1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1993, David Greenman 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_capsicum.h" 33 #include "opt_hwpmc_hooks.h" 34 #include "opt_ktrace.h" 35 #include "opt_vm.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/acct.h> 40 #include <sys/asan.h> 41 #include <sys/capsicum.h> 42 #include <sys/compressor.h> 43 #include <sys/eventhandler.h> 44 #include <sys/exec.h> 45 #include <sys/fcntl.h> 46 #include <sys/filedesc.h> 47 #include <sys/imgact.h> 48 #include <sys/imgact_elf.h> 49 #include <sys/kernel.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mman.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/namei.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/resourcevar.h> 60 #include <sys/rwlock.h> 61 #include <sys/sched.h> 62 #include <sys/sdt.h> 63 #include <sys/sf_buf.h> 64 #include <sys/shm.h> 65 #include <sys/signalvar.h> 66 #include <sys/smp.h> 67 #include <sys/stat.h> 68 #include <sys/syscallsubr.h> 69 #include <sys/sysctl.h> 70 #include <sys/sysent.h> 71 #include <sys/sysproto.h> 72 #include <sys/timers.h> 73 #include <sys/umtx.h> 74 #include <sys/vnode.h> 75 #include <sys/wait.h> 76 #ifdef KTRACE 77 #include <sys/ktrace.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_kern.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_pager.h> 89 90 #ifdef HWPMC_HOOKS 91 #include <sys/pmckern.h> 92 #endif 93 94 #include <machine/reg.h> 95 96 #include <security/audit/audit.h> 97 #include <security/mac/mac_framework.h> 98 99 #ifdef KDTRACE_HOOKS 100 #include <sys/dtrace_bsd.h> 101 dtrace_execexit_func_t dtrace_fasttrap_exec; 102 #endif 103 104 SDT_PROVIDER_DECLARE(proc); 105 SDT_PROBE_DEFINE1(proc, , , exec, "char *"); 106 SDT_PROBE_DEFINE1(proc, , , exec__failure, "int"); 107 SDT_PROBE_DEFINE1(proc, , , exec__success, "char *"); 108 109 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments"); 110 111 int coredump_pack_fileinfo = 1; 112 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN, 113 &coredump_pack_fileinfo, 0, 114 "Enable file path packing in 'procstat -f' coredump notes"); 115 116 int coredump_pack_vmmapinfo = 1; 117 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN, 118 &coredump_pack_vmmapinfo, 0, 119 "Enable file path packing in 'procstat -v' coredump notes"); 120 121 static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS); 122 static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS); 123 static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS); 124 static int do_execve(struct thread *td, struct image_args *args, 125 struct mac *mac_p, struct vmspace *oldvmspace); 126 127 /* XXX This should be vm_size_t. */ 128 SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD| 129 CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU", 130 "Location of process' ps_strings structure"); 131 132 /* XXX This should be vm_size_t. */ 133 SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD| 134 CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU", 135 "Top of process stack"); 136 137 SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE, 138 NULL, 0, sysctl_kern_stackprot, "I", 139 "Stack memory permissions"); 140 141 u_long ps_arg_cache_limit = PAGE_SIZE / 16; 142 SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, 143 &ps_arg_cache_limit, 0, 144 "Process' command line characters cache limit"); 145 146 static int disallow_high_osrel; 147 SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW, 148 &disallow_high_osrel, 0, 149 "Disallow execution of binaries built for higher version of the world"); 150 151 static int map_at_zero = 0; 152 SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0, 153 "Permit processes to map an object at virtual address 0."); 154 155 static int 156 sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS) 157 { 158 struct proc *p; 159 int error; 160 161 p = curproc; 162 #ifdef SCTL_MASK32 163 if (req->flags & SCTL_MASK32) { 164 unsigned int val; 165 val = (unsigned int)p->p_sysent->sv_psstrings; 166 error = SYSCTL_OUT(req, &val, sizeof(val)); 167 } else 168 #endif 169 error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings, 170 sizeof(p->p_sysent->sv_psstrings)); 171 return error; 172 } 173 174 static int 175 sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS) 176 { 177 struct proc *p; 178 int error; 179 180 p = curproc; 181 #ifdef SCTL_MASK32 182 if (req->flags & SCTL_MASK32) { 183 unsigned int val; 184 val = (unsigned int)p->p_sysent->sv_usrstack; 185 error = SYSCTL_OUT(req, &val, sizeof(val)); 186 } else 187 #endif 188 error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack, 189 sizeof(p->p_sysent->sv_usrstack)); 190 return error; 191 } 192 193 static int 194 sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS) 