' coredump notes");
115 
116 int coredump_pack_vmmapinfo = 1;
117 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN,
118     &coredump_pack_vmmapinfo, 0,
119     "Enable file path packing in 'procstat -v' coredump notes");
120 
121 static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS);
122 static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS);
123 static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS);
124 static int do_execve(struct thread *td, struct image_args *args,
125     struct mac *mac_p, struct vmspace *oldvmspace);
126 
127 /* XXX This should be vm_size_t. */
128 SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD|
129     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU",
130     "Location of process' ps_strings structure");
131 
132 /* XXX This should be vm_size_t. */
133 SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD|
134     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU",
135     "Top of process stack");
136 
137 SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE,
138     NULL, 0, sysctl_kern_stackprot, "I",
139     "Stack memory permissions");
140 
141 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
142 SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
143     &ps_arg_cache_limit, 0,
144     "Process' command line characters cache limit");
145 
146 static int disallow_high_osrel;
147 SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW,
148     &disallow_high_osrel, 0,
149     "Disallow execution of binaries built for higher version of the world");
150 
151 static int map_at_zero = 0;
152 SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0,
153     "Permit processes to map an object at virtual address 0.");
154 
155 static int
156 sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
157 {
158 	struct proc *p;
159 	int error;
160 
161 	p = curproc;
162 #ifdef SCTL_MASK32
163 	if (req->flags & SCTL_MASK32) {
164 		unsigned int val;
165 		val = (unsigned int)p->p_sysent->sv_psstrings;
166 		error = SYSCTL_OUT(req, &val, sizeof(val));
167 	} else
168 #endif
169 		error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings,
170 		   sizeof(p->p_sysent->sv_psstrings));
171 	return error;
172 }
173 
174 static int
175 sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
176 {
177 	struct proc *p;
178 	int error;
179 
180 	p = curproc;
181 #ifdef SCTL_MASK32
182 	if (req->flags & SCTL_MASK32) {
183 		unsigned int val;
184 		val = (unsigned int)p->p_sysent->sv_usrstack;
185 		error = SYSCTL_OUT(req, &val, sizeof(val));
186 	} else
187 #endif
188 		error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack,
189 		    sizeof(p->p_sysent->sv_usrstack));
190 	return error;
191 }
192 
193 static int
194 sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
195 {
196 	struct proc *p;
197 
198 	p = curproc;
199 	return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot,
200 	    sizeof(p->p_sysent->sv_stackprot)));
201 }
202 
203 /*
204  * Each of the items is a pointer to a `const struct execsw', hence the
205  * double pointer here.
206  */
207 static const struct execsw **execsw;
208 
209 #ifndef _SYS_SYSPROTO_H_
210 struct execve_args {
211 	char    *fname;
212 	char    **argv;
213 	char    **envv;
214 };
215 #endif
216 
217 int
218 sys_execve(struct thread *td, struct execve_args *uap)
219 {
220 	struct image_args args;
221 	struct vmspace *oldvmspace;
222 	int error;
223 
224 	error = pre_execve(td, &oldvmspace);
225 	if (error != 0)
226 		return (error);
227 	error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
228 	    uap->argv, uap->envv);
229 	if (error == 0)
230 		error = kern_execve(td, &args, NULL, oldvmspace);
231 	post_execve(td, error, oldvmspace);
232 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
233 	return (error);
234 }
235 
236 #ifndef _SYS_SYSPROTO_H_
237 struct fexecve_args {
238 	int	fd;
239 	char	**argv;
240 	char	**envv;
241 };
242 #endif
243 int
244 sys_fexecve(struct thread *td, struct fexecve_args *uap)
245 {
246 	struct image_args args;
247 	struct vmspace *oldvmspace;
248 	int error;
249 
250 	error = pre_execve(td, &oldvmspace);
251 	if (error != 0)
252 		return (error);
253 	error = exec_copyin_args(&args, NULL, UIO_SYSSPACE,
254 	    uap->argv, uap->envv);
255 	if (error == 0) {
256 		args.fd = uap->fd;
257 		error = kern_execve(td, &args, NULL, oldvmspace);
258 	}
259 	post_execve(td, error, oldvmspace);
260 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
261 	return (error);
262 }
263 
264 #ifndef _SYS_SYSPROTO_H_
265 struct __mac_execve_args {
266 	char	*fname;
267 	char	**argv;
268 	char	**envv;
269 	struct mac	*mac_p;
270 };
271 #endif
272 
273 int
274 sys___mac_execve(struct thread *td, struct __mac_execve_args *uap)
275 {
276 #ifdef MAC
277 	struct image_args args;
278 	struct vmspace *oldvmspace;
279 	int error;
280 
281 	error = pre_execve(td, &oldvmspace);
282 	if (error != 0)
283 		return (error);
284 	error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
285 	    uap->argv, uap->envv);
286 	if (error == 0)
287 		error = kern_execve(td, &args, uap->mac_p, oldvmspace);
288 	post_execve(td, error, oldvmspace);
289 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
290 	return (error);
291 #else
292 	return (ENOSYS);
293 #endif
294 }
295 
296 int
297 pre_execve(struct thread *td, struct vmspace **oldvmspace)
298 {
299 	struct proc *p;
300 	int error;
301 
302 	KASSERT(td == curthread, ("non-current thread %p", td));
303 	error = 0;
304 	p = td->td_proc;
305 	if ((p->p_flag & P_HADTHREADS) != 0) {
306 		PROC_LOCK(p);
307 		if (thread_single(p, SINGLE_BOUNDARY) != 0)
308 			error = ERESTART;
309 		PROC_UNLOCK(p);
310 	}
311 	KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0,
312 	    ("nested execve"));
313 	*oldvmspace = p->p_vmspace;
314 	return (error);
315 }
316 
317 void
318 post_execve(struct thread *td, int error, struct vmspace *oldvmspace)
319 {
320 	struct proc *p;
321 
322 	KASSERT(td == curthread, ("non-current thread %p", td));
323 	p = td->td_proc;
324 	if ((p->p_flag & P_HADTHREADS) != 0) {
325 		PROC_LOCK(p);
326 		/*
327 		 * If success, we upgrade to SINGLE_EXIT state to
328 		 * force other threads to suicide.
329 		 */
330 		if (error == EJUSTRETURN)
331 			thread_single(p, SINGLE_EXIT);
332 		else
333 			thread_single_end(p, SINGLE_BOUNDARY);
334 		PROC_UNLOCK(p);
335 	}
336 	exec_cleanup(td, oldvmspace);
337 }
338 
339 /*
340  * kern_execve() has the astonishing property of not always returning to
341  * the caller.  If sufficiently bad things happen during the call to
342  * do_execve(), it can end up calling exit1(); as a result, callers must
343  * avoid doing anything which they might need to undo (e.g., allocating
344  * memory).
345  */
346 int
347 kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
348     struct vmspace *oldvmspace)
349 {
350 
351 	AUDIT_ARG_ARGV(args->begin_argv, args->argc,
352 	    exec_args_get_begin_envv(args) - args->begin_argv);
353 	AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc,
354 	    args->endp - exec_args_get_begin_envv(args));
355 	return (do_execve(td, args, mac_p, oldvmspace));
356 }
357 
358 static void
359 execve_nosetid(struct image_params *imgp)
360 {
361 	imgp->credential_setid = false;
362 	if (imgp->newcred != NULL) {
363 		crfree(imgp->newcred);
364 		imgp->newcred = NULL;
365 	}
366 }
367 
368 /*
369  * In-kernel implementation of execve().  All arguments are assumed to be
370  * userspace pointers from the passed thread.
