xref: /freebsd/sys/kern/kern_exec.c (revision 2617128a21bfb1b1e3065e54d46f9982d37c0bf8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1993, David Greenman
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_capsicum.h"
33 #include "opt_hwpmc_hooks.h"
34 #include "opt_ktrace.h"
35 #include "opt_vm.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/acct.h>
40 #include <sys/asan.h>
41 #include <sys/capsicum.h>
42 #include <sys/compressor.h>
43 #include <sys/eventhandler.h>
44 #include <sys/exec.h>
45 #include <sys/fcntl.h>
46 #include <sys/filedesc.h>
47 #include <sys/imgact.h>
48 #include <sys/imgact_elf.h>
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/namei.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/resourcevar.h>
60 #include <sys/rwlock.h>
61 #include <sys/sched.h>
62 #include <sys/sdt.h>
63 #include <sys/sf_buf.h>
64 #include <sys/shm.h>
65 #include <sys/signalvar.h>
66 #include <sys/smp.h>
67 #include <sys/stat.h>
68 #include <sys/syscallsubr.h>
69 #include <sys/sysctl.h>
70 #include <sys/sysent.h>
71 #include <sys/sysproto.h>
72 #include <sys/timers.h>
73 #include <sys/umtx.h>
74 #include <sys/vnode.h>
75 #include <sys/wait.h>
76 #ifdef KTRACE
77 #include <sys/ktrace.h>
78 #endif
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_kern.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 
90 #ifdef	HWPMC_HOOKS
91 #include <sys/pmckern.h>
92 #endif
93 
94 #include <machine/reg.h>
95 
96 #include <security/audit/audit.h>
97 #include <security/mac/mac_framework.h>
98 
99 #ifdef KDTRACE_HOOKS
100 #include <sys/dtrace_bsd.h>
101 dtrace_execexit_func_t	dtrace_fasttrap_exec;
102 #endif
103 
104 SDT_PROVIDER_DECLARE(proc);
105 SDT_PROBE_DEFINE1(proc, , , exec, "char *");
106 SDT_PROBE_DEFINE1(proc, , , exec__failure, "int");
107 SDT_PROBE_DEFINE1(proc, , , exec__success, "char *");
108 
109 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
110 
111 int coredump_pack_fileinfo = 1;
112 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN,
113     &coredump_pack_fileinfo, 0,
114     "Enable file path packing in 'procstat -f' coredump notes");
115 
116 int coredump_pack_vmmapinfo = 1;
117 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN,
118     &coredump_pack_vmmapinfo, 0,
119     "Enable file path packing in 'procstat -v' coredump notes");
120 
121 static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS);
122 static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS);
123 static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS);
124 static int do_execve(struct thread *td, struct image_args *args,
125     struct mac *mac_p, struct vmspace *oldvmspace);
126 
127 /* XXX This should be vm_size_t. */
128 SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD|
129     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU",
130     "Location of process' ps_strings structure");
131 
132 /* XXX This should be vm_size_t. */
133 SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD|
134     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU",
135     "Top of process stack");
136 
137 SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE,
138     NULL, 0, sysctl_kern_stackprot, "I",
139     "Stack memory permissions");
140 
141 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
142 SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
143     &ps_arg_cache_limit, 0,
144     "Process' command line characters cache limit");
145 
146 static int disallow_high_osrel;
147 SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW,
148     &disallow_high_osrel, 0,
149     "Disallow execution of binaries built for higher version of the world");
150 
151 static int map_at_zero = 0;
152 SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0,
153     "Permit processes to map an object at virtual address 0.");
154 
155 static int
156 sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
157 {
158 	struct proc *p;
159 	int error;
160 
161 	p = curproc;
162 #ifdef SCTL_MASK32
163 	if (req->flags & SCTL_MASK32) {
164 		unsigned int val;
165 		val = (unsigned int)p->p_sysent->sv_psstrings;
166 		error = SYSCTL_OUT(req, &val, sizeof(val));
167 	} else
168 #endif
169 		error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings,
170 		   sizeof(p->p_sysent->sv_psstrings));
171 	return error;
172 }
173 
174 static int
175 sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
176 {
177 	struct proc *p;
178 	int error;
179 
180 	p = curproc;
181 #ifdef SCTL_MASK32
182 	if (req->flags & SCTL_MASK32) {
183 		unsigned int val;
184 		val = (unsigned int)p->p_sysent->sv_usrstack;
185 		error = SYSCTL_OUT(req, &val, sizeof(val));
186 	} else
187 #endif
188 		error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack,
189 		    sizeof(p->p_sysent->sv_usrstack));
190 	return error;
191 }
192 
193 static int
194 sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
195 {
196 	struct proc *p;
197 
198 	p = curproc;
199 	return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot,
200 	    sizeof(p->p_sysent->sv_stackprot)));
201 }
202 
203 /*
204  * Each of the items is a pointer to a `const struct execsw', hence the
205  * double pointer here.
206  */
207 static const struct execsw **execsw;
208 
209 #ifndef _SYS_SYSPROTO_H_
210 struct execve_args {
211 	char    *fname;
212 	char    **argv;
213 	char    **envv;
214 };
215 #endif
216 
217 int
218 sys_execve(struct thread *td, struct execve_args *uap)
219 {
220 	struct image_args args;
221 	struct vmspace *oldvmspace;
222 	int error;
223 
224 	error = pre_execve(td, &oldvmspace);
225 	if (error != 0)
226 		return (error);
227 	error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
228 	    uap->argv, uap->envv);
229 	if (error == 0)
230 		error = kern_execve(td, &args, NULL, oldvmspace);
231 	post_execve(td, error, oldvmspace);
232 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
233 	return (error);
234 }
235 
236 #ifndef _SYS_SYSPROTO_H_
237 struct fexecve_args {
238 	int	fd;
239 	char	**argv;
240 	char	**envv;
241 };
242 #endif
243 int
244 sys_fexecve(struct thread *td, struct fexecve_args *uap)
245 {
246 	struct image_args args;
247 	struct vmspace *oldvmspace;
248 	int error;
249 
250 	error = pre_execve(td, &oldvmspace);
251 	if (error != 0)
252 		return (error);
253 	error = exec_copyin_args(&args, NULL, UIO_SYSSPACE,
254 	    uap->argv, uap->envv);
255 	if (error == 0) {
256 		args.fd = uap->fd;
257 		error = kern_execve(td, &args, NULL, oldvmspace);
258 	}
259 	post_execve(td, error, oldvmspace);
260 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
261 	return (error);
262 }
263 
264 #ifndef _SYS_SYSPROTO_H_
265 struct __mac_execve_args {
266 	char	*fname;
267 	char	**argv;
268 	char	**envv;
269 	struct mac	*mac_p;
270 };
271 #endif
272 
273 int
274 sys___mac_execve(struct thread *td, struct __mac_execve_args *uap)
275 {
276 #ifdef MAC
277 	struct image_args args;
278 	struct vmspace *oldvmspace;
279 	int error;
280 
281 	error = pre_execve(td, &oldvmspace);
282 	if (error != 0)
283 		return (error);
284 	error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
285 	    uap->argv, uap->envv);
286 	if (error == 0)
287 		error = kern_execve(td, &args, uap->mac_p, oldvmspace);
288 	post_execve(td, error, oldvmspace);
289 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
290 	return (error);
291 #else
292 	return (ENOSYS);
293 #endif
294 }
295 
296 int
297 pre_execve(struct thread *td, struct vmspace **oldvmspace)
298 {
299 	struct proc *p;
300 	int error;
301 
302 	KASSERT(td == curthread, ("non-current thread %p", td));
303 	error = 0;
304 	p = td->td_proc;
305 	if ((p->p_flag & P_HADTHREADS) != 0) {
306 		PROC_LOCK(p);
307 		if (thread_single(p, SINGLE_BOUNDARY) != 0)
308 			error = ERESTART;
309 		PROC_UNLOCK(p);
310 	}
311 	KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0,
312 	    ("nested execve"));
313 	*oldvmspace = p->p_vmspace;
314 	return (error);
315 }
316 
317 void
318 post_execve(struct thread *td, int error, struct vmspace *oldvmspace)
319 {
320 	struct proc *p;
321 
322 	KASSERT(td == curthread, ("non-current thread %p", td));
323 	p = td->td_proc;
324 	if ((p->p_flag & P_HADTHREADS) != 0) {
325 		PROC_LOCK(p);
326 		/*
327 		 * If success, we upgrade to SINGLE_EXIT state to
328 		 * force other threads to suicide.