195 { 196 struct proc *p; 197 198 p = curproc; 199 return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot, 200 sizeof(p->p_sysent->sv_stackprot))); 201 } 202 203 /* 204 * Each of the items is a pointer to a `const struct execsw', hence the 205 * double pointer here. 206 */ 207 static const struct execsw **execsw; 208 209 #ifndef _SYS_SYSPROTO_H_ 210 struct execve_args { 211 char *fname; 212 char **argv; 213 char **envv; 214 }; 215 #endif 216 217 int 218 sys_execve(struct thread *td, struct execve_args *uap) 219 { 220 struct image_args args; 221 struct vmspace *oldvmspace; 222 int error; 223 224 error = pre_execve(td, &oldvmspace); 225 if (error != 0) 226 return (error); 227 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, 228 uap->argv, uap->envv); 229 if (error == 0) 230 error = kern_execve(td, &args, NULL, oldvmspace); 231 post_execve(td, error, oldvmspace); 232 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 233 return (error); 234 } 235 236 #ifndef _SYS_SYSPROTO_H_ 237 struct fexecve_args { 238 int fd; 239 char **argv; 240 char **envv; 241 }; 242 #endif 243 int 244 sys_fexecve(struct thread *td, struct fexecve_args *uap) 245 { 246 struct image_args args; 247 struct vmspace *oldvmspace; 248 int error; 249 250 error = pre_execve(td, &oldvmspace); 251 if (error != 0) 252 return (error); 253 error = exec_copyin_args(&args, NULL, UIO_SYSSPACE, 254 uap->argv, uap->envv); 255 if (error == 0) { 256 args.fd = uap->fd; 257 error = kern_execve(td, &args, NULL, oldvmspace); 258 } 259 post_execve(td, error, oldvmspace); 260 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 261 return (error); 262 } 263 264 #ifndef _SYS_SYSPROTO_H_ 265 struct __mac_execve_args { 266 char *fname; 267 char **argv; 268 char **envv; 269 struct mac *mac_p; 270 }; 271 #endif 272 273 int 274 sys___mac_execve(struct thread *td, struct __mac_execve_args *uap) 275 { 276 #ifdef MAC 277 struct image_args args; 278 struct vmspace *oldvmspace; 279 int error; 280 281 error = pre_execve(td, &oldvmspace); 282 if (error != 0) 283 return (error); 284 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, 285 uap->argv, uap->envv); 286 if (error == 0) 287 error = kern_execve(td, &args, uap->mac_p, oldvmspace); 288 post_execve(td, error, oldvmspace); 289 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 290 return (error); 291 #else 292 return (ENOSYS); 293 #endif 294 } 295 296 int 297 pre_execve(struct thread *td, struct vmspace **oldvmspace) 298 { 299 struct proc *p; 300 int error; 301 302 KASSERT(td == curthread, ("non-current thread %p", td)); 303 error = 0; 304 p = td->td_proc; 305 if ((p->p_flag & P_HADTHREADS) != 0) { 306 PROC_LOCK(p); 307 if (thread_single(p, SINGLE_BOUNDARY) != 0) 308 error = ERESTART; 309 PROC_UNLOCK(p); 310 } 311 KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0, 312 ("nested execve")); 313 *oldvmspace = p->p_vmspace; 314 return (error); 315 } 316 317 void 318 post_execve(struct thread *td, int error, struct vmspace *oldvmspace) 319 { 320 struct proc *p; 321 322 KASSERT(td == curthread, ("non-current thread %p", td)); 323 p = td->td_proc; 324 if ((p->p_flag & P_HADTHREADS) != 0) { 325 PROC_LOCK(p); 326 /* 327 * If success, we upgrade to SINGLE_EXIT state to 328 * force other threads to suicide. 329 */ 330 if (error == EJUSTRETURN) 331 thread_single(p, SINGLE_EXIT); 332 else 333 thread_single_end(p, SINGLE_BOUNDARY); 334 PROC_UNLOCK(p); 335 } 336 exec_cleanup(td, oldvmspace); 337 } 338 339 /* 340 * kern_execve() has the astonishing property of not always returning to 341 * the caller. If sufficiently bad things happen during the call to 342 * do_execve(), it can end up calling exit1(); as a result, callers must 343 * avoid doing anything which they might need to undo (e.g., allocating 344 * memory). 345 */ 346 int 347 kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p, 348 struct vmspace *oldvmspace) 349 { 350 351 AUDIT_ARG_ARGV(args->begin_argv, args->argc, 352 exec_args_get_begin_envv(args) - args->begin_argv); 353 AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc, 354 args->endp - exec_args_get_begin_envv(args)); 355 return (do_execve(td, args, mac_p, oldvmspace)); 356 } 357 358 static void 359 execve_nosetid(struct image_params *imgp) 360 { 361 imgp->credential_setid = false; 362 if (imgp->newcred != NULL) { 363 crfree(imgp->newcred); 364 imgp->newcred = NULL; 365 } 366 } 367 368 /* 369 * In-kernel implementation of execve(). All arguments are assumed to be 370 * userspace pointers from the passed thread. 