371  */
372 static int
373 do_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
374     struct vmspace *oldvmspace)
375 {
376 	struct proc *p = td->td_proc;
377 	struct nameidata nd;
378 	struct ucred *oldcred;
379 	struct uidinfo *euip = NULL;
380 	uintptr_t stack_base;
381 	struct image_params image_params, *imgp;
382 	struct vattr attr;
383 	int (*img_first)(struct image_params *);
384 	struct pargs *oldargs = NULL, *newargs = NULL;
385 	struct sigacts *oldsigacts = NULL, *newsigacts = NULL;
386 #ifdef KTRACE
387 	struct ktr_io_params *kiop;
388 #endif
389 	struct vnode *oldtextvp = NULL, *newtextvp;
390 	int credential_changing;
391 #ifdef MAC
392 	struct label *interpvplabel = NULL;
393 	int will_transition;
394 #endif
395 #ifdef HWPMC_HOOKS
396 	struct pmckern_procexec pe;
397 #endif
398 	int error, i, orig_osrel;
399 	uint32_t orig_fctl0;
400 	Elf_Brandinfo *orig_brandinfo;
401 	static const char fexecv_proc_title[] = "(fexecv)";
402 
403 	imgp = &image_params;
404 #ifdef KTRACE
405 	kiop = NULL;
406 #endif
407 
408 	/*
409 	 * Lock the process and set the P_INEXEC flag to indicate that
410 	 * it should be left alone until we're done here.  This is
411 	 * necessary to avoid race conditions - e.g. in ptrace() -
412 	 * that might allow a local user to illicitly obtain elevated
413 	 * privileges.
414 	 */
415 	PROC_LOCK(p);
416 	KASSERT((p->p_flag & P_INEXEC) == 0,
417 	    ("%s(): process already has P_INEXEC flag", __func__));
418 	p->p_flag |= P_INEXEC;
419 	PROC_UNLOCK(p);
420 
421 	/*
422 	 * Initialize part of the common data
423 	 */
424 	bzero(imgp, sizeof(*imgp));
425 	imgp->proc = p;
426 	imgp->attr = &attr;
427 	imgp->args = args;
428 	oldcred = p->p_ucred;
429 	orig_osrel = p->p_osrel;
430 	orig_fctl0 = p->p_fctl0;
431 	orig_brandinfo = p->p_elf_brandinfo;
432 
433 #ifdef MAC
434 	error = mac_execve_enter(imgp, mac_p);
435 	if (error)
436 		goto exec_fail;
437 #endif
438 
439 	/*
440 	 * Translate the file name. namei() returns a vnode pointer
441 	 *	in ni_vp among other things.
442 	 *
443 	 * XXXAUDIT: It would be desirable to also audit the name of the
444 	 * interpreter if this is an interpreted binary.
445 	 */
446 	if (args->fname != NULL) {
447 		NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
448 		    SAVENAME | AUDITVNODE1, UIO_SYSSPACE, args->fname, td);
449 	}
450 
451 	SDT_PROBE1(proc, , , exec, args->fname);
452 
453 interpret:
454 	if (args->fname != NULL) {
455 #ifdef CAPABILITY_MODE
456 		/*
457 		 * While capability mode can't reach this point via direct
458 		 * path arguments to execve(), we also don't allow
459 		 * interpreters to be used in capability mode (for now).
460 		 * Catch indirect lookups and return a permissions error.
461 		 */
462 		if (IN_CAPABILITY_MODE(td)) {
463 			error = ECAPMODE;
464 			goto exec_fail;
465 		}
466 #endif
467 		error = namei(&nd);
468 		if (error)
469 			goto exec_fail;
470 
471 		newtextvp = nd.ni_vp;
472 		imgp->vp = newtextvp;
473 	} else {
474 		AUDIT_ARG_FD(args->fd);
475 		/*
476 		 * Descriptors opened only with O_EXEC or O_RDONLY are allowed.
477 		 */
478 		error = fgetvp_exec(td, args->fd, &cap_fexecve_rights, &newtextvp);
479 		if (error)
480 			goto exec_fail;
481 		vn_lock(newtextvp, LK_SHARED | LK_RETRY);
482 		AUDIT_ARG_VNODE1(newtextvp);
483 		imgp->vp = newtextvp;
484 	}
485 
486 	/*
487 	 * Check file permissions.  Also 'opens' file and sets its vnode to
488 	 * text mode.
489 	 */
490 	error = exec_check_permissions(imgp);
491 	if (error)
492 		goto exec_fail_dealloc;
493 
494 	imgp->object = imgp->vp->v_object;
495 	if (imgp->object != NULL)
496 		vm_object_reference(imgp->object);
497 
498 	error = exec_map_first_page(imgp);
499 	if (error)
500 		goto exec_fail_dealloc;
501 
502 	imgp->proc->p_osrel = 0;
503 	imgp->proc->p_fctl0 = 0;
504 	imgp->proc->p_elf_brandinfo = NULL;
505 
506 	/*
507 	 * Implement image setuid/setgid.
508 	 *
509 	 * Determine new credentials before attempting image activators
510 	 * so that it can be used by process_exec handlers to determine
511 	 * credential/setid changes.
512 	 *
513 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
514 	 * the process is being traced.
515 	 *
516 	 * We disable setuid/setgid/etc in capability mode on the basis
517 	 * that most setugid applications are not written with that
518 	 * environment in mind, and will therefore almost certainly operate
519 	 * incorrectly. In principle there's no reason that setugid
520 	 * applications might not be useful in capability mode, so we may want
521 	 * to reconsider this conservative design choice in the future.
522 	 *
523 	 * XXXMAC: For the time being, use NOSUID to also prohibit
524 	 * transitions on the file system.
525 	 */
526 	credential_changing = 0;
527 	credential_changing |= (attr.va_mode & S_ISUID) &&
528 	    oldcred->cr_uid != attr.va_uid;
529 	credential_changing |= (attr.va_mode & S_ISGID) &&
530 	    oldcred->cr_gid != attr.va_gid;
531 #ifdef MAC
532 	will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp,
533 	    interpvplabel, imgp);
534 	credential_changing |= will_transition;
535 #endif
536 
537 	/* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */
538 	if (credential_changing)
539 		imgp->proc->p_pdeathsig = 0;
540 
541 	if (credential_changing &&
542 #ifdef CAPABILITY_MODE
543 	    ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) &&
544 #endif
545 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
546 	    (p->p_flag & P_TRACED) == 0) {
547 		imgp->credential_setid = true;
548 		VOP_UNLOCK(imgp->vp);
549 		imgp->newcred = crdup(oldcred);
550 		if (attr.va_mode & S_ISUID) {
551 			euip = uifind(attr.va_uid);
552 			change_euid(imgp->newcred, euip);
553 		}
554 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
555 		if (attr.va_mode & S_ISGID)
556 			change_egid(imgp->newcred, attr.va_gid);
557 		/*
558 		 * Implement correct POSIX saved-id behavior.
559 		 *
560 		 * XXXMAC: Note that the current logic will save the
561 		 * uid and gid if a MAC domain transition occurs, even
562 		 * though maybe it shouldn't.
563 		 */
564 		change_svuid(imgp->newcred, imgp->newcred->cr_uid);
565 		change_svgid(imgp->newcred, imgp->newcred->cr_gid);
566 	} else {
567 		/*
568 		 * Implement correct POSIX saved-id behavior.
569 		 *
570 		 * XXX: It's not clear that the existing behavior is
571 		 * POSIX-compliant.  A number of sources indicate that the
572 		 * saved uid/gid should only be updated if the new ruid is
573 		 * not equal to the old ruid, or the new euid is not equal
574 		 * to the old euid and the new euid is not equal to the old
575 		 * ruid.  The FreeBSD code always updates the saved uid/gid.
576 		 * Also, this code uses the new (replaced) euid and egid as
577 		 * the source, which may or may not be the right ones to use.
578 		 */
579 		if (oldcred->cr_svuid != oldcred->cr_uid ||
580 		    oldcred->cr_svgid != oldcred->cr_gid) {
581 			VOP_UNLOCK(imgp->vp);
582 			imgp->newcred = crdup(oldcred);
583 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
584 			change_svuid(imgp->newcred, imgp->newcred->cr_uid);
585 			change_svgid(imgp->newcred, imgp->newcred->cr_gid);
586 		}
587 	}
588 	/* The new credentials are installed into the process later. */
589 
590 	/*
591 	 * Do the best to calculate the full path to the image file.
592 	 */
593 	if (args->fname != NULL && args->fname[0] == '/')
594 		imgp->execpath = args->fname;
595 	else {
596 		VOP_UNLOCK(imgp->vp);
597 		if (vn_fullpath(imgp->vp, &imgp->execpath, &imgp->freepath) != 0)
598 			imgp->execpath = args->fname;
599 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
600 	}
601 
602 	/*
603 	 *	If the current process has a special image activator it
604 	 *	wants to try first, call it.   For example, emulating shell
605 	 *	scripts differently.
606 	 */
607 	error = -1;
608 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
609 		error = img_first(imgp);
610 
611 	/*
612 	 *	Loop through the list of image activators, calling each one.