329 		 */
330 		if (error == EJUSTRETURN)
331 			thread_single(p, SINGLE_EXIT);
332 		else
333 			thread_single_end(p, SINGLE_BOUNDARY);
334 		PROC_UNLOCK(p);
335 	}
336 	exec_cleanup(td, oldvmspace);
337 }
338 
339 /*
340  * kern_execve() has the astonishing property of not always returning to
341  * the caller.  If sufficiently bad things happen during the call to
342  * do_execve(), it can end up calling exit1(); as a result, callers must
343  * avoid doing anything which they might need to undo (e.g., allocating
344  * memory).
345  */
346 int
347 kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
348     struct vmspace *oldvmspace)
349 {
350 
351 	AUDIT_ARG_ARGV(args->begin_argv, args->argc,
352 	    exec_args_get_begin_envv(args) - args->begin_argv);
353 	AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc,
354 	    args->endp - exec_args_get_begin_envv(args));
355 	return (do_execve(td, args, mac_p, oldvmspace));
356 }
357 
358 static void
359 execve_nosetid(struct image_params *imgp)
360 {
361 	imgp->credential_setid = false;
362 	if (imgp->newcred != NULL) {
363 		crfree(imgp->newcred);
364 		imgp->newcred = NULL;
365 	}
366 }
367 
368 /*
369  * In-kernel implementation of execve().  All arguments are assumed to be
370  * userspace pointers from the passed thread.
371  */
372 static int
373 do_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
374     struct vmspace *oldvmspace)
375 {
376 	struct proc *p = td->td_proc;
377 	struct nameidata nd;
378 	struct ucred *oldcred;
379 	struct uidinfo *euip = NULL;
380 	uintptr_t stack_base;
381 	struct image_params image_params, *imgp;
382 	struct vattr attr;
383 	int (*img_first)(struct image_params *);
384 	struct pargs *oldargs = NULL, *newargs = NULL;
385 	struct sigacts *oldsigacts = NULL, *newsigacts = NULL;
386 #ifdef KTRACE
387 	struct ktr_io_params *kiop;
388 #endif
389 	struct vnode *oldtextvp = NULL, *newtextvp;
390 	int credential_changing;
391 #ifdef MAC
392 	struct label *interpvplabel = NULL;
393 	int will_transition;
394 #endif
395 #ifdef HWPMC_HOOKS
396 	struct pmckern_procexec pe;
397 #endif
398 	int error, i, orig_osrel;
399 	uint32_t orig_fctl0;
400 	Elf_Brandinfo *orig_brandinfo;
401 	static const char fexecv_proc_title[] = "(fexecv)";
402 
403 	imgp = &image_params;
404 #ifdef KTRACE
405 	kiop = NULL;
406 #endif
407 
408 	/*
409 	 * Lock the process and set the P_INEXEC flag to indicate that
410 	 * it should be left alone until we're done here.  This is
411 	 * necessary to avoid race conditions - e.g. in ptrace() -
412 	 * that might allow a local user to illicitly obtain elevated
413 	 * privileges.
414 	 */
415 	PROC_LOCK(p);
416 	KASSERT((p->p_flag & P_INEXEC) == 0,
417 	    ("%s(): process already has P_INEXEC flag", __func__));
418 	p->p_flag |= P_INEXEC;
419 	PROC_UNLOCK(p);
420 
421 	/*
422 	 * Initialize part of the common data
423 	 */
424 	bzero(imgp, sizeof(*imgp));
425 	imgp->proc = p;
426 	imgp->attr = &attr;
427 	imgp->args = args;
428 	oldcred = p->p_ucred;
429 	orig_osrel = p->p_osrel;
430 	orig_fctl0 = p->p_fctl0;
431 	orig_brandinfo = p->p_elf_brandinfo;
432 
433 #ifdef MAC
434 	error = mac_execve_enter(imgp, mac_p);
435 	if (error)
436 		goto exec_fail;
437 #endif
438 
439 	/*
440 	 * Translate the file name. namei() returns a vnode pointer
441 	 *	in ni_vp among other things.
442 	 *
443 	 * XXXAUDIT: It would be desirable to also audit the name of the
444 	 * interpreter if this is an interpreted binary.
445 	 */
446 	if (args->fname != NULL) {
447 		NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
448 		    SAVENAME | AUDITVNODE1, UIO_SYSSPACE, args->fname, td);
449 	}
450 
451 	SDT_PROBE1(proc, , , exec, args->fname);
452 
453 interpret:
454 	if (args->fname != NULL) {
455 #ifdef CAPABILITY_MODE
456 		/*
457 		 * While capability mode can't reach this point via direct
458 		 * path arguments to execve(), we also don't allow
459 		 * interpreters to be used in capability mode (for now).
460 		 * Catch indirect lookups and return a permissions error.
461 		 */
462 		if (IN_CAPABILITY_MODE(td)) {
463 			error = ECAPMODE;
464 			goto exec_fail;
465 		}
466 #endif
467 		error = namei(&nd);
468 		if (error)
469 			goto exec_fail;
470 
471 		newtextvp = nd.ni_vp;
472 		imgp->vp = newtextvp;
473 	} else {
474 		AUDIT_ARG_FD(args->fd);
475 		/*
476 		 * Descriptors opened only with O_EXEC or O_RDONLY are allowed.
477 		 */
478 		error = fgetvp_exec(td, args->fd, &cap_fexecve_rights, &newtextvp);
479 		if (error)
480 			goto exec_fail;
481 		vn_lock(newtextvp, LK_SHARED | LK_RETRY);
482 		AUDIT_ARG_VNODE1(newtextvp);
483 		imgp->vp = newtextvp;
484 	}
485 
486 	/*
487 	 * Check file permissions.  Also 'opens' file and sets its vnode to
488 	 * text mode.
489 	 */
490 	error = exec_check_permissions(imgp);
491 	if (error)
492 		goto exec_fail_dealloc;
493 
494 	imgp->object = imgp->vp->v_object;
495 	if (imgp->object != NULL)
496 		vm_object_reference(imgp->object);
497 
498 	error = exec_map_first_page(imgp);
499 	if (error)
500 		goto exec_fail_dealloc;
501 
502 	imgp->proc->p_osrel = 0;
503 	imgp->proc->p_fctl0 = 0;
504 	imgp->proc->p_elf_brandinfo = NULL;
505 
506 	/*
507 	 * Implement image setuid/setgid.
508 	 *
509 	 * Determine new credentials before attempting image activators
510 	 * so that it can be used by process_exec handlers to determine
511 	 * credential/setid changes.
512 	 *
513 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
514 	 * the process is being traced.
515 	 *
516 	 * We disable setuid/setgid/etc in capability mode on the basis
517 	 * that most setugid applications are not written with that
518 	 * environment in mind, and will therefore almost certainly operate
519 	 * incorrectly. In principle there's no reason that setugid
520 	 * applications might not be useful in capability mode, so we may want
521 	 * to reconsider this conservative design choice in the future.
522 	 *
523 	 * XXXMAC: For the time being, use NOSUID to also prohibit
524 	 * transitions on the file system.
525 	 */
526 	credential_changing = 0;
527 	credential_changing |= (attr.va_mode & S_ISUID) &&
528 	    oldcred->cr_uid != attr.va_uid;
529 	credential_changing |= (attr.va_mode & S_ISGID) &&
530 	    oldcred->cr_gid != attr.va_gid;
531 #ifdef MAC
532 	will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp,
533 	    interpvplabel, imgp);
534 	credential_changing |= will_transition;
535 #endif
536 
537 	/* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */
538 	if (credential_changing)
539 		imgp->proc->p_pdeathsig = 0;
540 
541 	if (credential_changing &&
542 #ifdef CAPABILITY_MODE
543 	    ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) &&
544 #endif
545 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
546 	    (p->p_flag & P_TRACED) == 0) {
547 		imgp->credential_setid = true;
548 		VOP_UNLOCK(imgp->vp);
549 		imgp->newcred = crdup(oldcred);
550 		if (attr.va_mode & S_ISUID) {
551 			euip = uifind(attr.va_uid);
552 			change_euid(imgp->newcred, euip);
553 		}
554 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
555 		if (attr.va_mode & S_ISGID)
556 			change_egid(imgp->newcred, attr.va_gid);
557 		/*
558 		 * Implement correct POSIX saved-id behavior.
559 		 *
560 		 * XXXMAC: Note that the current logic will save the
561 		 * uid and gid if a MAC domain transition occurs, even
562 		 * though maybe it shouldn't.
563 		 */
564 		change_svuid(imgp->newcred, imgp->newcred->cr_uid);
565 		change_svgid(imgp->newcred, imgp->newcred->cr_gid);
566 	} else {
567 		/*
568 		 * Implement correct POSIX saved-id behavior.