371 */ 372 static int 373 do_execve(struct thread *td, struct image_args *args, struct mac *mac_p, 374 struct vmspace *oldvmspace) 375 { 376 struct proc *p = td->td_proc; 377 struct nameidata nd; 378 struct ucred *oldcred; 379 struct uidinfo *euip = NULL; 380 uintptr_t stack_base; 381 struct image_params image_params, *imgp; 382 struct vattr attr; 383 int (*img_first)(struct image_params *); 384 struct pargs *oldargs = NULL, *newargs = NULL; 385 struct sigacts *oldsigacts = NULL, *newsigacts = NULL; 386 #ifdef KTRACE 387 struct ktr_io_params *kiop; 388 #endif 389 struct vnode *oldtextvp = NULL, *newtextvp; 390 int credential_changing; 391 #ifdef MAC 392 struct label *interpvplabel = NULL; 393 int will_transition; 394 #endif 395 #ifdef HWPMC_HOOKS 396 struct pmckern_procexec pe; 397 #endif 398 int error, i, orig_osrel; 399 uint32_t orig_fctl0; 400 Elf_Brandinfo *orig_brandinfo; 401 static const char fexecv_proc_title[] = "(fexecv)"; 402 403 imgp = &image_params; 404 #ifdef KTRACE 405 kiop = NULL; 406 #endif 407 408 /* 409 * Lock the process and set the P_INEXEC flag to indicate that 410 * it should be left alone until we're done here. This is 411 * necessary to avoid race conditions - e.g. in ptrace() - 412 * that might allow a local user to illicitly obtain elevated 413 * privileges. 414 */ 415 PROC_LOCK(p); 416 KASSERT((p->p_flag & P_INEXEC) == 0, 417 ("%s(): process already has P_INEXEC flag", __func__)); 418 p->p_flag |= P_INEXEC; 419 PROC_UNLOCK(p); 420 421 /* 422 * Initialize part of the common data 423 */ 424 bzero(imgp, sizeof(*imgp)); 425 imgp->proc = p; 426 imgp->attr = &attr; 427 imgp->args = args; 428 oldcred = p->p_ucred; 429 orig_osrel = p->p_osrel; 430 orig_fctl0 = p->p_fctl0; 431 orig_brandinfo = p->p_elf_brandinfo; 432 433 #ifdef MAC 434 error = mac_execve_enter(imgp, mac_p); 435 if (error) 436 goto exec_fail; 437 #endif 438 439 /* 440 * Translate the file name. namei() returns a vnode pointer 441 * in ni_vp among other things. 442 * 443 * XXXAUDIT: It would be desirable to also audit the name of the 444 * interpreter if this is an interpreted binary. 445 */ 446 if (args->fname != NULL) { 447 NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW | 448 SAVENAME | AUDITVNODE1, UIO_SYSSPACE, args->fname, td); 449 } 450 451 SDT_PROBE1(proc, , , exec, args->fname); 452 453 interpret: 454 if (args->fname != NULL) { 455 #ifdef CAPABILITY_MODE 456 /* 457 * While capability mode can't reach this point via direct 458 * path arguments to execve(), we also don't allow 459 * interpreters to be used in capability mode (for now). 460 * Catch indirect lookups and return a permissions error. 461 */ 462 if (IN_CAPABILITY_MODE(td)) { 463 error = ECAPMODE; 464 goto exec_fail; 465 } 466 #endif 467 error = namei(&nd); 468 if (error) 469 goto exec_fail; 470 471 newtextvp = nd.ni_vp; 472 imgp->vp = newtextvp; 473 } else { 474 AUDIT_ARG_FD(args->fd); 475 /* 476 * Descriptors opened only with O_EXEC or O_RDONLY are allowed. 477 */ 478 error = fgetvp_exec(td, args->fd, &cap_fexecve_rights, &newtextvp); 479 if (error) 480 goto exec_fail; 481 vn_lock(newtextvp, LK_SHARED | LK_RETRY); 482 AUDIT_ARG_VNODE1(newtextvp); 483 imgp->vp = newtextvp; 484 } 485 486 /* 487 * Check file permissions. Also 'opens' file and sets its vnode to 488 * text mode. 489 */ 490 error = exec_check_permissions(imgp); 491 if (error) 492 goto exec_fail_dealloc; 493 494 imgp->object = imgp->vp->v_object; 495 if (imgp->object != NULL) 496 vm_object_reference(imgp->object); 497 498 error = exec_map_first_page(imgp); 499 if (error) 500 goto exec_fail_dealloc; 501 502 imgp->proc->p_osrel = 0; 503 imgp->proc->p_fctl0 = 0; 504 imgp->proc->p_elf_brandinfo = NULL; 505 506 /* 507 * Implement image setuid/setgid. 508 * 509 * Determine new credentials before attempting image activators 510 * so that it can be used by process_exec handlers to determine 511 * credential/setid changes. 512 * 513 * Don't honor setuid/setgid if the filesystem prohibits it or if 514 * the process is being traced. 515 * 516 * We disable setuid/setgid/etc in capability mode on the basis 517 * that most setugid applications are not written with that 518 * environment in mind, and will therefore almost certainly operate 519 * incorrectly. In principle there's no reason that setugid 520 * applications might not be useful in capability mode, so we may want 521 * to reconsider this conservative design choice in the future. 522 * 523 * XXXMAC: For the time being, use NOSUID to also prohibit 524 * transitions on the file system. 