613 	 *	An activator returns -1 if there is no match, 0 on success,
614 	 *	and an error otherwise.
615 	 */
616 	for (i = 0; error == -1 && execsw[i]; ++i) {
617 		if (execsw[i]->ex_imgact == NULL ||
618 		    execsw[i]->ex_imgact == img_first) {
619 			continue;
620 		}
621 		error = (*execsw[i]->ex_imgact)(imgp);
622 	}
623 
624 	if (error) {
625 		if (error == -1)
626 			error = ENOEXEC;
627 		goto exec_fail_dealloc;
628 	}
629 
630 	/*
631 	 * Special interpreter operation, cleanup and loop up to try to
632 	 * activate the interpreter.
633 	 */
634 	if (imgp->interpreted) {
635 		exec_unmap_first_page(imgp);
636 		/*
637 		 * The text reference needs to be removed for scripts.
638 		 * There is a short period before we determine that
639 		 * something is a script where text reference is active.
640 		 * The vnode lock is held over this entire period
641 		 * so nothing should illegitimately be blocked.
642 		 */
643 		MPASS(imgp->textset);
644 		VOP_UNSET_TEXT_CHECKED(newtextvp);
645 		imgp->textset = false;
646 		/* free name buffer and old vnode */
647 		if (args->fname != NULL)
648 			NDFREE(&nd, NDF_ONLY_PNBUF);
649 #ifdef MAC
650 		mac_execve_interpreter_enter(newtextvp, &interpvplabel);
651 #endif
652 		if (imgp->opened) {
653 			VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td);
654 			imgp->opened = 0;
655 		}
656 		vput(newtextvp);
657 		vm_object_deallocate(imgp->object);
658 		imgp->object = NULL;
659 		execve_nosetid(imgp);
660 		imgp->execpath = NULL;
661 		free(imgp->freepath, M_TEMP);
662 		imgp->freepath = NULL;
663 		/* set new name to that of the interpreter */
664 		NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
665 		    SAVENAME, UIO_SYSSPACE, imgp->interpreter_name, td);
666 		args->fname = imgp->interpreter_name;
667 		goto interpret;
668 	}
669 
670 	/*
671 	 * NB: We unlock the vnode here because it is believed that none
672 	 * of the sv_copyout_strings/sv_fixup operations require the vnode.
673 	 */
674 	VOP_UNLOCK(imgp->vp);
675 
676 	if (disallow_high_osrel &&
677 	    P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) {
678 		error = ENOEXEC;
679 		uprintf("Osrel %d for image %s too high\n", p->p_osrel,
680 		    imgp->execpath != NULL ? imgp->execpath : "<unresolved>");
681 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
682 		goto exec_fail_dealloc;
683 	}
684 
685 	/* ABI enforces the use of Capsicum. Switch into capabilities mode. */
686 	if (SV_PROC_FLAG(p, SV_CAPSICUM))
687 		sys_cap_enter(td, NULL);
688 
689 	/*
690 	 * Copy out strings (args and env) and initialize stack base.
691 	 */
692 	error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base);
693 	if (error != 0) {
694 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
695 		goto exec_fail_dealloc;
696 	}
697 
698 	/*
699 	 * Stack setup.
700 	 */
701 	error = (*p->p_sysent->sv_fixup)(&stack_base, imgp);
702 	if (error != 0) {
703 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
704 		goto exec_fail_dealloc;
705 	}
706 
707 	if (args->fdp != NULL) {
708 		/* Install a brand new file descriptor table. */
709 		fdinstall_remapped(td, args->fdp);
710 		args->fdp = NULL;
711 	} else {
712 		/*
713 		 * Keep on using the existing file descriptor table. For
714 		 * security and other reasons, the file descriptor table
715 		 * cannot be shared after an exec.
716 		 */
717 		fdunshare(td);
718 		pdunshare(td);
719 		/* close files on exec */
720 		fdcloseexec(td);
721 	}
722 
723 	/*
724 	 * Malloc things before we need locks.
725 	 */
726 	i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv;
727 	/* Cache arguments if they fit inside our allowance */
728 	if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
729 		newargs = pargs_alloc(i);
730 		bcopy(imgp->args->begin_argv, newargs->ar_args, i);
731 	}
732 
733 	/*
734 	 * For security and other reasons, signal handlers cannot
735 	 * be shared after an exec. The new process gets a copy of the old
736 	 * handlers. In execsigs(), the new process will have its signals
737 	 * reset.
738 	 */
739 	if (sigacts_shared(p->p_sigacts)) {
740 		oldsigacts = p->p_sigacts;
741 		newsigacts = sigacts_alloc();
742 		sigacts_copy(newsigacts, oldsigacts);
743 	}
744 
745 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
746 
747 	PROC_LOCK(p);
748 	if (oldsigacts)
749 		p->p_sigacts = newsigacts;
750 	/* Stop profiling */
751 	stopprofclock(p);
752 
753 	/* reset caught signals */
754 	execsigs(p);
755 
756 	/* name this process - nameiexec(p, ndp) */
757 	bzero(p->p_comm, sizeof(p->p_comm));
758 	if (args->fname)
759 		bcopy(nd.ni_cnd.cn_nameptr, p->p_comm,
760 		    min(nd.ni_cnd.cn_namelen, MAXCOMLEN));
761 	else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0)
762 		bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title));
763 	bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
764 #ifdef KTR
765 	sched_clear_tdname(td);
766 #endif
767 
768 	/*
769 	 * mark as execed, wakeup the process that vforked (if any) and tell
770 	 * it that it now has its own resources back
771 	 */
772 	p->p_flag |= P_EXEC;
773 	if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0)
774 		p->p_flag2 &= ~P2_NOTRACE;
775 	if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0)
776 		p->p_flag2 &= ~P2_STKGAP_DISABLE;
777 	if (p->p_flag & P_PPWAIT) {
778 		p->p_flag &= ~(P_PPWAIT | P_PPTRACE);
779 		cv_broadcast(&p->p_pwait);
780 		/* STOPs are no longer ignored, arrange for AST */
781 		signotify(td);
782 	}
783 
784 	if ((imgp->sysent->sv_setid_allowed != NULL &&
785 	    !(*imgp->sysent->sv_setid_allowed)(td, imgp)) ||
786 	    (p->p_flag2 & P2_NO_NEW_PRIVS) != 0)
787 		execve_nosetid(imgp);
788 
789 	/*
790 	 * Implement image setuid/setgid installation.
791 	 */
792 	if (imgp->credential_setid) {
793 		/*
794 		 * Turn off syscall tracing for set-id programs, except for
795 		 * root.  Record any set-id flags first to make sure that
796 		 * we do not regain any tracing during a possible block.
797 		 */
798 		setsugid(p);
799 #ifdef KTRACE
800 		kiop = ktrprocexec(p);
801 #endif
802 		/*
803 		 * Close any file descriptors 0..2 that reference procfs,
804 		 * then make sure file descriptors 0..2 are in use.
805 		 *
806 		 * Both fdsetugidsafety() and fdcheckstd() may call functions
807 		 * taking sleepable locks, so temporarily drop our locks.
808 		 */
809 		PROC_UNLOCK(p);
810 		VOP_UNLOCK(imgp->vp);
811 		fdsetugidsafety(td);
812 		error = fdcheckstd(td);
813 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
814 		if (error != 0)
815 			goto exec_fail_dealloc;
816 		PROC_LOCK(p);
817 #ifdef MAC
818 		if (will_transition) {
819 			mac_vnode_execve_transition(oldcred, imgp->newcred,
820 			    imgp->vp, interpvplabel, imgp);
821 		}
822 #endif
823 	} else {
824 		if (oldcred->cr_uid == oldcred->cr_ruid &&
825 		    oldcred->cr_gid == oldcred->cr_rgid)
826 			p->p_flag &= ~P_SUGID;
827 	}
828 	/*
829 	 * Set the new credentials.
830 	 */
831 	if (imgp->newcred != NULL) {
832 		proc_set_cred(p, imgp->newcred);
833 		crfree(oldcred);
834 		oldcred = NULL;
835 	}
836 
837 	/*
838 	 * Store the vp for use in procfs.  This vnode was referenced by namei
839 	 * or fgetvp_exec.
840 	 */
841 	oldtextvp = p->p_textvp;
842 	p->p_textvp = newtextvp;
843 
844 #ifdef KDTRACE_HOOKS
845 	/*
846 	 * Tell the DTrace fasttrap provider about the exec if it
847 	 * has declared an interest.