569 		 *
570 		 * XXX: It's not clear that the existing behavior is
571 		 * POSIX-compliant.  A number of sources indicate that the
572 		 * saved uid/gid should only be updated if the new ruid is
573 		 * not equal to the old ruid, or the new euid is not equal
574 		 * to the old euid and the new euid is not equal to the old
575 		 * ruid.  The FreeBSD code always updates the saved uid/gid.
576 		 * Also, this code uses the new (replaced) euid and egid as
577 		 * the source, which may or may not be the right ones to use.
578 		 */
579 		if (oldcred->cr_svuid != oldcred->cr_uid ||
580 		    oldcred->cr_svgid != oldcred->cr_gid) {
581 			VOP_UNLOCK(imgp->vp);
582 			imgp->newcred = crdup(oldcred);
583 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
584 			change_svuid(imgp->newcred, imgp->newcred->cr_uid);
585 			change_svgid(imgp->newcred, imgp->newcred->cr_gid);
586 		}
587 	}
588 	/* The new credentials are installed into the process later. */
589 
590 	/*
591 	 * Do the best to calculate the full path to the image file.
592 	 */
593 	if (args->fname != NULL && args->fname[0] == '/')
594 		imgp->execpath = args->fname;
595 	else {
596 		VOP_UNLOCK(imgp->vp);
597 		if (vn_fullpath(imgp->vp, &imgp->execpath, &imgp->freepath) != 0)
598 			imgp->execpath = args->fname;
599 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
600 	}
601 
602 	/*
603 	 *	If the current process has a special image activator it
604 	 *	wants to try first, call it.   For example, emulating shell
605 	 *	scripts differently.
606 	 */
607 	error = -1;
608 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
609 		error = img_first(imgp);
610 
611 	/*
612 	 *	Loop through the list of image activators, calling each one.
613 	 *	An activator returns -1 if there is no match, 0 on success,
614 	 *	and an error otherwise.
615 	 */
616 	for (i = 0; error == -1 && execsw[i]; ++i) {
617 		if (execsw[i]->ex_imgact == NULL ||
618 		    execsw[i]->ex_imgact == img_first) {
619 			continue;
620 		}
621 		error = (*execsw[i]->ex_imgact)(imgp);
622 	}
623 
624 	if (error) {
625 		if (error == -1)
626 			error = ENOEXEC;
627 		goto exec_fail_dealloc;
628 	}
629 
630 	/*
631 	 * Special interpreter operation, cleanup and loop up to try to
632 	 * activate the interpreter.
633 	 */
634 	if (imgp->interpreted) {
635 		exec_unmap_first_page(imgp);
636 		/*
637 		 * The text reference needs to be removed for scripts.
638 		 * There is a short period before we determine that
639 		 * something is a script where text reference is active.
640 		 * The vnode lock is held over this entire period
641 		 * so nothing should illegitimately be blocked.
642 		 */
643 		MPASS(imgp->textset);
644 		VOP_UNSET_TEXT_CHECKED(newtextvp);
645 		imgp->textset = false;
646 		/* free name buffer and old vnode */
647 		if (args->fname != NULL)
648 			NDFREE(&nd, NDF_ONLY_PNBUF);
649 #ifdef MAC
650 		mac_execve_interpreter_enter(newtextvp, &interpvplabel);
651 #endif
652 		if (imgp->opened) {
653 			VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td);
654 			imgp->opened = 0;
655 		}
656 		vput(newtextvp);
657 		vm_object_deallocate(imgp->object);
658 		imgp->object = NULL;
659 		execve_nosetid(imgp);
660 		imgp->execpath = NULL;
661 		free(imgp->freepath, M_TEMP);
662 		imgp->freepath = NULL;
663 		/* set new name to that of the interpreter */
664 		NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
665 		    SAVENAME, UIO_SYSSPACE, imgp->interpreter_name, td);
666 		args->fname = imgp->interpreter_name;
667 		goto interpret;
668 	}
669 
670 	/*
671 	 * NB: We unlock the vnode here because it is believed that none
672 	 * of the sv_copyout_strings/sv_fixup operations require the vnode.
673 	 */
674 	VOP_UNLOCK(imgp->vp);
675 
676 	if (disallow_high_osrel &&
677 	    P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) {
678 		error = ENOEXEC;
679 		uprintf("Osrel %d for image %s too high\n", p->p_osrel,
680 		    imgp->execpath != NULL ? imgp->execpath : "<unresolved>");
681 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
682 		goto exec_fail_dealloc;
683 	}
684 
685 	/* ABI enforces the use of Capsicum. Switch into capabilities mode. */
686 	if (SV_PROC_FLAG(p, SV_CAPSICUM))
687 		sys_cap_enter(td, NULL);
688 
689 	/*
690 	 * Copy out strings (args and env) and initialize stack base.
691 	 */
692 	error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base);
693 	if (error != 0) {
694 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
695 		goto exec_fail_dealloc;
696 	}
697 
698 	/*
699 	 * Stack setup.
700 	 */
701 	error = (*p->p_sysent->sv_fixup)(&stack_base, imgp);
702 	if (error != 0) {
703 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
704 		goto exec_fail_dealloc;
705 	}
706 
707 	if (args->fdp != NULL) {
708 		/* Install a brand new file descriptor table. */
709 		fdinstall_remapped(td, args->fdp);
710 		args->fdp = NULL;
711 	} else {
712 		/*
713 		 * Keep on using the existing file descriptor table. For
714 		 * security and other reasons, the file descriptor table
715 		 * cannot be shared after an exec.
716 		 */
717 		fdunshare(td);
718 		pdunshare(td);
719 		/* close files on exec */
720 		fdcloseexec(td);
721 	}
722 
723 	/*
724 	 * Malloc things before we need locks.
725 	 */
726 	i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv;
727 	/* Cache arguments if they fit inside our allowance */
728 	if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
729 		newargs = pargs_alloc(i);
730 		bcopy(imgp->args->begin_argv, newargs->ar_args, i);
731 	}
732 
733 	/*
734 	 * For security and other reasons, signal handlers cannot
735 	 * be shared after an exec. The new process gets a copy of the old
736 	 * handlers. In execsigs(), the new process will have its signals
737 	 * reset.
738 	 */
739 	if (sigacts_shared(p->p_sigacts)) {
740 		oldsigacts = p->p_sigacts;
741 		newsigacts = sigacts_alloc();
742 		sigacts_copy(newsigacts, oldsigacts);
743 	}
744 
745 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
746 
747 	PROC_LOCK(p);
748 	if (oldsigacts)
749 		p->p_sigacts = newsigacts;
750 	/* Stop profiling */
751 	stopprofclock(p);
752 
753 	/* reset caught signals */
754 	execsigs(p);
755 
756 	/* name this process - nameiexec(p, ndp) */
757 	bzero(p->p_comm, sizeof(p->p_comm));
758 	if (args->fname)
759 		bcopy(nd.ni_cnd.cn_nameptr, p->p_comm,
760 		    min(nd.ni_cnd.cn_namelen, MAXCOMLEN));
761 	else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0)
762 		bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title));
763 	bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
764 #ifdef KTR
765 	sched_clear_tdname(td);
766 #endif
767 
768 	/*
769 	 * mark as execed, wakeup the process that vforked (if any) and tell
770 	 * it that it now has its own resources back
771 	 */
772 	p->p_flag |= P_EXEC;
773 	if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0)
774 		p->p_flag2 &= ~P2_NOTRACE;
775 	if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0)
776 		p->p_flag2 &= ~P2_STKGAP_DISABLE;
777 	if (p->p_flag & P_PPWAIT) {
778 		p->p_flag &= ~(P_PPWAIT | P_PPTRACE);
779 		cv_broadcast(&p->p_pwait);
780 		/* STOPs are no longer ignored, arrange for AST */
781 		signotify(td);
782 	}
783 
784 	if (imgp->sysent->sv_setid_allowed != NULL &&
785 	    !(*imgp->sysent->sv_setid_allowed)(td, imgp))
786 		execve_nosetid(imgp);
787 
788 	/*
789 	 * Implement image setuid/setgid installation.
790 	 */
791 	if (imgp->credential_setid) {
792 		/*
793 		 * Turn off syscall tracing for set-id programs, except for
794 		 * root.  Record any set-id flags first to make sure that
795 		 * we do not regain any tracing during a possible block.
796 		 */
797 		setsugid(p);
798 #ifdef KTRACE
799 		kiop = ktrprocexec(p);
800 #endif
801 		/*
802 		 * Close any file descriptors 0..2 that reference procfs,
803 		 * then make sure file descriptors 0..2 are in use.