525 */ 526 credential_changing = 0; 527 credential_changing |= (attr.va_mode & S_ISUID) && 528 oldcred->cr_uid != attr.va_uid; 529 credential_changing |= (attr.va_mode & S_ISGID) && 530 oldcred->cr_gid != attr.va_gid; 531 #ifdef MAC 532 will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp, 533 interpvplabel, imgp); 534 credential_changing |= will_transition; 535 #endif 536 537 /* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */ 538 if (credential_changing) 539 imgp->proc->p_pdeathsig = 0; 540 541 if (credential_changing && 542 #ifdef CAPABILITY_MODE 543 ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) && 544 #endif 545 (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 && 546 (p->p_flag & P_TRACED) == 0) { 547 imgp->credential_setid = true; 548 VOP_UNLOCK(imgp->vp); 549 imgp->newcred = crdup(oldcred); 550 if (attr.va_mode & S_ISUID) { 551 euip = uifind(attr.va_uid); 552 change_euid(imgp->newcred, euip); 553 } 554 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 555 if (attr.va_mode & S_ISGID) 556 change_egid(imgp->newcred, attr.va_gid); 557 /* 558 * Implement correct POSIX saved-id behavior. 559 * 560 * XXXMAC: Note that the current logic will save the 561 * uid and gid if a MAC domain transition occurs, even 562 * though maybe it shouldn't. 563 */ 564 change_svuid(imgp->newcred, imgp->newcred->cr_uid); 565 change_svgid(imgp->newcred, imgp->newcred->cr_gid); 566 } else { 567 /* 568 * Implement correct POSIX saved-id behavior. 569 * 570 * XXX: It's not clear that the existing behavior is 571 * POSIX-compliant. A number of sources indicate that the 572 * saved uid/gid should only be updated if the new ruid is 573 * not equal to the old ruid, or the new euid is not equal 574 * to the old euid and the new euid is not equal to the old 575 * ruid. The FreeBSD code always updates the saved uid/gid. 576 * Also, this code uses the new (replaced) euid and egid as 577 * the source, which may or may not be the right ones to use. 578 */ 579 if (oldcred->cr_svuid != oldcred->cr_uid || 580 oldcred->cr_svgid != oldcred->cr_gid) { 581 VOP_UNLOCK(imgp->vp); 582 imgp->newcred = crdup(oldcred); 583 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 584 change_svuid(imgp->newcred, imgp->newcred->cr_uid); 585 change_svgid(imgp->newcred, imgp->newcred->cr_gid); 586 } 587 } 588 /* The new credentials are installed into the process later. */ 589 590 /* 591 * Do the best to calculate the full path to the image file. 592 */ 593 if (args->fname != NULL && args->fname[0] == '/') 594 imgp->execpath = args->fname; 595 else { 596 VOP_UNLOCK(imgp->vp); 597 if (vn_fullpath(imgp->vp, &imgp->execpath, &imgp->freepath) != 0) 598 imgp->execpath = args->fname; 599 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 600 } 601 602 /* 603 * If the current process has a special image activator it 604 * wants to try first, call it. For example, emulating shell 605 * scripts differently. 606 */ 607 error = -1; 608 if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL) 609 error = img_first(imgp); 610 611 /* 612 * Loop through the list of image activators, calling each one. 613 * An activator returns -1 if there is no match, 0 on success, 614 * and an error otherwise. 615 */ 616 for (i = 0; error == -1 && execsw[i]; ++i) { 617 if (execsw[i]->ex_imgact == NULL || 618 execsw[i]->ex_imgact == img_first) { 619 continue; 620 } 621 error = (*execsw[i]->ex_imgact)(imgp); 622 } 623 624 if (error) { 625 if (error == -1) 626 error = ENOEXEC; 627 goto exec_fail_dealloc; 628 } 629 630 /* 631 * Special interpreter operation, cleanup and loop up to try to 632 * activate the interpreter. 633 */ 634 if (imgp->interpreted) { 635 exec_unmap_first_page(imgp); 636 /* 637 * The text reference needs to be removed for scripts. 638 * There is a short period before we determine that 639 * something is a script where text reference is active. 640 * The vnode lock is held over this entire period 641 * so nothing should illegitimately be blocked. 642 */ 643 MPASS(imgp->textset); 644 VOP_UNSET_TEXT_CHECKED(newtextvp); 645 imgp->textset = false; 646 /* free name buffer and old vnode */ 647 if (args->fname != NULL) 648 NDFREE(&nd, NDF_ONLY_PNBUF); 649 #ifdef MAC 650 mac_execve_interpreter_enter(newtextvp, &interpvplabel); 651 #endif 652 if (imgp->opened) { 653 VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td); 654 imgp->opened = 0; 655 } 656 vput(newtextvp); 657 vm_object_deallocate(imgp->object); 658 imgp->object = NULL; 659 execve_nosetid(imgp); 660 imgp->execpath = NULL; 661 free(imgp->freepath, M_TEMP); 662 imgp->freepath = NULL; 663 /* set new name to that of the interpreter */ 664 NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW | 665 SAVENAME, UIO_SYSSPACE, imgp->interpreter_name, td); 666 args->fname = imgp->interpreter_name; 667 goto interpret; 668 } 669 670 /* 671 * NB: We unlock the vnode here because it is believed that none 672 * of the sv_copyout_strings/sv_fixup operations require the vnode. 