848 	 */
849 	if (dtrace_fasttrap_exec)
850 		dtrace_fasttrap_exec(p);
851 #endif
852 
853 	/*
854 	 * Notify others that we exec'd, and clear the P_INEXEC flag
855 	 * as we're now a bona fide freshly-execed process.
856 	 */
857 	KNOTE_LOCKED(p->p_klist, NOTE_EXEC);
858 	p->p_flag &= ~P_INEXEC;
859 
860 	/* clear "fork but no exec" flag, as we _are_ execing */
861 	p->p_acflag &= ~AFORK;
862 
863 	/*
864 	 * Free any previous argument cache and replace it with
865 	 * the new argument cache, if any.
866 	 */
867 	oldargs = p->p_args;
868 	p->p_args = newargs;
869 	newargs = NULL;
870 
871 	PROC_UNLOCK(p);
872 
873 #ifdef	HWPMC_HOOKS
874 	/*
875 	 * Check if system-wide sampling is in effect or if the
876 	 * current process is using PMCs.  If so, do exec() time
877 	 * processing.  This processing needs to happen AFTER the
878 	 * P_INEXEC flag is cleared.
879 	 */
880 	if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) {
881 		VOP_UNLOCK(imgp->vp);
882 		pe.pm_credentialschanged = credential_changing;
883 		pe.pm_entryaddr = imgp->entry_addr;
884 
885 		PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe);
886 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
887 	}
888 #endif
889 
890 	/* Set values passed into the program in registers. */
891 	(*p->p_sysent->sv_setregs)(td, imgp, stack_base);
892 
893 	VOP_MMAPPED(imgp->vp);
894 
895 	SDT_PROBE1(proc, , , exec__success, args->fname);
896 
897 exec_fail_dealloc:
898 	if (error != 0) {
899 		p->p_osrel = orig_osrel;
900 		p->p_fctl0 = orig_fctl0;
901 		p->p_elf_brandinfo = orig_brandinfo;
902 	}
903 
904 	if (imgp->firstpage != NULL)
905 		exec_unmap_first_page(imgp);
906 
907 	if (imgp->vp != NULL) {
908 		if (args->fname)
909 			NDFREE(&nd, NDF_ONLY_PNBUF);
910 		if (imgp->opened)
911 			VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td);
912 		if (imgp->textset)
913 			VOP_UNSET_TEXT_CHECKED(imgp->vp);
914 		if (error != 0)
915 			vput(imgp->vp);
916 		else
917 			VOP_UNLOCK(imgp->vp);
918 	}
919 
920 	if (imgp->object != NULL)
921 		vm_object_deallocate(imgp->object);
922 
923 	free(imgp->freepath, M_TEMP);
924 
925 	if (error == 0) {
926 		if (p->p_ptevents & PTRACE_EXEC) {
927 			PROC_LOCK(p);
928 			if (p->p_ptevents & PTRACE_EXEC)
929 				td->td_dbgflags |= TDB_EXEC;
930 			PROC_UNLOCK(p);
931 		}
932 	} else {
933 exec_fail:
934 		/* we're done here, clear P_INEXEC */
935 		PROC_LOCK(p);
936 		p->p_flag &= ~P_INEXEC;
937 		PROC_UNLOCK(p);
938 
939 		SDT_PROBE1(proc, , , exec__failure, error);
940 	}
941 
942 	if (imgp->newcred != NULL && oldcred != NULL)
943 		crfree(imgp->newcred);
944 
945 #ifdef MAC
946 	mac_execve_exit(imgp);
947 	mac_execve_interpreter_exit(interpvplabel);
948 #endif
949 	exec_free_args(args);
950 
951 	/*
952 	 * Handle deferred decrement of ref counts.
953 	 */
954 	if (oldtextvp != NULL)
955 		vrele(oldtextvp);
956 #ifdef KTRACE
957 	ktr_io_params_free(kiop);
958 #endif
959 	pargs_drop(oldargs);
960 	pargs_drop(newargs);
961 	if (oldsigacts != NULL)
962 		sigacts_free(oldsigacts);
963 	if (euip != NULL)
964 		uifree(euip);
965 
966 	if (error && imgp->vmspace_destroyed) {
967 		/* sorry, no more process anymore. exit gracefully */
968 		exec_cleanup(td, oldvmspace);
969 		exit1(td, 0, SIGABRT);
970 		/* NOT REACHED */
971 	}
972 
973 #ifdef KTRACE
974 	if (error == 0)
975 		ktrprocctor(p);
976 #endif
977 
978 	/*
979 	 * We don't want cpu_set_syscall_retval() to overwrite any of
980 	 * the register values put in place by exec_setregs().
981 	 * Implementations of cpu_set_syscall_retval() will leave
982 	 * registers unmodified when returning EJUSTRETURN.
983 	 */
984 	return (error == 0 ? EJUSTRETURN : error);
985 }
986 
987 void
988 exec_cleanup(struct thread *td, struct vmspace *oldvmspace)
989 {
990 	if ((td->td_pflags & TDP_EXECVMSPC) != 0) {
991 		KASSERT(td->td_proc->p_vmspace != oldvmspace,
992 		    ("oldvmspace still used"));
993 		vmspace_free(oldvmspace);
994 		td->td_pflags &= ~TDP_EXECVMSPC;
995 	}
996 }
997 
998 int
999 exec_map_first_page(struct image_params *imgp)
1000 {
1001 	vm_object_t object;
1002 	vm_page_t m;
1003 	int error;
1004 
1005 	if (imgp->firstpage != NULL)
1006 		exec_unmap_first_page(imgp);
1007 
1008 	object = imgp->vp->v_object;
1009 	if (object == NULL)
1010 		return (EACCES);
1011 #if VM_NRESERVLEVEL > 0
1012 	if ((object->flags & OBJ_COLORED) == 0) {
1013 		VM_OBJECT_WLOCK(object);
1014 		vm_object_color(object, 0);
1015 		VM_OBJECT_WUNLOCK(object);
1016 	}
1017 #endif
1018 	error = vm_page_grab_valid_unlocked(&m, object, 0,
1019 	    VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) |
1020             VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
1021 
1022 	if (error != VM_PAGER_OK)
1023 		return (EIO);
1024 	imgp->firstpage = sf_buf_alloc(m, 0);
1025 	imgp->image_header = (char *)sf_buf_kva(imgp->firstpage);
1026 
1027 	return (0);
1028 }
1029 
1030 void
1031 exec_unmap_first_page(struct image_params *imgp)
1032 {
1033 	vm_page_t m;
1034 
1035 	if (imgp->firstpage != NULL) {
1036 		m = sf_buf_page(imgp->firstpage);
1037 		sf_buf_free(imgp->firstpage);
1038 		imgp->firstpage = NULL;
1039 		vm_page_unwire(m, PQ_ACTIVE);
1040 	}
1041 }
1042 
1043 void
1044 exec_onexec_old(struct thread *td)
1045 {
1046 	sigfastblock_clear(td);
1047 	umtx_exec(td->td_proc);
1048 }
1049 
1050 /*
1051  * Destroy old address space, and allocate a new stack.
1052  *	The new stack is only sgrowsiz large because it is grown
1053  *	automatically on a page fault.
1054  */
1055 int
1056 exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv)
1057 {
1058 	int error;
1059 	struct proc *p = imgp->proc;
1060 	struct vmspace *vmspace = p->p_vmspace;
1061 	struct thread *td = curthread;
1062 	vm_object_t obj;
1063 	struct rlimit rlim_stack;
1064 	vm_offset_t sv_minuser, stack_addr;
1065 	vm_map_t map;
1066 	vm_prot_t stack_prot;
1067 	u_long ssiz;
1068 
1069 	imgp->vmspace_destroyed = 1;
1070 	imgp->sysent = sv;
1071 
1072 	if (p->p_sysent->sv_onexec_old != NULL)
1073 		p->p_sysent->sv_onexec_old(td);
1074 	itimers_exec(p);
1075 
1076 	EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp);
1077 
1078 	/*
1079 	 * Blow away entire process VM, if address space not shared,
1080 	 * otherwise, create a new VM space so that other threads are
1081 	 * not disrupted
1082 	 */
1083 	map = &vmspace->vm_map;
1084 	if (map_at_zero)
1085 		sv_minuser = sv->sv_minuser;
1086 	else
1087 		sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE);
1088 	if (refcount_load(&vmspace->vm_refcnt) == 1 &&
1089 	    vm_map_min(map) == sv_minuser &&
1090 	    vm_map_max(map) == sv->sv_maxuser &&
1091 	    cpu_exec_vmspace_reuse(p, map)) {
1092 		shmexit(vmspace);
1093 		pmap_remove_pages(vmspace_pmap(vmspace));
1094 		vm_map_remove(map, vm_map_min(map), vm_map_max(map));
1095 		/*
1096 		 * An exec terminates mlockall(MCL_FUTURE).