804 		 *
805 		 * Both fdsetugidsafety() and fdcheckstd() may call functions
806 		 * taking sleepable locks, so temporarily drop our locks.
807 		 */
808 		PROC_UNLOCK(p);
809 		VOP_UNLOCK(imgp->vp);
810 		fdsetugidsafety(td);
811 		error = fdcheckstd(td);
812 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
813 		if (error != 0)
814 			goto exec_fail_dealloc;
815 		PROC_LOCK(p);
816 #ifdef MAC
817 		if (will_transition) {
818 			mac_vnode_execve_transition(oldcred, imgp->newcred,
819 			    imgp->vp, interpvplabel, imgp);
820 		}
821 #endif
822 	} else {
823 		if (oldcred->cr_uid == oldcred->cr_ruid &&
824 		    oldcred->cr_gid == oldcred->cr_rgid)
825 			p->p_flag &= ~P_SUGID;
826 	}
827 	/*
828 	 * Set the new credentials.
829 	 */
830 	if (imgp->newcred != NULL) {
831 		proc_set_cred(p, imgp->newcred);
832 		crfree(oldcred);
833 		oldcred = NULL;
834 	}
835 
836 	/*
837 	 * Store the vp for use in procfs.  This vnode was referenced by namei
838 	 * or fgetvp_exec.
839 	 */
840 	oldtextvp = p->p_textvp;
841 	p->p_textvp = newtextvp;
842 
843 #ifdef KDTRACE_HOOKS
844 	/*
845 	 * Tell the DTrace fasttrap provider about the exec if it
846 	 * has declared an interest.
847 	 */
848 	if (dtrace_fasttrap_exec)
849 		dtrace_fasttrap_exec(p);
850 #endif
851 
852 	/*
853 	 * Notify others that we exec'd, and clear the P_INEXEC flag
854 	 * as we're now a bona fide freshly-execed process.
855 	 */
856 	KNOTE_LOCKED(p->p_klist, NOTE_EXEC);
857 	p->p_flag &= ~P_INEXEC;
858 
859 	/* clear "fork but no exec" flag, as we _are_ execing */
860 	p->p_acflag &= ~AFORK;
861 
862 	/*
863 	 * Free any previous argument cache and replace it with
864 	 * the new argument cache, if any.
865 	 */
866 	oldargs = p->p_args;
867 	p->p_args = newargs;
868 	newargs = NULL;
869 
870 	PROC_UNLOCK(p);
871 
872 #ifdef	HWPMC_HOOKS
873 	/*
874 	 * Check if system-wide sampling is in effect or if the
875 	 * current process is using PMCs.  If so, do exec() time
876 	 * processing.  This processing needs to happen AFTER the
877 	 * P_INEXEC flag is cleared.
878 	 */
879 	if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) {
880 		VOP_UNLOCK(imgp->vp);
881 		pe.pm_credentialschanged = credential_changing;
882 		pe.pm_entryaddr = imgp->entry_addr;
883 
884 		PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe);
885 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
886 	}
887 #endif
888 
889 	/* Set values passed into the program in registers. */
890 	(*p->p_sysent->sv_setregs)(td, imgp, stack_base);
891 
892 	VOP_MMAPPED(imgp->vp);
893 
894 	SDT_PROBE1(proc, , , exec__success, args->fname);
895 
896 exec_fail_dealloc:
897 	if (error != 0) {
898 		p->p_osrel = orig_osrel;
899 		p->p_fctl0 = orig_fctl0;
900 		p->p_elf_brandinfo = orig_brandinfo;
901 	}
902 
903 	if (imgp->firstpage != NULL)
904 		exec_unmap_first_page(imgp);
905 
906 	if (imgp->vp != NULL) {
907 		if (args->fname)
908 			NDFREE(&nd, NDF_ONLY_PNBUF);
909 		if (imgp->opened)
910 			VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td);
911 		if (imgp->textset)
912 			VOP_UNSET_TEXT_CHECKED(imgp->vp);
913 		if (error != 0)
914 			vput(imgp->vp);
915 		else
916 			VOP_UNLOCK(imgp->vp);
917 	}
918 
919 	if (imgp->object != NULL)
920 		vm_object_deallocate(imgp->object);
921 
922 	free(imgp->freepath, M_TEMP);
923 
924 	if (error == 0) {
925 		if (p->p_ptevents & PTRACE_EXEC) {
926 			PROC_LOCK(p);
927 			if (p->p_ptevents & PTRACE_EXEC)
928 				td->td_dbgflags |= TDB_EXEC;
929 			PROC_UNLOCK(p);
930 		}
931 	} else {
932 exec_fail:
933 		/* we're done here, clear P_INEXEC */
934 		PROC_LOCK(p);
935 		p->p_flag &= ~P_INEXEC;
936 		PROC_UNLOCK(p);
937 
938 		SDT_PROBE1(proc, , , exec__failure, error);
939 	}
940 
941 	if (imgp->newcred != NULL && oldcred != NULL)
942 		crfree(imgp->newcred);
943 
944 #ifdef MAC
945 	mac_execve_exit(imgp);
946 	mac_execve_interpreter_exit(interpvplabel);
947 #endif
948 	exec_free_args(args);
949 
950 	/*
951 	 * Handle deferred decrement of ref counts.
952 	 */
953 	if (oldtextvp != NULL)
954 		vrele(oldtextvp);
955 #ifdef KTRACE
956 	ktr_io_params_free(kiop);
957 #endif
958 	pargs_drop(oldargs);
959 	pargs_drop(newargs);
960 	if (oldsigacts != NULL)
961 		sigacts_free(oldsigacts);
962 	if (euip != NULL)
963 		uifree(euip);
964 
965 	if (error && imgp->vmspace_destroyed) {
966 		/* sorry, no more process anymore. exit gracefully */
967 		exec_cleanup(td, oldvmspace);
968 		exit1(td, 0, SIGABRT);
969 		/* NOT REACHED */
970 	}
971 
972 #ifdef KTRACE
973 	if (error == 0)
974 		ktrprocctor(p);
975 #endif
976 
977 	/*
978 	 * We don't want cpu_set_syscall_retval() to overwrite any of
979 	 * the register values put in place by exec_setregs().
980 	 * Implementations of cpu_set_syscall_retval() will leave
981 	 * registers unmodified when returning EJUSTRETURN.
982 	 */
983 	return (error == 0 ? EJUSTRETURN : error);
984 }
985 
986 void
987 exec_cleanup(struct thread *td, struct vmspace *oldvmspace)
988 {
989 	if ((td->td_pflags & TDP_EXECVMSPC) != 0) {
990 		KASSERT(td->td_proc->p_vmspace != oldvmspace,
991 		    ("oldvmspace still used"));
992 		vmspace_free(oldvmspace);
993 		td->td_pflags &= ~TDP_EXECVMSPC;
994 	}
995 }
996 
997 int
998 exec_map_first_page(struct image_params *imgp)
999 {
1000 	vm_object_t object;
1001 	vm_page_t m;
1002 	int error;
1003 
1004 	if (imgp->firstpage != NULL)
1005 		exec_unmap_first_page(imgp);
1006 
1007 	object = imgp->vp->v_object;
1008 	if (object == NULL)
1009 		return (EACCES);
1010 #if VM_NRESERVLEVEL > 0
1011 	if ((object->flags & OBJ_COLORED) == 0) {
1012 		VM_OBJECT_WLOCK(object);
1013 		vm_object_color(object, 0);
1014 		VM_OBJECT_WUNLOCK(object);
1015 	}
1016 #endif
1017 	error = vm_page_grab_valid_unlocked(&m, object, 0,
1018 	    VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) |
1019             VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
1020 
1021 	if (error != VM_PAGER_OK)
1022 		return (EIO);
1023 	imgp->firstpage = sf_buf_alloc(m, 0);
1024 	imgp->image_header = (char *)sf_buf_kva(imgp->firstpage);
1025 
1026 	return (0);
1027 }
1028 
1029 void
1030 exec_unmap_first_page(struct image_params *imgp)
1031 {
1032 	vm_page_t m;
1033 
1034 	if (imgp->firstpage != NULL) {
1035 		m = sf_buf_page(imgp->firstpage);
1036 		sf_buf_free(imgp->firstpage);
1037 		imgp->firstpage = NULL;
1038 		vm_page_unwire(m, PQ_ACTIVE);
1039 	}
1040 }
1041 
1042 /*
1043  * Destroy old address space, and allocate a new stack.
1044  *	The new stack is only sgrowsiz large because it is grown
1045  *	automatically on a page fault.