673 */ 674 VOP_UNLOCK(imgp->vp); 675 676 if (disallow_high_osrel && 677 P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) { 678 error = ENOEXEC; 679 uprintf("Osrel %d for image %s too high\n", p->p_osrel, 680 imgp->execpath != NULL ? imgp->execpath : "<unresolved>"); 681 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 682 goto exec_fail_dealloc; 683 } 684 685 /* ABI enforces the use of Capsicum. Switch into capabilities mode. */ 686 if (SV_PROC_FLAG(p, SV_CAPSICUM)) 687 sys_cap_enter(td, NULL); 688 689 /* 690 * Copy out strings (args and env) and initialize stack base. 691 */ 692 error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base); 693 if (error != 0) { 694 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 695 goto exec_fail_dealloc; 696 } 697 698 /* 699 * Stack setup. 700 */ 701 error = (*p->p_sysent->sv_fixup)(&stack_base, imgp); 702 if (error != 0) { 703 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 704 goto exec_fail_dealloc; 705 } 706 707 if (args->fdp != NULL) { 708 /* Install a brand new file descriptor table. */ 709 fdinstall_remapped(td, args->fdp); 710 args->fdp = NULL; 711 } else { 712 /* 713 * Keep on using the existing file descriptor table. For 714 * security and other reasons, the file descriptor table 715 * cannot be shared after an exec. 716 */ 717 fdunshare(td); 718 pdunshare(td); 719 /* close files on exec */ 720 fdcloseexec(td); 721 } 722 723 /* 724 * Malloc things before we need locks. 725 */ 726 i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv; 727 /* Cache arguments if they fit inside our allowance */ 728 if (ps_arg_cache_limit >= i + sizeof(struct pargs)) { 729 newargs = pargs_alloc(i); 730 bcopy(imgp->args->begin_argv, newargs->ar_args, i); 731 } 732 733 /* 734 * For security and other reasons, signal handlers cannot 735 * be shared after an exec. The new process gets a copy of the old 736 * handlers. In execsigs(), the new process will have its signals 737 * reset. 738 */ 739 if (sigacts_shared(p->p_sigacts)) { 740 oldsigacts = p->p_sigacts; 741 newsigacts = sigacts_alloc(); 742 sigacts_copy(newsigacts, oldsigacts); 743 } 744 745 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 746 747 PROC_LOCK(p); 748 if (oldsigacts) 749 p->p_sigacts = newsigacts; 750 /* Stop profiling */ 751 stopprofclock(p); 752 753 /* reset caught signals */ 754 execsigs(p); 755 756 /* name this process - nameiexec(p, ndp) */ 757 bzero(p->p_comm, sizeof(p->p_comm)); 758 if (args->fname) 759 bcopy(nd.ni_cnd.cn_nameptr, p->p_comm, 760 min(nd.ni_cnd.cn_namelen, MAXCOMLEN)); 761 else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0) 762 bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title)); 763 bcopy(p->p_comm, td->td_name, sizeof(td->td_name)); 764 #ifdef KTR 765 sched_clear_tdname(td); 766 #endif 767 768 /* 769 * mark as execed, wakeup the process that vforked (if any) and tell 770 * it that it now has its own resources back 771 */ 772 p->p_flag |= P_EXEC; 773 if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0) 774 p->p_flag2 &= ~P2_NOTRACE; 775 if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0) 776 p->p_flag2 &= ~P2_STKGAP_DISABLE; 777 if (p->p_flag & P_PPWAIT) { 778 p->p_flag &= ~(P_PPWAIT | P_PPTRACE); 779 cv_broadcast(&p->p_pwait); 780 /* STOPs are no longer ignored, arrange for AST */ 781 signotify(td); 782 } 783 784 if (imgp->sysent->sv_setid_allowed != NULL && 785 !(*imgp->sysent->sv_setid_allowed)(td, imgp)) 786 execve_nosetid(imgp); 787 788 /* 789 * Implement image setuid/setgid installation. 790 */ 791 if (imgp->credential_setid) { 792 /* 793 * Turn off syscall tracing for set-id programs, except for 794 * root. Record any set-id flags first to make sure that 795 * we do not regain any tracing during a possible block. 796 */ 797 setsugid(p); 798 #ifdef KTRACE 799 kiop = ktrprocexec(p); 800 #endif 801 /* 802 * Close any file descriptors 0..2 that reference procfs, 803 * then make sure file descriptors 0..2 are in use. 804 * 805 * Both fdsetugidsafety() and fdcheckstd() may call functions 806 * taking sleepable locks, so temporarily drop our locks. 807 */ 808 PROC_UNLOCK(p); 809 VOP_UNLOCK(imgp->vp); 810 fdsetugidsafety(td); 811 error = fdcheckstd(td); 812 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 813 if (error != 0) 814 goto exec_fail_dealloc; 815 PROC_LOCK(p); 816 #ifdef MAC 817 if (will_transition) { 818 mac_vnode_execve_transition(oldcred, imgp->newcred, 819 imgp->vp, interpvplabel, imgp); 820 } 821 #endif 822 } else { 823 if (oldcred->cr_uid == oldcred->cr_ruid && 824 oldcred->cr_gid == oldcred->cr_rgid) 825 p->p_flag &= ~P_SUGID; 826 } 827 /* 828 * Set the new credentials. 829 */ 830 if (imgp->newcred != NULL) { 831 proc_set_cred(p, imgp->newcred); 832 crfree(oldcred); 833 oldcred = NULL; 834 } 835 836 /* 837 * Store the vp for use in procfs. This vnode was referenced by namei 838 * or fgetvp_exec. 839 */ 840 oldtextvp = p->p_textvp; 841 p->p_textvp = newtextvp; 842 843 #ifdef KDTRACE_HOOKS 844 /* 845 * Tell the DTrace fasttrap provider about the exec if it 846 * has declared an interest. 