1097 		 * ASLR and W^X states must be re-evaluated.
1098 		 */
1099 		vm_map_lock(map);
1100 		vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR |
1101 		    MAP_ASLR_IGNSTART | MAP_WXORX);
1102 		vm_map_unlock(map);
1103 	} else {
1104 		error = vmspace_exec(p, sv_minuser, sv->sv_maxuser);
1105 		if (error)
1106 			return (error);
1107 		vmspace = p->p_vmspace;
1108 		map = &vmspace->vm_map;
1109 	}
1110 	map->flags |= imgp->map_flags;
1111 
1112 	/* Map a shared page */
1113 	obj = sv->sv_shared_page_obj;
1114 	if (obj != NULL) {
1115 		vm_object_reference(obj);
1116 		error = vm_map_fixed(map, obj, 0,
1117 		    sv->sv_shared_page_base, sv->sv_shared_page_len,
1118 		    VM_PROT_READ | VM_PROT_EXECUTE,
1119 		    VM_PROT_READ | VM_PROT_EXECUTE,
1120 		    MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
1121 		if (error != KERN_SUCCESS) {
1122 			vm_object_deallocate(obj);
1123 			return (vm_mmap_to_errno(error));
1124 		}
1125 	}
1126 
1127 	/* Allocate a new stack */
1128 	if (imgp->stack_sz != 0) {
1129 		ssiz = trunc_page(imgp->stack_sz);
1130 		PROC_LOCK(p);
1131 		lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack);
1132 		PROC_UNLOCK(p);
1133 		if (ssiz > rlim_stack.rlim_max)
1134 			ssiz = rlim_stack.rlim_max;
1135 		if (ssiz > rlim_stack.rlim_cur) {
1136 			rlim_stack.rlim_cur = ssiz;
1137 			kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack);
1138 		}
1139 	} else if (sv->sv_maxssiz != NULL) {
1140 		ssiz = *sv->sv_maxssiz;
1141 	} else {
1142 		ssiz = maxssiz;
1143 	}
1144 	imgp->eff_stack_sz = lim_cur(curthread, RLIMIT_STACK);
1145 	if (ssiz < imgp->eff_stack_sz)
1146 		imgp->eff_stack_sz = ssiz;
1147 	stack_addr = sv->sv_usrstack - ssiz;
1148 	stack_prot = obj != NULL && imgp->stack_prot != 0 ?
1149 	    imgp->stack_prot : sv->sv_stackprot;
1150 	error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz, stack_prot,
1151 	    VM_PROT_ALL, MAP_STACK_GROWS_DOWN);
1152 	if (error != KERN_SUCCESS) {
1153 		uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x "
1154 		    "failed mach error %d errno %d\n", (uintmax_t)ssiz,
1155 		    stack_prot, error, vm_mmap_to_errno(error));
1156 		return (vm_mmap_to_errno(error));
1157 	}
1158 
1159 	/*
1160 	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they
1161 	 * are still used to enforce the stack rlimit on the process stack.
1162 	 */
1163 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
1164 	vmspace->vm_maxsaddr = (char *)stack_addr;
1165 
1166 	return (sv->sv_onexec != NULL ? sv->sv_onexec(p, imgp) : 0);
1167 }
1168 
1169 /*
1170  * Copy out argument and environment strings from the old process address
1171  * space into the temporary string buffer.
1172  */
1173 int
1174 exec_copyin_args(struct image_args *args, const char *fname,
1175     enum uio_seg segflg, char **argv, char **envv)
1176 {
1177 	u_long arg, env;
1178 	int error;
1179 
1180 	bzero(args, sizeof(*args));
1181 	if (argv == NULL)
1182 		return (EFAULT);
1183 
1184 	/*
1185 	 * Allocate demand-paged memory for the file name, argument, and
1186 	 * environment strings.
1187 	 */
1188 	error = exec_alloc_args(args);
1189 	if (error != 0)
1190 		return (error);
1191 
1192 	/*
1193 	 * Copy the file name.
1194 	 */
1195 	error = exec_args_add_fname(args, fname, segflg);
1196 	if (error != 0)
1197 		goto err_exit;
1198 
1199 	/*
1200 	 * extract arguments first
1201 	 */
1202 	for (;;) {
1203 		error = fueword(argv++, &arg);
1204 		if (error == -1) {
1205 			error = EFAULT;
1206 			goto err_exit;
1207 		}
1208 		if (arg == 0)
1209 			break;
1210 		error = exec_args_add_arg(args, (char *)(uintptr_t)arg,
1211 		    UIO_USERSPACE);
1212 		if (error != 0)
1213 			goto err_exit;
1214 	}
1215 
1216 	/*
1217 	 * extract environment strings
1218 	 */
1219 	if (envv) {
1220 		for (;;) {
1221 			error = fueword(envv++, &env);
1222 			if (error == -1) {
1223 				error = EFAULT;
1224 				goto err_exit;
1225 			}
1226 			if (env == 0)
1227 				break;
1228 			error = exec_args_add_env(args,
1229 			    (char *)(uintptr_t)env, UIO_USERSPACE);
1230 			if (error != 0)
1231 				goto err_exit;
1232 		}
1233 	}
1234 
1235 	return (0);
1236 
1237 err_exit:
1238 	exec_free_args(args);
1239 	return (error);
1240 }
1241 
1242 int
1243 exec_copyin_data_fds(struct thread *td, struct image_args *args,
1244     const void *data, size_t datalen, const int *fds, size_t fdslen)
1245 {
1246 	struct filedesc *ofdp;
1247 	const char *p;
1248 	int *kfds;
1249 	int error;
1250 
1251 	memset(args, '\0', sizeof(*args));
1252 	ofdp = td->td_proc->p_fd;
1253 	if (datalen >= ARG_MAX || fdslen >= ofdp->fd_nfiles)
1254 		return (E2BIG);
1255 	error = exec_alloc_args(args);
1256 	if (error != 0)
1257 		return (error);
1258 
1259 	args->begin_argv = args->buf;
1260 	args->stringspace = ARG_MAX;
1261 
1262 	if (datalen > 0) {
1263 		/*
1264 		 * Argument buffer has been provided. Copy it into the
1265 		 * kernel as a single string and add a terminating null
1266 		 * byte.
1267 		 */
1268 		error = copyin(data, args->begin_argv, datalen);
1269 		if (error != 0)
1270 			goto err_exit;
1271 		args->begin_argv[datalen] = '\0';
1272 		args->endp = args->begin_argv + datalen + 1;
1273 		args->stringspace -= datalen + 1;
1274 
1275 		/*
1276 		 * Traditional argument counting. Count the number of
1277 		 * null bytes.