1046  */
1047 int
1048 exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv)
1049 {
1050 	int error;
1051 	struct proc *p = imgp->proc;
1052 	struct vmspace *vmspace = p->p_vmspace;
1053 	struct thread *td = curthread;
1054 	vm_object_t obj;
1055 	struct rlimit rlim_stack;
1056 	vm_offset_t sv_minuser, stack_addr;
1057 	vm_map_t map;
1058 	vm_prot_t stack_prot;
1059 	u_long ssiz;
1060 
1061 	imgp->vmspace_destroyed = 1;
1062 	imgp->sysent = sv;
1063 
1064 	sigfastblock_clear(td);
1065 	umtx_exec(p);
1066 	itimers_exec(p);
1067 	if (sv->sv_onexec != NULL)
1068 		sv->sv_onexec(p, imgp);
1069 
1070 	EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp);
1071 
1072 	/*
1073 	 * Blow away entire process VM, if address space not shared,
1074 	 * otherwise, create a new VM space so that other threads are
1075 	 * not disrupted
1076 	 */
1077 	map = &vmspace->vm_map;
1078 	if (map_at_zero)
1079 		sv_minuser = sv->sv_minuser;
1080 	else
1081 		sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE);
1082 	if (refcount_load(&vmspace->vm_refcnt) == 1 &&
1083 	    vm_map_min(map) == sv_minuser &&
1084 	    vm_map_max(map) == sv->sv_maxuser &&
1085 	    cpu_exec_vmspace_reuse(p, map)) {
1086 		shmexit(vmspace);
1087 		pmap_remove_pages(vmspace_pmap(vmspace));
1088 		vm_map_remove(map, vm_map_min(map), vm_map_max(map));
1089 		/*
1090 		 * An exec terminates mlockall(MCL_FUTURE).
1091 		 * ASLR and W^X states must be re-evaluated.
1092 		 */
1093 		vm_map_lock(map);
1094 		vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR |
1095 		    MAP_ASLR_IGNSTART | MAP_WXORX);
1096 		vm_map_unlock(map);
1097 	} else {
1098 		error = vmspace_exec(p, sv_minuser, sv->sv_maxuser);
1099 		if (error)
1100 			return (error);
1101 		vmspace = p->p_vmspace;
1102 		map = &vmspace->vm_map;
1103 	}
1104 	map->flags |= imgp->map_flags;
1105 
1106 	/* Map a shared page */
1107 	obj = sv->sv_shared_page_obj;
1108 	if (obj != NULL) {
1109 		vm_object_reference(obj);
1110 		error = vm_map_fixed(map, obj, 0,
1111 		    sv->sv_shared_page_base, sv->sv_shared_page_len,
1112 		    VM_PROT_READ | VM_PROT_EXECUTE,
1113 		    VM_PROT_READ | VM_PROT_EXECUTE,
1114 		    MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
1115 		if (error != KERN_SUCCESS) {
1116 			vm_object_deallocate(obj);
1117 			return (vm_mmap_to_errno(error));
1118 		}
1119 	}
1120 
1121 	/* Allocate a new stack */
1122 	if (imgp->stack_sz != 0) {
1123 		ssiz = trunc_page(imgp->stack_sz);
1124 		PROC_LOCK(p);
1125 		lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack);
1126 		PROC_UNLOCK(p);
1127 		if (ssiz > rlim_stack.rlim_max)
1128 			ssiz = rlim_stack.rlim_max;
1129 		if (ssiz > rlim_stack.rlim_cur) {
1130 			rlim_stack.rlim_cur = ssiz;
1131 			kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack);
1132 		}
1133 	} else if (sv->sv_maxssiz != NULL) {
1134 		ssiz = *sv->sv_maxssiz;
1135 	} else {
1136 		ssiz = maxssiz;
1137 	}
1138 	imgp->eff_stack_sz = lim_cur(curthread, RLIMIT_STACK);
1139 	if (ssiz < imgp->eff_stack_sz)
1140 		imgp->eff_stack_sz = ssiz;
1141 	stack_addr = sv->sv_usrstack - ssiz;
1142 	stack_prot = obj != NULL && imgp->stack_prot != 0 ?
1143 	    imgp->stack_prot : sv->sv_stackprot;
1144 	error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz, stack_prot,
1145 	    VM_PROT_ALL, MAP_STACK_GROWS_DOWN);
1146 	if (error != KERN_SUCCESS) {
1147 		uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x "
1148 		    "failed mach error %d errno %d\n", (uintmax_t)ssiz,
1149 		    stack_prot, error, vm_mmap_to_errno(error));
1150 		return (vm_mmap_to_errno(error));
1151 	}
1152 
1153 	/*
1154 	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they
1155 	 * are still used to enforce the stack rlimit on the process stack.
1156 	 */
1157 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
1158 	vmspace->vm_maxsaddr = (char *)stack_addr;
1159 
1160 	return (0);
1161 }
1162 
1163 /*
1164  * Copy out argument and environment strings from the old process address
1165  * space into the temporary string buffer.
1166  */
1167 int
1168 exec_copyin_args(struct image_args *args, const char *fname,
1169     enum uio_seg segflg, char **argv, char **envv)
1170 {
1171 	u_long arg, env;
1172 	int error;
1173 
1174 	bzero(args, sizeof(*args));
1175 	if (argv == NULL)
1176 		return (EFAULT);
1177 
1178 	/*
1179 	 * Allocate demand-paged memory for the file name, argument, and
1180 	 * environment strings.
1181 	 */
1182 	error = exec_alloc_args(args);
1183 	if (error != 0)
1184 		return (error);
1185 
1186 	/*
1187 	 * Copy the file name.
1188 	 */
1189 	error = exec_args_add_fname(args, fname, segflg);
1190 	if (error != 0)
1191 		goto err_exit;
1192 
1193 	/*
1194 	 * extract arguments first
1195 	 */
1196 	for (;;) {
1197 		error = fueword(argv++, &arg);
1198 		if (error == -1) {
1199 			error = EFAULT;
1200 			goto err_exit;
1201 		}
1202 		if (arg == 0)
1203 			break;
1204 		error = exec_args_add_arg(args, (char *)(uintptr_t)arg,
1205 		    UIO_USERSPACE);
1206 		if (error != 0)
1207 			goto err_exit;
1208 	}
1209 
1210 	/*
1211 	 * extract environment strings
1212 	 */
1213 	if (envv) {
1214 		for (;;) {
1215 			error = fueword(envv++, &env);
1216 			if (error == -1) {
1217 				error = EFAULT;
1218 				goto err_exit;
1219 			}
1220 			if (env == 0)
1221 				break;
1222 			error = exec_args_add_env(args,
1223 			    (char *)(uintptr_t)env, UIO_USERSPACE);
1224 			if (error != 0)
1225 				goto err_exit;
1226 		}
1227 	}
1228 
1229 	return (0);
1230 
1231 err_exit:
1232 	exec_free_args(args);
1233 	return (error);
1234 }
1235 
1236 int
1237 exec_copyin_data_fds(struct thread *td, struct image_args *args,
1238     const void *data, size_t datalen, const int *fds, size_t fdslen)
1239 {
1240 	struct filedesc *ofdp;
1241 	const char *p;
1242 	int *kfds;
1243 	int error;
1244 
1245 	memset(args, '\0', sizeof(*args));
1246 	ofdp = td->td_proc->p_fd;
1247 	if (datalen >= ARG_MAX || fdslen >= ofdp->fd_nfiles)
1248 		return (E2BIG);
1249 	error = exec_alloc_args(args);
1250 	if (error != 0)
1251 		return (error);
1252 
1253 	args->begin_argv = args->buf;
1254 	args->stringspace = ARG_MAX;
1255 
1256 	if (datalen > 0) {
1257 		/*
1258 		 * Argument buffer has been provided. Copy it into the
1259 		 * kernel as a single string and add a terminating null
1260 		 * byte.
1261 		 */
1262 		error = copyin(data, args->begin_argv, datalen);
1263 		if (error != 0)
1264 			goto err_exit;
1265 		args->begin_argv[datalen] = '\0';
1266 		args->endp = args->begin_argv + datalen + 1;
1267 		args->stringspace -= datalen + 1;
1268 
1269 		/*
1270 		 * Traditional argument counting. Count the number of
1271 		 * null bytes.