847 */ 848 if (dtrace_fasttrap_exec) 849 dtrace_fasttrap_exec(p); 850 #endif 851 852 /* 853 * Notify others that we exec'd, and clear the P_INEXEC flag 854 * as we're now a bona fide freshly-execed process. 855 */ 856 KNOTE_LOCKED(p->p_klist, NOTE_EXEC); 857 p->p_flag &= ~P_INEXEC; 858 859 /* clear "fork but no exec" flag, as we _are_ execing */ 860 p->p_acflag &= ~AFORK; 861 862 /* 863 * Free any previous argument cache and replace it with 864 * the new argument cache, if any. 865 */ 866 oldargs = p->p_args; 867 p->p_args = newargs; 868 newargs = NULL; 869 870 PROC_UNLOCK(p); 871 872 #ifdef HWPMC_HOOKS 873 /* 874 * Check if system-wide sampling is in effect or if the 875 * current process is using PMCs. If so, do exec() time 876 * processing. This processing needs to happen AFTER the 877 * P_INEXEC flag is cleared. 878 */ 879 if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) { 880 VOP_UNLOCK(imgp->vp); 881 pe.pm_credentialschanged = credential_changing; 882 pe.pm_entryaddr = imgp->entry_addr; 883 884 PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe); 885 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 886 } 887 #endif 888 889 /* Set values passed into the program in registers. */ 890 (*p->p_sysent->sv_setregs)(td, imgp, stack_base); 891 892 VOP_MMAPPED(imgp->vp); 893 894 SDT_PROBE1(proc, , , exec__success, args->fname); 895 896 exec_fail_dealloc: 897 if (error != 0) { 898 p->p_osrel = orig_osrel; 899 p->p_fctl0 = orig_fctl0; 900 p->p_elf_brandinfo = orig_brandinfo; 901 } 902 903 if (imgp->firstpage != NULL) 904 exec_unmap_first_page(imgp); 905 906 if (imgp->vp != NULL) { 907 if (args->fname) 908 NDFREE(&nd, NDF_ONLY_PNBUF); 909 if (imgp->opened) 910 VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td); 911 if (imgp->textset) 912 VOP_UNSET_TEXT_CHECKED(imgp->vp); 913 if (error != 0) 914 vput(imgp->vp); 915 else 916 VOP_UNLOCK(imgp->vp); 917 } 918 919 if (imgp->object != NULL) 920 vm_object_deallocate(imgp->object); 921 922 free(imgp->freepath, M_TEMP); 923 924 if (error == 0) { 925 if (p->p_ptevents & PTRACE_EXEC) { 926 PROC_LOCK(p); 927 if (p->p_ptevents & PTRACE_EXEC) 928 td->td_dbgflags |= TDB_EXEC; 929 PROC_UNLOCK(p); 930 } 931 } else { 932 exec_fail: 933 /* we're done here, clear P_INEXEC */ 934 PROC_LOCK(p); 935 p->p_flag &= ~P_INEXEC; 936 PROC_UNLOCK(p); 937 938 SDT_PROBE1(proc, , , exec__failure, error); 939 } 940 941 if (imgp->newcred != NULL && oldcred != NULL) 942 crfree(imgp->newcred); 943 944 #ifdef MAC 945 mac_execve_exit(imgp); 946 mac_execve_interpreter_exit(interpvplabel); 947 #endif 948 exec_free_args(args); 949 950 /* 951 * Handle deferred decrement of ref counts. 952 */ 953 if (oldtextvp != NULL) 954 vrele(oldtextvp); 955 #ifdef KTRACE 956 ktr_io_params_free(kiop); 957 #endif 958 pargs_drop(oldargs); 959 pargs_drop(newargs); 960 if (oldsigacts != NULL) 961 sigacts_free(oldsigacts); 962 if (euip != NULL) 963 uifree(euip); 964 965 if (error && imgp->vmspace_destroyed) { 966 /* sorry, no more process anymore. exit gracefully */ 967 exec_cleanup(td, oldvmspace); 968 exit1(td, 0, SIGABRT); 969 /* NOT REACHED */ 970 } 971 972 #ifdef KTRACE 973 if (error == 0) 974 ktrprocctor(p); 975 #endif 976 977 /* 978 * We don't want cpu_set_syscall_retval() to overwrite any of 979 * the register values put in place by exec_setregs(). 980 * Implementations of cpu_set_syscall_retval() will leave 981 * registers unmodified when returning EJUSTRETURN. 982 */ 983 return (error == 0 ? EJUSTRETURN : error); 984 } 985 986 void 987 exec_cleanup(struct thread *td, struct vmspace *oldvmspace) 988 { 989 if ((td->td_pflags & TDP_EXECVMSPC) != 0) { 990 KASSERT(td->td_proc->p_vmspace != oldvmspace, 991 ("oldvmspace still used")); 992 vmspace_free(oldvmspace); 993 td->td_pflags &= ~TDP_EXECVMSPC; 994 } 995 } 996 997 int 998 exec_map_first_page(struct image_params *imgp) 999 { 1000 vm_object_t object; 1001 vm_page_t m; 1002 int error; 1003 1004 if (imgp->firstpage != NULL) 1005 exec_unmap_first_page(imgp); 1006 1007 object = imgp->vp->v_object; 1008 if (object == NULL) 1009 return (EACCES); 1010 #if VM_NRESERVLEVEL > 0 1011 if ((object->flags & OBJ_COLORED) == 0) { 1012 VM_OBJECT_WLOCK(object); 1013 vm_object_color(object, 0); 1014 VM_OBJECT_WUNLOCK(object); 1015 } 1016 #endif 1017 error = vm_page_grab_valid_unlocked(&m, object, 0, 1018 VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) | 1019 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); 1020 1021 if (error != VM_PAGER_OK) 1022 return (EIO); 1023 imgp->firstpage = sf_buf_alloc(m, 0); 1024 imgp->image_header = (char *)sf_buf_kva(imgp->firstpage); 1025 1026 return (0); 1027 } 1028 1029 void 1030 exec_unmap_first_page(struct image_params *imgp) 1031 { 1032 vm_page_t m; 1033 1034 if (imgp->firstpage != NULL) { 1035 m = sf_buf_page(imgp->firstpage); 1036 sf_buf_free(imgp->firstpage); 1037 imgp->firstpage = NULL; 1038 vm_page_unwire(m, PQ_ACTIVE); 1039 } 1040 } 1041 1042 /* 1043 * Destroy old address space, and allocate a new stack. 