1278 		 */
1279 		for (p = args->begin_argv; p < args->endp; ++p)
1280 			if (*p == '\0')
1281 				++args->argc;
1282 	} else {
1283 		/* No argument buffer provided. */
1284 		args->endp = args->begin_argv;
1285 	}
1286 
1287 	/* Create new file descriptor table. */
1288 	kfds = malloc(fdslen * sizeof(int), M_TEMP, M_WAITOK);
1289 	error = copyin(fds, kfds, fdslen * sizeof(int));
1290 	if (error != 0) {
1291 		free(kfds, M_TEMP);
1292 		goto err_exit;
1293 	}
1294 	error = fdcopy_remapped(ofdp, kfds, fdslen, &args->fdp);
1295 	free(kfds, M_TEMP);
1296 	if (error != 0)
1297 		goto err_exit;
1298 
1299 	return (0);
1300 err_exit:
1301 	exec_free_args(args);
1302 	return (error);
1303 }
1304 
1305 struct exec_args_kva {
1306 	vm_offset_t addr;
1307 	u_int gen;
1308 	SLIST_ENTRY(exec_args_kva) next;
1309 };
1310 
1311 DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva);
1312 
1313 static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist;
1314 static struct mtx exec_args_kva_mtx;
1315 static u_int exec_args_gen;
1316 
1317 static void
1318 exec_prealloc_args_kva(void *arg __unused)
1319 {
1320 	struct exec_args_kva *argkva;
1321 	u_int i;
1322 
1323 	SLIST_INIT(&exec_args_kva_freelist);
1324 	mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF);
1325 	for (i = 0; i < exec_map_entries; i++) {
1326 		argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK);
1327 		argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size);
1328 		argkva->gen = exec_args_gen;
1329 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1330 	}
1331 }
1332 SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL);
1333 
1334 static vm_offset_t
1335 exec_alloc_args_kva(void **cookie)
1336 {
1337 	struct exec_args_kva *argkva;
1338 
1339 	argkva = (void *)atomic_readandclear_ptr(
1340 	    (uintptr_t *)DPCPU_PTR(exec_args_kva));
1341 	if (argkva == NULL) {
1342 		mtx_lock(&exec_args_kva_mtx);
1343 		while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL)
1344 			(void)mtx_sleep(&exec_args_kva_freelist,
1345 			    &exec_args_kva_mtx, 0, "execkva", 0);
1346 		SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next);
1347 		mtx_unlock(&exec_args_kva_mtx);
1348 	}
1349 	kasan_mark((void *)argkva->addr, exec_map_entry_size,
1350 	    exec_map_entry_size, 0);
1351 	*(struct exec_args_kva **)cookie = argkva;
1352 	return (argkva->addr);
1353 }
1354 
1355 static void
1356 exec_release_args_kva(struct exec_args_kva *argkva, u_int gen)
1357 {
1358 	vm_offset_t base;
1359 
1360 	base = argkva->addr;
1361 	kasan_mark((void *)argkva->addr, 0, exec_map_entry_size,
1362 	    KASAN_EXEC_ARGS_FREED);
1363 	if (argkva->gen != gen) {
1364 		(void)vm_map_madvise(exec_map, base, base + exec_map_entry_size,
1365 		    MADV_FREE);
1366 		argkva->gen = gen;
1367 	}
1368 	if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva),
1369 	    (uintptr_t)NULL, (uintptr_t)argkva)) {
1370 		mtx_lock(&exec_args_kva_mtx);
1371 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1372 		wakeup_one(&exec_args_kva_freelist);
1373 		mtx_unlock(&exec_args_kva_mtx);
1374 	}
1375 }
1376 
1377 static void
1378 exec_free_args_kva(void *cookie)
1379 {
1380 
1381 	exec_release_args_kva(cookie, exec_args_gen);
1382 }
1383 
1384 static void
1385 exec_args_kva_lowmem(void *arg __unused)
1386 {
1387 	SLIST_HEAD(, exec_args_kva) head;
1388 	struct exec_args_kva *argkva;
1389 	u_int gen;
1390 	int i;
1391 
1392 	gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1;
1393 
1394 	/*
1395 	 * Force an madvise of each KVA range. Any currently allocated ranges
1396 	 * will have MADV_FREE applied once they are freed.
1397 	 */
1398 	SLIST_INIT(&head);
1399 	mtx_lock(&exec_args_kva_mtx);
1400 	SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva);
1401 	mtx_unlock(&exec_args_kva_mtx);
1402 	while ((argkva = SLIST_FIRST(&head)) != NULL) {
1403 		SLIST_REMOVE_HEAD(&head, next);
1404 		exec_release_args_kva(argkva, gen);
1405 	}
1406 
1407 	CPU_FOREACH(i) {
1408 		argkva = (void *)atomic_readandclear_ptr(
1409 		    (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva));
1410 		if (argkva != NULL)
1411 			exec_release_args_kva(argkva, gen);
1412 	}
1413 }
1414 EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL,
1415     EVENTHANDLER_PRI_ANY);
1416 
1417 /*
1418  * Allocate temporary demand-paged, zero-filled memory for the file name,
1419  * argument, and environment strings.
1420  */
1421 int
1422 exec_alloc_args(struct image_args *args)
1423 {
1424 
1425 	args->buf = (char *)exec_alloc_args_kva(&args->bufkva);
1426 	return (0);
1427 }
1428 
1429 void
1430 exec_free_args(struct image_args *args)
1431 {
1432 
1433 	if (args->buf != NULL) {
1434 		exec_free_args_kva(args->bufkva);
1435 		args->buf = NULL;
1436 	}
1437 	if (args->fname_buf != NULL) {
1438 		free(args->fname_buf, M_TEMP);
1439 		args->fname_buf = NULL;
1440 	}
1441 	if (args->fdp != NULL)
1442 		fdescfree_remapped(args->fdp);
1443 }
1444 
1445 /*
1446  * A set to functions to fill struct image args.
1447  *
1448  * NOTE: exec_args_add_fname() must be called (possibly with a NULL
1449  * fname) before the other functions.  All exec_args_add_arg() calls must
1450  * be made before any exec_args_add_env() calls.  exec_args_adjust_args()
1451  * may be called any time after exec_args_add_fname().
1452  *
1453  * exec_args_add_fname() - install path to be executed
1454  * exec_args_add_arg() - append an argument string
1455  * exec_args_add_env() - append an env string
1456  * exec_args_adjust_args() - adjust location of the argument list to
1457  *                           allow new arguments to be prepended
1458  */
1459 int
1460 exec_args_add_fname(struct image_args *args, const char *fname,
1461     enum uio_seg segflg)
1462 {
1463 	int error;
1464 	size_t length;
1465 
1466 	KASSERT(args->fname == NULL, ("fname already appended"));
1467 	KASSERT(args->endp == NULL, ("already appending to args"));
1468 
1469 	if (fname != NULL) {
1470 		args->fname = args->buf;
1471 		error = segflg == UIO_SYSSPACE ?
1472 		    copystr(fname, args->fname, PATH_MAX, &length) :
1473 		    copyinstr(fname, args->fname, PATH_MAX, &length);
1474 		if (error != 0)
1475 			return (error == ENAMETOOLONG ? E2BIG : error);
1476 	} else
1477 		length = 0;
1478 
1479 	/* Set up for _arg_*()/_env_*() */
1480 	args->endp = args->buf + length;
1481 	/* begin_argv must be set and kept updated */
1482 	args->begin_argv = args->endp;
1483 	KASSERT(exec_map_entry_size - length >= ARG_MAX,
1484 	    ("too little space remaining for arguments %zu < %zu",
1485 	    exec_map_entry_size - length, (size_t)ARG_MAX));
1486 	args->stringspace = ARG_MAX;
1487 
1488 	return (0);
1489 }
1490 
1491 static int
1492 exec_args_add_str(struct image_args *args, const char *str,
1493     enum uio_seg segflg, int *countp)
1494 {
1495 	int error;
1496 	size_t length;
1497 
1498 	KASSERT(args->endp != NULL, ("endp not initialized"));
1499 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1500 
1501 	error = (segflg == UIO_SYSSPACE) ?