1272 		 */
1273 		for (p = args->begin_argv; p < args->endp; ++p)
1274 			if (*p == '\0')
1275 				++args->argc;
1276 	} else {
1277 		/* No argument buffer provided. */
1278 		args->endp = args->begin_argv;
1279 	}
1280 
1281 	/* Create new file descriptor table. */
1282 	kfds = malloc(fdslen * sizeof(int), M_TEMP, M_WAITOK);
1283 	error = copyin(fds, kfds, fdslen * sizeof(int));
1284 	if (error != 0) {
1285 		free(kfds, M_TEMP);
1286 		goto err_exit;
1287 	}
1288 	error = fdcopy_remapped(ofdp, kfds, fdslen, &args->fdp);
1289 	free(kfds, M_TEMP);
1290 	if (error != 0)
1291 		goto err_exit;
1292 
1293 	return (0);
1294 err_exit:
1295 	exec_free_args(args);
1296 	return (error);
1297 }
1298 
1299 struct exec_args_kva {
1300 	vm_offset_t addr;
1301 	u_int gen;
1302 	SLIST_ENTRY(exec_args_kva) next;
1303 };
1304 
1305 DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva);
1306 
1307 static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist;
1308 static struct mtx exec_args_kva_mtx;
1309 static u_int exec_args_gen;
1310 
1311 static void
1312 exec_prealloc_args_kva(void *arg __unused)
1313 {
1314 	struct exec_args_kva *argkva;
1315 	u_int i;
1316 
1317 	SLIST_INIT(&exec_args_kva_freelist);
1318 	mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF);
1319 	for (i = 0; i < exec_map_entries; i++) {
1320 		argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK);
1321 		argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size);
1322 		argkva->gen = exec_args_gen;
1323 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1324 	}
1325 }
1326 SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL);
1327 
1328 static vm_offset_t
1329 exec_alloc_args_kva(void **cookie)
1330 {
1331 	struct exec_args_kva *argkva;
1332 
1333 	argkva = (void *)atomic_readandclear_ptr(
1334 	    (uintptr_t *)DPCPU_PTR(exec_args_kva));
1335 	if (argkva == NULL) {
1336 		mtx_lock(&exec_args_kva_mtx);
1337 		while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL)
1338 			(void)mtx_sleep(&exec_args_kva_freelist,
1339 			    &exec_args_kva_mtx, 0, "execkva", 0);
1340 		SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next);
1341 		mtx_unlock(&exec_args_kva_mtx);
1342 	}
1343 	kasan_mark((void *)argkva->addr, exec_map_entry_size,
1344 	    exec_map_entry_size, 0);
1345 	*(struct exec_args_kva **)cookie = argkva;
1346 	return (argkva->addr);
1347 }
1348 
1349 static void
1350 exec_release_args_kva(struct exec_args_kva *argkva, u_int gen)
1351 {
1352 	vm_offset_t base;
1353 
1354 	base = argkva->addr;
1355 	kasan_mark((void *)argkva->addr, 0, exec_map_entry_size,
1356 	    KASAN_EXEC_ARGS_FREED);
1357 	if (argkva->gen != gen) {
1358 		(void)vm_map_madvise(exec_map, base, base + exec_map_entry_size,
1359 		    MADV_FREE);
1360 		argkva->gen = gen;
1361 	}
1362 	if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva),
1363 	    (uintptr_t)NULL, (uintptr_t)argkva)) {
1364 		mtx_lock(&exec_args_kva_mtx);
1365 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1366 		wakeup_one(&exec_args_kva_freelist);
1367 		mtx_unlock(&exec_args_kva_mtx);
1368 	}
1369 }
1370 
1371 static void
1372 exec_free_args_kva(void *cookie)
1373 {
1374 
1375 	exec_release_args_kva(cookie, exec_args_gen);
1376 }
1377 
1378 static void
1379 exec_args_kva_lowmem(void *arg __unused)
1380 {
1381 	SLIST_HEAD(, exec_args_kva) head;
1382 	struct exec_args_kva *argkva;
1383 	u_int gen;
1384 	int i;
1385 
1386 	gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1;
1387 
1388 	/*
1389 	 * Force an madvise of each KVA range. Any currently allocated ranges
1390 	 * will have MADV_FREE applied once they are freed.
1391 	 */
1392 	SLIST_INIT(&head);
1393 	mtx_lock(&exec_args_kva_mtx);
1394 	SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva);
1395 	mtx_unlock(&exec_args_kva_mtx);
1396 	while ((argkva = SLIST_FIRST(&head)) != NULL) {
1397 		SLIST_REMOVE_HEAD(&head, next);
1398 		exec_release_args_kva(argkva, gen);
1399 	}
1400 
1401 	CPU_FOREACH(i) {
1402 		argkva = (void *)atomic_readandclear_ptr(
1403 		    (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva));
1404 		if (argkva != NULL)
1405 			exec_release_args_kva(argkva, gen);
1406 	}
1407 }
1408 EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL,
1409     EVENTHANDLER_PRI_ANY);
1410 
1411 /*
1412  * Allocate temporary demand-paged, zero-filled memory for the file name,
1413  * argument, and environment strings.
1414  */
1415 int
1416 exec_alloc_args(struct image_args *args)
1417 {
1418 
1419 	args->buf = (char *)exec_alloc_args_kva(&args->bufkva);
1420 	return (0);
1421 }
1422 
1423 void
1424 exec_free_args(struct image_args *args)
1425 {
1426 
1427 	if (args->buf != NULL) {
1428 		exec_free_args_kva(args->bufkva);
1429 		args->buf = NULL;
1430 	}
1431 	if (args->fname_buf != NULL) {
1432 		free(args->fname_buf, M_TEMP);
1433 		args->fname_buf = NULL;
1434 	}
1435 	if (args->fdp != NULL)
1436 		fdescfree_remapped(args->fdp);
1437 }
1438 
1439 /*
1440  * A set to functions to fill struct image args.
1441  *
1442  * NOTE: exec_args_add_fname() must be called (possibly with a NULL
1443  * fname) before the other functions.  All exec_args_add_arg() calls must
1444  * be made before any exec_args_add_env() calls.  exec_args_adjust_args()
1445  * may be called any time after exec_args_add_fname().
1446  *
1447  * exec_args_add_fname() - install path to be executed
1448  * exec_args_add_arg() - append an argument string
1449  * exec_args_add_env() - append an env string
1450  * exec_args_adjust_args() - adjust location of the argument list to
1451  *                           allow new arguments to be prepended
1452  */
1453 int
1454 exec_args_add_fname(struct image_args *args, const char *fname,
1455     enum uio_seg segflg)
1456 {
1457 	int error;
1458 	size_t length;
1459 
1460 	KASSERT(args->fname == NULL, ("fname already appended"));
1461 	KASSERT(args->endp == NULL, ("already appending to args"));
1462 
1463 	if (fname != NULL) {
1464 		args->fname = args->buf;
1465 		error = segflg == UIO_SYSSPACE ?
1466 		    copystr(fname, args->fname, PATH_MAX, &length) :
1467 		    copyinstr(fname, args->fname, PATH_MAX, &length);
1468 		if (error != 0)
1469 			return (error == ENAMETOOLONG ? E2BIG : error);
1470 	} else
1471 		length = 0;
1472 
1473 	/* Set up for _arg_*()/_env_*() */
1474 	args->endp = args->buf + length;
1475 	/* begin_argv must be set and kept updated */
1476 	args->begin_argv = args->endp;
1477 	KASSERT(exec_map_entry_size - length >= ARG_MAX,
1478 	    ("too little space remaining for arguments %zu < %zu",
1479 	    exec_map_entry_size - length, (size_t)ARG_MAX));
1480 	args->stringspace = ARG_MAX;
1481 
1482 	return (0);
1483 }
1484 
1485 static int
1486 exec_args_add_str(struct image_args *args, const char *str,
1487     enum uio_seg segflg, int *countp)
1488 {
1489 	int error;
1490 	size_t length;
1491 
1492 	KASSERT(args->endp != NULL, ("endp not initialized"));
1493 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1494 
1495 	error = (segflg == UIO_SYSSPACE) ?