1044 * The new stack is only sgrowsiz large because it is grown 1045 * automatically on a page fault. 1046 */ 1047 int 1048 exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv) 1049 { 1050 int error; 1051 struct proc *p = imgp->proc; 1052 struct vmspace *vmspace = p->p_vmspace; 1053 struct thread *td = curthread; 1054 vm_object_t obj; 1055 struct rlimit rlim_stack; 1056 vm_offset_t sv_minuser, stack_addr; 1057 vm_map_t map; 1058 vm_prot_t stack_prot; 1059 u_long ssiz; 1060 1061 imgp->vmspace_destroyed = 1; 1062 imgp->sysent = sv; 1063 1064 sigfastblock_clear(td); 1065 umtx_exec(p); 1066 itimers_exec(p); 1067 if (sv->sv_onexec != NULL) 1068 sv->sv_onexec(p, imgp); 1069 1070 EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp); 1071 1072 /* 1073 * Blow away entire process VM, if address space not shared, 1074 * otherwise, create a new VM space so that other threads are 1075 * not disrupted 1076 */ 1077 map = &vmspace->vm_map; 1078 if (map_at_zero) 1079 sv_minuser = sv->sv_minuser; 1080 else 1081 sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE); 1082 if (refcount_load(&vmspace->vm_refcnt) == 1 && 1083 vm_map_min(map) == sv_minuser && 1084 vm_map_max(map) == sv->sv_maxuser && 1085 cpu_exec_vmspace_reuse(p, map)) { 1086 shmexit(vmspace); 1087 pmap_remove_pages(vmspace_pmap(vmspace)); 1088 vm_map_remove(map, vm_map_min(map), vm_map_max(map)); 1089 /* 1090 * An exec terminates mlockall(MCL_FUTURE). 1091 * ASLR and W^X states must be re-evaluated. 1092 */ 1093 vm_map_lock(map); 1094 vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR | 1095 MAP_ASLR_IGNSTART | MAP_WXORX); 1096 vm_map_unlock(map); 1097 } else { 1098 error = vmspace_exec(p, sv_minuser, sv->sv_maxuser); 1099 if (error) 1100 return (error); 1101 vmspace = p->p_vmspace; 1102 map = &vmspace->vm_map; 1103 } 1104 map->flags |= imgp->map_flags; 1105 1106 /* Map a shared page */ 1107 obj = sv->sv_shared_page_obj; 1108 if (obj != NULL) { 1109 vm_object_reference(obj); 1110 error = vm_map_fixed(map, obj, 0, 1111 sv->sv_shared_page_base, sv->sv_shared_page_len, 1112 VM_PROT_READ | VM_PROT_EXECUTE, 1113 VM_PROT_READ | VM_PROT_EXECUTE, 1114 MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE); 1115 if (error != KERN_SUCCESS) { 1116 vm_object_deallocate(obj); 1117 return (vm_mmap_to_errno(error)); 1118 } 1119 } 1120 1121 /* Allocate a new stack */ 1122 if (imgp->stack_sz != 0) { 1123 ssiz = trunc_page(imgp->stack_sz); 1124 PROC_LOCK(p); 1125 lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack); 1126 PROC_UNLOCK(p); 1127 if (ssiz > rlim_stack.rlim_max) 1128 ssiz = rlim_stack.rlim_max; 1129 if (ssiz > rlim_stack.rlim_cur) { 1130 rlim_stack.rlim_cur = ssiz; 1131 kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack); 1132 } 1133 } else if (sv->sv_maxssiz != NULL) { 1134 ssiz = *sv->sv_maxssiz; 1135 } else { 1136 ssiz = maxssiz; 1137 } 1138 imgp->eff_stack_sz = lim_cur(curthread, RLIMIT_STACK); 1139 if (ssiz < imgp->eff_stack_sz) 1140 imgp->eff_stack_sz = ssiz; 1141 stack_addr = sv->sv_usrstack - ssiz; 1142 stack_prot = obj != NULL && imgp->stack_prot != 0 ? 1143 imgp->stack_prot : sv->sv_stackprot; 1144 error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz, stack_prot, 1145 VM_PROT_ALL, MAP_STACK_GROWS_DOWN); 1146 if (error != KERN_SUCCESS) { 1147 uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x " 1148 "failed mach error %d errno %d\n", (uintmax_t)ssiz, 1149 stack_prot, error, vm_mmap_to_errno(error)); 1150 return (vm_mmap_to_errno(error)); 1151 } 1152 1153 /* 1154 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they 1155 * are still used to enforce the stack rlimit on the process stack. 1156 */ 1157 vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT; 1158 vmspace->vm_maxsaddr = (char *)stack_addr; 1159 1160 return (0); 1161 } 1162 1163 /* 1164 * Copy out argument and environment strings from the old process address 1165 * space into the temporary string buffer. 1166 */ 1167 int 1168 exec_copyin_args(struct image_args *args, const char *fname, 1169 enum uio_seg segflg, char **argv, char **envv) 1170 { 1171 u_long arg, env; 1172 int error; 1173 1174 bzero(args, sizeof(*args)); 1175 if (argv == NULL) 1176 return (EFAULT); 1177 1178 /* 1179 * Allocate demand-paged memory for the file name, argument, and 1180 * environment strings. 