1502 	    copystr(str, args->endp, args->stringspace, &length) :
1503 	    copyinstr(str, args->endp, args->stringspace, &length);
1504 	if (error != 0)
1505 		return (error == ENAMETOOLONG ? E2BIG : error);
1506 	args->stringspace -= length;
1507 	args->endp += length;
1508 	(*countp)++;
1509 
1510 	return (0);
1511 }
1512 
1513 int
1514 exec_args_add_arg(struct image_args *args, const char *argp,
1515     enum uio_seg segflg)
1516 {
1517 
1518 	KASSERT(args->envc == 0, ("appending args after env"));
1519 
1520 	return (exec_args_add_str(args, argp, segflg, &args->argc));
1521 }
1522 
1523 int
1524 exec_args_add_env(struct image_args *args, const char *envp,
1525     enum uio_seg segflg)
1526 {
1527 
1528 	if (args->envc == 0)
1529 		args->begin_envv = args->endp;
1530 
1531 	return (exec_args_add_str(args, envp, segflg, &args->envc));
1532 }
1533 
1534 int
1535 exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend)
1536 {
1537 	ssize_t offset;
1538 
1539 	KASSERT(args->endp != NULL, ("endp not initialized"));
1540 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1541 
1542 	offset = extend - consume;
1543 	if (args->stringspace < offset)
1544 		return (E2BIG);
1545 	memmove(args->begin_argv + extend, args->begin_argv + consume,
1546 	    args->endp - args->begin_argv + consume);
1547 	if (args->envc > 0)
1548 		args->begin_envv += offset;
1549 	args->endp += offset;
1550 	args->stringspace -= offset;
1551 	return (0);
1552 }
1553 
1554 char *
1555 exec_args_get_begin_envv(struct image_args *args)
1556 {
1557 
1558 	KASSERT(args->endp != NULL, ("endp not initialized"));
1559 
1560 	if (args->envc > 0)
1561 		return (args->begin_envv);
1562 	return (args->endp);
1563 }
1564 
1565 void
1566 exec_stackgap(struct image_params *imgp, uintptr_t *dp)
1567 {
1568 	if (imgp->sysent->sv_stackgap == NULL ||
1569 	    (imgp->proc->p_fctl0 & (NT_FREEBSD_FCTL_ASLR_DISABLE |
1570 	    NT_FREEBSD_FCTL_ASG_DISABLE)) != 0 ||
1571 	    (imgp->map_flags & MAP_ASLR) == 0)
1572 		return;
1573 	imgp->sysent->sv_stackgap(imgp, dp);
1574 }
1575 
1576 /*
1577  * Copy strings out to the new process address space, constructing new arg
1578  * and env vector tables. Return a pointer to the base so that it can be used
1579  * as the initial stack pointer.
1580  */
1581 int
1582 exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
1583 {
1584 	int argc, envc;
1585 	char **vectp;
1586 	char *stringp;
1587 	uintptr_t destp, ustringp;
1588 	struct ps_strings *arginfo;
1589 	struct proc *p;
1590 	size_t execpath_len;
1591 	int error, szsigcode, szps;
1592 	char canary[sizeof(long) * 8];
1593 
1594 	szps = sizeof(pagesizes[0]) * MAXPAGESIZES;
1595 	/*
1596 	 * Calculate string base and vector table pointers.
1597 	 * Also deal with signal trampoline code for this exec type.
1598 	 */
1599 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
1600 		execpath_len = strlen(imgp->execpath) + 1;
1601 	else
1602 		execpath_len = 0;
1603 	p = imgp->proc;
1604 	szsigcode = 0;
1605 	arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings;
1606 	imgp->ps_strings = arginfo;
1607 	if (p->p_sysent->sv_sigcode_base == 0) {
1608 		if (p->p_sysent->sv_szsigcode != NULL)
1609 			szsigcode = *(p->p_sysent->sv_szsigcode);
1610 	}
1611 	destp =	(uintptr_t)arginfo;
1612 
1613 	/*
1614 	 * install sigcode
1615 	 */
1616 	if (szsigcode != 0) {
1617 		destp -= szsigcode;
1618 		destp = rounddown2(destp, sizeof(void *));
1619 		error = copyout(p->p_sysent->sv_sigcode, (void *)destp,
1620 		    szsigcode);
1621 		if (error != 0)
1622 			return (error);
1623 	}
1624 
1625 	/*
1626 	 * Copy the image path for the rtld.
1627 	 */
1628 	if (execpath_len != 0) {
1629 		destp -= execpath_len;
1630 		destp = rounddown2(destp, sizeof(void *));
1631 		imgp->execpathp = (void *)destp;
1632 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
1633 		if (error != 0)
1634 			return (error);
1635 	}
1636 
1637 	/*
1638 	 * Prepare the canary for SSP.
1639 	 */
1640 	arc4rand(canary, sizeof(canary), 0);
1641 	destp -= sizeof(canary);
1642 	imgp->canary = (void *)destp;
1643 	error = copyout(canary, imgp->canary, sizeof(canary));
1644 	if (error != 0)
1645 		return (error);
1646 	imgp->canarylen = sizeof(canary);
1647 
1648 	/*
1649 	 * Prepare the pagesizes array.
1650 	 */
1651 	destp -= szps;
1652 	destp = rounddown2(destp, sizeof(void *));
1653 	imgp->pagesizes = (void *)destp;
1654 	error = copyout(pagesizes, imgp->pagesizes, szps);
1655 	if (error != 0)
1656 		return (error);
1657 	imgp->pagesizeslen = szps;
1658 
1659 	/*
1660 	 * Allocate room for the argument and environment strings.
1661 	 */
1662 	destp -= ARG_MAX - imgp->args->stringspace;
1663 	destp = rounddown2(destp, sizeof(void *));
1664 	ustringp = destp;
1665 
1666 	exec_stackgap(imgp, &destp);
1667 
1668 	if (imgp->auxargs) {
1669 		/*
1670 		 * Allocate room on the stack for the ELF auxargs
1671 		 * array.  It has up to AT_COUNT entries.
1672 		 */
1673 		destp -= AT_COUNT * sizeof(Elf_Auxinfo);
1674 		destp = rounddown2(destp, sizeof(void *));
1675 	}
1676 
1677 	vectp = (char **)destp;
1678 
1679 	/*
1680 	 * Allocate room for the argv[] and env vectors including the
1681 	 * terminating NULL pointers.
1682 	 */
1683 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
1684 
1685 	/*
1686 	 * vectp also becomes our initial stack base
1687 	 */
1688 	*stack_base = (uintptr_t)vectp;
1689 
1690 	stringp = imgp->args->begin_argv;
1691 	argc = imgp->args->argc;
1692 	envc = imgp->args->envc;
1693 
1694 	/*
1695 	 * Copy out strings - arguments and environment.
1696 	 */
1697 	error = copyout(stringp, (void *)ustringp,
1698 	    ARG_MAX - imgp->args->stringspace);
1699 	if (error != 0)
1700 		return (error);
1701 
1702 	/*
1703 	 * Fill in "ps_strings" struct for ps, w, etc.
1704 	 */
1705 	imgp->argv = vectp;
1706 	if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 ||
1707 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
1708 		return (EFAULT);
1709 
1710 	/*
1711 	 * Fill in argument portion of vector table.
1712 	 */
1713 	for (; argc > 0; --argc) {
1714 		if (suword(vectp++, ustringp) != 0)
1715 			return (EFAULT);
1716 		while (*stringp++ != 0)
1717 			ustringp++;
1718 		ustringp++;
1719 	}
1720 
1721 	/* a null vector table pointer separates the argp's from the envp's */
1722 	if (suword(vectp++, 0) != 0)
1723 		return (EFAULT);
1724 
1725 	imgp->envv = vectp;
1726 	if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 ||
1727 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
1728 		return (EFAULT);
1729 
1730 	/*
1731 	 * Fill in environment portion of vector table.
1732 	 */
1733 	for (; envc > 0; --envc) {
1734 		if (suword(vectp++, ustringp) != 0)
1735 			return (EFAULT);
1736 		while (*stringp++ != 0)
1737 			ustringp++;
1738 		ustringp++;
1739 	}
1740 
1741 	/* end of vector table is a null pointer */
1742 	if (suword(vectp, 0) != 0)
1743 		return (EFAULT);
1744 
1745 	if (imgp->auxargs) {
1746 		vectp++;
1747 		error = imgp->sysent->sv_copyout_auxargs(imgp,
1748 		    (uintptr_t)vectp);
1749 		if (error != 0)
1750 			return (error);
1751 	}
1752 
1753 	return (0);
1754 }
1755 
1756 /*
1757  * Check permissions of file to execute.
1758  *	Called with imgp->vp locked.
1759  *	Return 0 for success or error code on failure.
1760  */
1761 int
1762 exec_check_permissions(struct image_params *imgp)
1763 {
1764 	struct vnode *vp = imgp->vp;
1765 	struct vattr *attr = imgp->attr;
1766 	struct thread *td;
1767 	int error;
1768 
1769 	td = curthread;
1770 
1771 	/* Get file attributes */
1772 	error = VOP_GETATTR(vp, attr, td->td_ucred);
1773 	if (error)
1774 		return (error);
1775 
1776 #ifdef MAC
1777 	error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp);
1778 	if (error)
1779 		return (error);
1780 #endif
1781 
1782 	/*
1783 	 * 1) Check if file execution is disabled for the filesystem that
1784 	 *    this file resides on.
1785 	 * 2) Ensure that at least one execute bit is on. Otherwise, a
1786 	 *    privileged user will always succeed, and we don't want this
1787 	 *    to happen unless the file really is executable.