1496 	    copystr(str, args->endp, args->stringspace, &length) :
1497 	    copyinstr(str, args->endp, args->stringspace, &length);
1498 	if (error != 0)
1499 		return (error == ENAMETOOLONG ? E2BIG : error);
1500 	args->stringspace -= length;
1501 	args->endp += length;
1502 	(*countp)++;
1503 
1504 	return (0);
1505 }
1506 
1507 int
1508 exec_args_add_arg(struct image_args *args, const char *argp,
1509     enum uio_seg segflg)
1510 {
1511 
1512 	KASSERT(args->envc == 0, ("appending args after env"));
1513 
1514 	return (exec_args_add_str(args, argp, segflg, &args->argc));
1515 }
1516 
1517 int
1518 exec_args_add_env(struct image_args *args, const char *envp,
1519     enum uio_seg segflg)
1520 {
1521 
1522 	if (args->envc == 0)
1523 		args->begin_envv = args->endp;
1524 
1525 	return (exec_args_add_str(args, envp, segflg, &args->envc));
1526 }
1527 
1528 int
1529 exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend)
1530 {
1531 	ssize_t offset;
1532 
1533 	KASSERT(args->endp != NULL, ("endp not initialized"));
1534 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1535 
1536 	offset = extend - consume;
1537 	if (args->stringspace < offset)
1538 		return (E2BIG);
1539 	memmove(args->begin_argv + extend, args->begin_argv + consume,
1540 	    args->endp - args->begin_argv + consume);
1541 	if (args->envc > 0)
1542 		args->begin_envv += offset;
1543 	args->endp += offset;
1544 	args->stringspace -= offset;
1545 	return (0);
1546 }
1547 
1548 char *
1549 exec_args_get_begin_envv(struct image_args *args)
1550 {
1551 
1552 	KASSERT(args->endp != NULL, ("endp not initialized"));
1553 
1554 	if (args->envc > 0)
1555 		return (args->begin_envv);
1556 	return (args->endp);
1557 }
1558 
1559 void
1560 exec_stackgap(struct image_params *imgp, uintptr_t *dp)
1561 {
1562 	if (imgp->sysent->sv_stackgap == NULL ||
1563 	    (imgp->proc->p_fctl0 & (NT_FREEBSD_FCTL_ASLR_DISABLE |
1564 	    NT_FREEBSD_FCTL_ASG_DISABLE)) != 0 ||
1565 	    (imgp->map_flags & MAP_ASLR) == 0)
1566 		return;
1567 	imgp->sysent->sv_stackgap(imgp, dp);
1568 }
1569 
1570 /*
1571  * Copy strings out to the new process address space, constructing new arg
1572  * and env vector tables. Return a pointer to the base so that it can be used
1573  * as the initial stack pointer.
1574  */
1575 int
1576 exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
1577 {
1578 	int argc, envc;
1579 	char **vectp;
1580 	char *stringp;
1581 	uintptr_t destp, ustringp;
1582 	struct ps_strings *arginfo;
1583 	struct proc *p;
1584 	size_t execpath_len;
1585 	int error, szsigcode, szps;
1586 	char canary[sizeof(long) * 8];
1587 
1588 	szps = sizeof(pagesizes[0]) * MAXPAGESIZES;
1589 	/*
1590 	 * Calculate string base and vector table pointers.
1591 	 * Also deal with signal trampoline code for this exec type.
1592 	 */
1593 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
1594 		execpath_len = strlen(imgp->execpath) + 1;
1595 	else
1596 		execpath_len = 0;
1597 	p = imgp->proc;
1598 	szsigcode = 0;
1599 	arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings;
1600 	imgp->ps_strings = arginfo;
1601 	if (p->p_sysent->sv_sigcode_base == 0) {
1602 		if (p->p_sysent->sv_szsigcode != NULL)
1603 			szsigcode = *(p->p_sysent->sv_szsigcode);
1604 	}
1605 	destp =	(uintptr_t)arginfo;
1606 
1607 	/*
1608 	 * install sigcode
1609 	 */
1610 	if (szsigcode != 0) {
1611 		destp -= szsigcode;
1612 		destp = rounddown2(destp, sizeof(void *));
1613 		error = copyout(p->p_sysent->sv_sigcode, (void *)destp,
1614 		    szsigcode);
1615 		if (error != 0)
1616 			return (error);
1617 	}
1618 
1619 	/*
1620 	 * Copy the image path for the rtld.
1621 	 */
1622 	if (execpath_len != 0) {
1623 		destp -= execpath_len;
1624 		destp = rounddown2(destp, sizeof(void *));
1625 		imgp->execpathp = (void *)destp;
1626 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
1627 		if (error != 0)
1628 			return (error);
1629 	}
1630 
1631 	/*
1632 	 * Prepare the canary for SSP.
1633 	 */
1634 	arc4rand(canary, sizeof(canary), 0);
1635 	destp -= sizeof(canary);
1636 	imgp->canary = (void *)destp;
1637 	error = copyout(canary, imgp->canary, sizeof(canary));
1638 	if (error != 0)
1639 		return (error);
1640 	imgp->canarylen = sizeof(canary);
1641 
1642 	/*
1643 	 * Prepare the pagesizes array.
1644 	 */
1645 	destp -= szps;
1646 	destp = rounddown2(destp, sizeof(void *));
1647 	imgp->pagesizes = (void *)destp;
1648 	error = copyout(pagesizes, imgp->pagesizes, szps);
1649 	if (error != 0)
1650 		return (error);
1651 	imgp->pagesizeslen = szps;
1652 
1653 	/*
1654 	 * Allocate room for the argument and environment strings.
1655 	 */
1656 	destp -= ARG_MAX - imgp->args->stringspace;
1657 	destp = rounddown2(destp, sizeof(void *));
1658 	ustringp = destp;
1659 
1660 	exec_stackgap(imgp, &destp);
1661 
1662 	if (imgp->auxargs) {
1663 		/*
1664 		 * Allocate room on the stack for the ELF auxargs
1665 		 * array.  It has up to AT_COUNT entries.
1666 		 */
1667 		destp -= AT_COUNT * sizeof(Elf_Auxinfo);
1668 		destp = rounddown2(destp, sizeof(void *));
1669 	}
1670 
1671 	vectp = (char **)destp;
1672 
1673 	/*
1674 	 * Allocate room for the argv[] and env vectors including the
1675 	 * terminating NULL pointers.
1676 	 */
1677 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
1678 
1679 	/*
1680 	 * vectp also becomes our initial stack base
1681 	 */
1682 	*stack_base = (uintptr_t)vectp;
1683 
1684 	stringp = imgp->args->begin_argv;
1685 	argc = imgp->args->argc;
1686 	envc = imgp->args->envc;
1687 
1688 	/*
1689 	 * Copy out strings - arguments and environment.
1690 	 */
1691 	error = copyout(stringp, (void *)ustringp,
1692 	    ARG_MAX - imgp->args->stringspace);
1693 	if (error != 0)
1694 		return (error);
1695 
1696 	/*
1697 	 * Fill in "ps_strings" struct for ps, w, etc.
1698 	 */
1699 	imgp->argv = vectp;
1700 	if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 ||
1701 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
1702 		return (EFAULT);
1703 
1704 	/*
1705 	 * Fill in argument portion of vector table.
1706 	 */
1707 	for (; argc > 0; --argc) {
1708 		if (suword(vectp++, ustringp) != 0)
1709 			return (EFAULT);
1710 		while (*stringp++ != 0)
1711 			ustringp++;
1712 		ustringp++;
1713 	}
1714 
1715 	/* a null vector table pointer separates the argp's from the envp's */
1716 	if (suword(vectp++, 0) != 0)
1717 		return (EFAULT);
1718 
1719 	imgp->envv = vectp;
1720 	if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 ||
1721 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
1722 		return (EFAULT);
1723 
1724 	/*
1725 	 * Fill in environment portion of vector table.
1726 	 */
1727 	for (; envc > 0; --envc) {
1728 		if (suword(vectp++, ustringp) != 0)
1729 			return (EFAULT);
1730 		while (*stringp++ != 0)
1731 			ustringp++;
1732 		ustringp++;
1733 	}
1734 
1735 	/* end of vector table is a null pointer */
1736 	if (suword(vectp, 0) != 0)
1737 		return (EFAULT);
1738 
1739 	if (imgp->auxargs) {
1740 		vectp++;
1741 		error = imgp->sysent->sv_copyout_auxargs(imgp,
1742 		    (uintptr_t)vectp);
1743 		if (error != 0)
1744 			return (error);
1745 	}
1746 
1747 	return (0);
1748 }
1749 
1750 /*
1751  * Check permissions of file to execute.
1752  *	Called with imgp->vp locked.
1753  *	Return 0 for success or error code on failure.
1754  */
1755 int
1756 exec_check_permissions(struct image_params *imgp)
1757 {
1758 	struct vnode *vp = imgp->vp;
1759 	struct vattr *attr = imgp->attr;
1760 	struct thread *td;
1761 	int error;
1762 
1763 	td = curthread;
1764 
1765 	/* Get file attributes */
1766 	error = VOP_GETATTR(vp, attr, td->td_ucred);
1767 	if (error)
1768 		return (error);
1769 
1770 #ifdef MAC
1771 	error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp);
1772 	if (error)
1773 		return (error);
1774 #endif
1775 
1776 	/*
1777 	 * 1) Check if file execution is disabled for the filesystem that
1778 	 *    this file resides on.