1788 	 * 3) Ensure that the file is a regular file.
1789 	 */
1790 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1791 	    (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 ||
1792 	    (attr->va_type != VREG))
1793 		return (EACCES);
1794 
1795 	/*
1796 	 * Zero length files can't be exec'd
1797 	 */
1798 	if (attr->va_size == 0)
1799 		return (ENOEXEC);
1800 
1801 	/*
1802 	 *  Check for execute permission to file based on current credentials.
1803 	 */
1804 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
1805 	if (error)
1806 		return (error);
1807 
1808 	/*
1809 	 * Check number of open-for-writes on the file and deny execution
1810 	 * if there are any.
1811 	 *
1812 	 * Add a text reference now so no one can write to the
1813 	 * executable while we're activating it.
1814 	 *
1815 	 * Remember if this was set before and unset it in case this is not
1816 	 * actually an executable image.
1817 	 */
1818 	error = VOP_SET_TEXT(vp);
1819 	if (error != 0)
1820 		return (error);
1821 	imgp->textset = true;
1822 
1823 	/*
1824 	 * Call filesystem specific open routine (which does nothing in the
1825 	 * general case).
1826 	 */
1827 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
1828 	if (error == 0)
1829 		imgp->opened = 1;
1830 	return (error);
1831 }
1832 
1833 /*
1834  * Exec handler registration
1835  */
1836 int
1837 exec_register(const struct execsw *execsw_arg)
1838 {
1839 	const struct execsw **es, **xs, **newexecsw;
1840 	u_int count = 2;	/* New slot and trailing NULL */
1841 
1842 	if (execsw)
1843 		for (es = execsw; *es; es++)
1844 			count++;
1845 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1846 	xs = newexecsw;
1847 	if (execsw)
1848 		for (es = execsw; *es; es++)
1849 			*xs++ = *es;
1850 	*xs++ = execsw_arg;
1851 	*xs = NULL;
1852 	if (execsw)
1853 		free(execsw, M_TEMP);
1854 	execsw = newexecsw;
1855 	return (0);
1856 }
1857 
1858 int
1859 exec_unregister(const struct execsw *execsw_arg)
1860 {
1861 	const struct execsw **es, **xs, **newexecsw;
1862 	int count = 1;
1863 
1864 	if (execsw == NULL)
1865 		panic("unregister with no handlers left?\n");
1866 
1867 	for (es = execsw; *es; es++) {
1868 		if (*es == execsw_arg)
1869 			break;
1870 	}
1871 	if (*es == NULL)
1872 		return (ENOENT);
1873 	for (es = execsw; *es; es++)
1874 		if (*es != execsw_arg)
1875 			count++;
1876 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1877 	xs = newexecsw;
1878 	for (es = execsw; *es; es++)
1879 		if (*es != execsw_arg)
1880 			*xs++ = *es;
1881 	*xs = NULL;
1882 	if (execsw)
1883 		free(execsw, M_TEMP);
1884 	execsw = newexecsw;
1885 	return (0);
1886 }
1887 
1888 /*
1889  * Write out a core segment to the compression stream.
1890  */
1891 static int
1892 compress_chunk(struct coredump_params *cp, char *base, char *buf, u_int len)
1893 {
1894 	u_int chunk_len;
1895 	int error;
1896 
1897 	while (len > 0) {
1898 		chunk_len = MIN(len, CORE_BUF_SIZE);
1899 
1900 		/*
1901 		 * We can get EFAULT error here.
1902 		 * In that case zero out the current chunk of the segment.
1903 		 */
1904 		error = copyin(base, buf, chunk_len);
1905 		if (error != 0)
1906 			bzero(buf, chunk_len);
1907 		error = compressor_write(cp->comp, buf, chunk_len);
1908 		if (error != 0)
1909 			break;
1910 		base += chunk_len;
1911 		len -= chunk_len;
1912 	}
1913 	return (error);
1914 }
1915 
1916 int
1917 core_write(struct coredump_params *cp, const void *base, size_t len,
1918     off_t offset, enum uio_seg seg, size_t *resid)
1919 {
1920 
1921 	return (vn_rdwr_inchunks(UIO_WRITE, cp->vp, __DECONST(void *, base),
1922 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1923 	    cp->active_cred, cp->file_cred, resid, cp->td));
1924 }
1925 
1926 int
1927 core_output(char *base, size_t len, off_t offset, struct coredump_params *cp,
1928     void *tmpbuf)
1929 {
1930 	vm_map_t map;
1931 	struct mount *mp;
1932 	size_t resid, runlen;
1933 	int error;
1934 	bool success;
1935 
1936 	KASSERT((uintptr_t)base % PAGE_SIZE == 0,
1937 	    ("%s: user address %p is not page-aligned", __func__, base));
1938 
1939 	if (cp->comp != NULL)
1940 		return (compress_chunk(cp, base, tmpbuf, len));
1941 
1942 	map = &cp->td->td_proc->p_vmspace->vm_map;
1943 	for (; len > 0; base += runlen, offset += runlen, len -= runlen) {
1944 		/*
1945 		 * Attempt to page in all virtual pages in the range.  If a
1946 		 * virtual page is not backed by the pager, it is represented as
1947 		 * a hole in the file.  This can occur with zero-filled
1948 		 * anonymous memory or truncated files, for example.
1949 		 */
1950 		for (runlen = 0; runlen < len; runlen += PAGE_SIZE) {
1951 			error = vm_fault(map, (uintptr_t)base + runlen,
1952 			    VM_PROT_READ, VM_FAULT_NOFILL, NULL);
1953 			if (runlen == 0)
1954 				success = error == KERN_SUCCESS;
1955 			else if ((error == KERN_SUCCESS) != success)
1956 				break;
1957 		}
1958 
1959 		if (success) {
1960 			error = core_write(cp, base, runlen, offset,
1961 			    UIO_USERSPACE, &resid);
1962 			if (error != 0) {
1963 				if (error != EFAULT)
1964 					break;
1965 
1966 				/*
1967 				 * EFAULT may be returned if the user mapping
1968 				 * could not be accessed, e.g., because a mapped
1969 				 * file has been truncated.  Skip the page if no
1970 				 * progress was made, to protect against a
1971 				 * hypothetical scenario where vm_fault() was
1972 				 * successful but core_write() returns EFAULT
1973 				 * anyway.
1974 				 */
1975 				runlen -= resid;
1976 				if (runlen == 0) {
1977 					success = false;
1978 					runlen = PAGE_SIZE;
1979 				}
1980 			}
1981 		}
1982 		if (!success) {
1983 			error = vn_start_write(cp->vp, &mp, V_WAIT);
1984 			if (error != 0)
1985 				break;
1986 			vn_lock(cp->vp, LK_EXCLUSIVE | LK_RETRY);
1987 			error = vn_truncate_locked(cp->vp, offset + runlen,
1988 			    false, cp->td->td_ucred);
1989 			VOP_UNLOCK(cp->vp);
1990 			vn_finished_write(mp);
1991 			if (error != 0)
1992 				break;
1993 		}
1994 	}
1995 	return (error);
1996 }
1997 
1998 /*
1999  * Drain into a core file.
2000  */
2001 int
2002 sbuf_drain_core_output(void *arg, const char *data, int len)
2003 {
2004 	struct coredump_params *cp;
2005 	struct proc *p;
2006 	int error, locked;
2007 
2008 	cp = arg;
2009 	p = cp->td->td_proc;
2010 
2011 	/*
2012 	 * Some kern_proc out routines that print to this sbuf may
2013 	 * call us with the process lock held. Draining with the
2014 	 * non-sleepable lock held is unsafe. The lock is needed for
2015 	 * those routines when dumping a live process. In our case we
2016 	 * can safely release the lock before draining and acquire
2017 	 * again after.
2018 	 */
2019 	locked = PROC_LOCKED(p);
2020 	if (locked)
2021 		PROC_UNLOCK(p);
2022 	if (cp->comp != NULL)
2023 		error = compressor_write(cp->comp, __DECONST(char *, data), len);
2024 	else
2025 		error = core_write(cp, __DECONST(void *, data), len, cp->offset,
2026 		    UIO_SYSSPACE, NULL);
2027 	if (locked)
2028 		PROC_LOCK(p);
2029 	if (error != 0)
2030 		return (-error);
2031 	cp->offset += len;
2032 	return (len);
2033 }
2034