1779 	 * 2) Ensure that at least one execute bit is on. Otherwise, a
1780 	 *    privileged user will always succeed, and we don't want this
1781 	 *    to happen unless the file really is executable.
1782 	 * 3) Ensure that the file is a regular file.
1783 	 */
1784 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1785 	    (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 ||
1786 	    (attr->va_type != VREG))
1787 		return (EACCES);
1788 
1789 	/*
1790 	 * Zero length files can't be exec'd
1791 	 */
1792 	if (attr->va_size == 0)
1793 		return (ENOEXEC);
1794 
1795 	/*
1796 	 *  Check for execute permission to file based on current credentials.
1797 	 */
1798 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
1799 	if (error)
1800 		return (error);
1801 
1802 	/*
1803 	 * Check number of open-for-writes on the file and deny execution
1804 	 * if there are any.
1805 	 *
1806 	 * Add a text reference now so no one can write to the
1807 	 * executable while we're activating it.
1808 	 *
1809 	 * Remember if this was set before and unset it in case this is not
1810 	 * actually an executable image.
1811 	 */
1812 	error = VOP_SET_TEXT(vp);
1813 	if (error != 0)
1814 		return (error);
1815 	imgp->textset = true;
1816 
1817 	/*
1818 	 * Call filesystem specific open routine (which does nothing in the
1819 	 * general case).
1820 	 */
1821 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
1822 	if (error == 0)
1823 		imgp->opened = 1;
1824 	return (error);
1825 }
1826 
1827 /*
1828  * Exec handler registration
1829  */
1830 int
1831 exec_register(const struct execsw *execsw_arg)
1832 {
1833 	const struct execsw **es, **xs, **newexecsw;
1834 	u_int count = 2;	/* New slot and trailing NULL */
1835 
1836 	if (execsw)
1837 		for (es = execsw; *es; es++)
1838 			count++;
1839 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1840 	xs = newexecsw;
1841 	if (execsw)
1842 		for (es = execsw; *es; es++)
1843 			*xs++ = *es;
1844 	*xs++ = execsw_arg;
1845 	*xs = NULL;
1846 	if (execsw)
1847 		free(execsw, M_TEMP);
1848 	execsw = newexecsw;
1849 	return (0);
1850 }
1851 
1852 int
1853 exec_unregister(const struct execsw *execsw_arg)
1854 {
1855 	const struct execsw **es, **xs, **newexecsw;
1856 	int count = 1;
1857 
1858 	if (execsw == NULL)
1859 		panic("unregister with no handlers left?\n");
1860 
1861 	for (es = execsw; *es; es++) {
1862 		if (*es == execsw_arg)
1863 			break;
1864 	}
1865 	if (*es == NULL)
1866 		return (ENOENT);
1867 	for (es = execsw; *es; es++)
1868 		if (*es != execsw_arg)
1869 			count++;
1870 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1871 	xs = newexecsw;
1872 	for (es = execsw; *es; es++)
1873 		if (*es != execsw_arg)
1874 			*xs++ = *es;
1875 	*xs = NULL;
1876 	if (execsw)
1877 		free(execsw, M_TEMP);
1878 	execsw = newexecsw;
1879 	return (0);
1880 }
1881 
1882 /*
1883  * Write out a core segment to the compression stream.
1884  */
1885 static int
1886 compress_chunk(struct coredump_params *cp, char *base, char *buf, u_int len)
1887 {
1888 	u_int chunk_len;
1889 	int error;
1890 
1891 	while (len > 0) {
1892 		chunk_len = MIN(len, CORE_BUF_SIZE);
1893 
1894 		/*
1895 		 * We can get EFAULT error here.
1896 		 * In that case zero out the current chunk of the segment.
1897 		 */
1898 		error = copyin(base, buf, chunk_len);
1899 		if (error != 0)
1900 			bzero(buf, chunk_len);
1901 		error = compressor_write(cp->comp, buf, chunk_len);
1902 		if (error != 0)
1903 			break;
1904 		base += chunk_len;
1905 		len -= chunk_len;
1906 	}
1907 	return (error);
1908 }
1909 
1910 int
1911 core_write(struct coredump_params *cp, const void *base, size_t len,
1912     off_t offset, enum uio_seg seg, size_t *resid)
1913 {
1914 
1915 	return (vn_rdwr_inchunks(UIO_WRITE, cp->vp, __DECONST(void *, base),
1916 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1917 	    cp->active_cred, cp->file_cred, resid, cp->td));
1918 }
1919 
1920 int
1921 core_output(char *base, size_t len, off_t offset, struct coredump_params *cp,
1922     void *tmpbuf)
1923 {
1924 	vm_map_t map;
1925 	struct mount *mp;
1926 	size_t resid, runlen;
1927 	int error;
1928 	bool success;
1929 
1930 	KASSERT((uintptr_t)base % PAGE_SIZE == 0,
1931 	    ("%s: user address %p is not page-aligned", __func__, base));
1932 
1933 	if (cp->comp != NULL)
1934 		return (compress_chunk(cp, base, tmpbuf, len));
1935 
1936 	map = &cp->td->td_proc->p_vmspace->vm_map;
1937 	for (; len > 0; base += runlen, offset += runlen, len -= runlen) {
1938 		/*
1939 		 * Attempt to page in all virtual pages in the range.  If a
1940 		 * virtual page is not backed by the pager, it is represented as
1941 		 * a hole in the file.  This can occur with zero-filled
1942 		 * anonymous memory or truncated files, for example.
1943 		 */
1944 		for (runlen = 0; runlen < len; runlen += PAGE_SIZE) {
1945 			error = vm_fault(map, (uintptr_t)base + runlen,
1946 			    VM_PROT_READ, VM_FAULT_NOFILL, NULL);
1947 			if (runlen == 0)
1948 				success = error == KERN_SUCCESS;
1949 			else if ((error == KERN_SUCCESS) != success)
1950 				break;
1951 		}
1952 
1953 		if (success) {
1954 			error = core_write(cp, base, runlen, offset,
1955 			    UIO_USERSPACE, &resid);
1956 			if (error != 0) {
1957 				if (error != EFAULT)
1958 					break;
1959 
1960 				/*
1961 				 * EFAULT may be returned if the user mapping
1962 				 * could not be accessed, e.g., because a mapped
1963 				 * file has been truncated.  Skip the page if no
1964 				 * progress was made, to protect against a
1965 				 * hypothetical scenario where vm_fault() was
1966 				 * successful but core_write() returns EFAULT
1967 				 * anyway.
1968 				 */
1969 				runlen -= resid;
1970 				if (runlen == 0) {
1971 					success = false;
1972 					runlen = PAGE_SIZE;
1973 				}
1974 			}
1975 		}
1976 		if (!success) {
1977 			error = vn_start_write(cp->vp, &mp, V_WAIT);
1978 			if (error != 0)
1979 				break;
1980 			vn_lock(cp->vp, LK_EXCLUSIVE | LK_RETRY);
1981 			error = vn_truncate_locked(cp->vp, offset + runlen,
1982 			    false, cp->td->td_ucred);
1983 			VOP_UNLOCK(cp->vp);
1984 			vn_finished_write(mp);
1985 			if (error != 0)
1986 				break;
1987 		}
1988 	}
1989 	return (error);
1990 }
1991 
1992 /*
1993  * Drain into a core file.
1994  */
1995 int
1996 sbuf_drain_core_output(void *arg, const char *data, int len)
1997 {
1998 	struct coredump_params *cp;
1999 	struct proc *p;
2000 	int error, locked;
2001 
2002 	cp = arg;
2003 	p = cp->td->td_proc;
2004 
2005 	/*
2006 	 * Some kern_proc out routines that print to this sbuf may
2007 	 * call us with the process lock held. Draining with the
2008 	 * non-sleepable lock held is unsafe. The lock is needed for
2009 	 * those routines when dumping a live process. In our case we
2010 	 * can safely release the lock before draining and acquire
2011 	 * again after.
2012 	 */
2013 	locked = PROC_LOCKED(p);
2014 	if (locked)
2015 		PROC_UNLOCK(p);
2016 	if (cp->comp != NULL)
2017 		error = compressor_write(cp->comp, __DECONST(char *, data), len);
2018 	else
2019 		error = core_write(cp, __DECONST(void *, data), len, cp->offset,
2020 		    UIO_SYSSPACE, NULL);
2021 	if (locked)
2022 		PROC_LOCK(p);
2023 	if (error != 0)
2024 		return (-error);
2025 	cp->offset += len;
2026 	return (len);
2027 }
2028