1181 */ 1182 error = exec_alloc_args(args); 1183 if (error != 0) 1184 return (error); 1185 1186 /* 1187 * Copy the file name. 1188 */ 1189 error = exec_args_add_fname(args, fname, segflg); 1190 if (error != 0) 1191 goto err_exit; 1192 1193 /* 1194 * extract arguments first 1195 */ 1196 for (;;) { 1197 error = fueword(argv++, &arg); 1198 if (error == -1) { 1199 error = EFAULT; 1200 goto err_exit; 1201 } 1202 if (arg == 0) 1203 break; 1204 error = exec_args_add_arg(args, (char *)(uintptr_t)arg, 1205 UIO_USERSPACE); 1206 if (error != 0) 1207 goto err_exit; 1208 } 1209 1210 /* 1211 * extract environment strings 1212 */ 1213 if (envv) { 1214 for (;;) { 1215 error = fueword(envv++, &env); 1216 if (error == -1) { 1217 error = EFAULT; 1218 goto err_exit; 1219 } 1220 if (env == 0) 1221 break; 1222 error = exec_args_add_env(args, 1223 (char *)(uintptr_t)env, UIO_USERSPACE); 1224 if (error != 0) 1225 goto err_exit; 1226 } 1227 } 1228 1229 return (0); 1230 1231 err_exit: 1232 exec_free_args(args); 1233 return (error); 1234 } 1235 1236 int 1237 exec_copyin_data_fds(struct thread *td, struct image_args *args, 1238 const void *data, size_t datalen, const int *fds, size_t fdslen) 1239 { 1240 struct filedesc *ofdp; 1241 const char *p; 1242 int *kfds; 1243 int error; 1244 1245 memset(args, '\0', sizeof(*args)); 1246 ofdp = td->td_proc->p_fd; 1247 if (datalen >= ARG_MAX || fdslen >= ofdp->fd_nfiles) 1248 return (E2BIG); 1249 error = exec_alloc_args(args); 1250 if (error != 0) 1251 return (error); 1252 1253 args->begin_argv = args->buf; 1254 args->stringspace = ARG_MAX; 1255 1256 if (datalen > 0) { 1257 /* 1258 * Argument buffer has been provided. Copy it into the 1259 * kernel as a single string and add a terminating null 1260 * byte. 1261 */ 1262 error = copyin(data, args->begin_argv, datalen); 1263 if (error != 0) 1264 goto err_exit; 1265 args->begin_argv[datalen] = '\0'; 1266 args->endp = args->begin_argv + datalen + 1; 1267 args->stringspace -= datalen + 1; 1268 1269 /* 1270 * Traditional argument counting. Count the number of 1271 * null bytes. 1272 */ 1273 for (p = args->begin_argv; p < args->endp; ++p) 1274 if (*p == '\0') 1275 ++args->argc; 1276 } else { 1277 /* No argument buffer provided. */ 1278 args->endp = args->begin_argv; 1279 } 1280 1281 /* Create new file descriptor table. */ 1282 kfds = malloc(fdslen * sizeof(int), M_TEMP, M_WAITOK); 1283 error = copyin(fds, kfds, fdslen * sizeof(int)); 1284 if (error != 0) { 1285 free(kfds, M_TEMP); 1286 goto err_exit; 1287 } 1288 error = fdcopy_remapped(ofdp, kfds, fdslen, &args->fdp); 1289 free(kfds, M_TEMP); 1290 if (error != 0) 1291 goto err_exit; 1292 1293 return (0); 1294 err_exit: 1295 exec_free_args(args); 1296 return (error); 1297 } 1298 1299 struct exec_args_kva { 1300 vm_offset_t addr; 1301 u_int gen; 1302 SLIST_ENTRY(exec_args_kva) next; 1303 }; 1304 1305 DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva); 1306 1307 static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist; 1308 static struct mtx exec_args_kva_mtx; 1309 static u_int exec_args_gen; 1310 1311 static void 1312 exec_prealloc_args_kva(void *arg __unused) 1313 { 1314 struct exec_args_kva *argkva; 1315 u_int i; 1316 1317 SLIST_INIT(&exec_args_kva_freelist); 1318 mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF); 1319 for (i = 0; i < exec_map_entries; i++) { 1320 argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK); 1321 argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size); 1322 argkva->gen = exec_args_gen; 1323 SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); 1324 } 1325 } 1326 SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL); 1327 1328 static vm_offset_t 1329 exec_alloc_args_kva(void **cookie) 1330 { 1331 struct exec_args_kva *argkva; 1332 1333 argkva = (void *)atomic_readandclear_ptr( 1334 (uintptr_t *)DPCPU_PTR(exec_args_kva)); 1335 if (argkva == NULL) { 1336 mtx_lock(&exec_args_kva_mtx); 1337 while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL) 1338 (void)mtx_sleep(&exec_args_kva_freelist, 1339 &exec_args_kva_mtx, 0, "execkva", 0); 1340 SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next); 1341 mtx_unlock(&exec_args_kva_mtx); 1342 } 1343 kasan_mark((void *)argkva->addr, exec_map_entry_size, 1344 exec_map_entry_size, 0); 1345 *(struct exec_args_kva **)cookie = argkva; 1346 return (argkva->addr); 1347 } 1348 1349 static void 1350 exec_release_args_kva(struct exec_args_kva *argkva, u_int gen) 1351 { 1352 vm_offset_t base; 1353 1354 base = argkva->addr; 1355 kasan_mark((void *)argkva->addr, 0, exec_map_entry_size, 1356 KASAN_EXEC_ARGS_FREED); 1357 if (argkva->gen != gen) { 1358 (void)vm_map_madvise(exec_map, base, base + exec_map_entry_size, 1359 MADV_FREE); 1360 argkva->gen = gen; 1361 } 1362 if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva), 1363 (uintptr_t)NULL, (uintptr_t)argkva)) { 1364 mtx_lock(&exec_args_kva_mtx); 1365 SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); 1366 wakeup_one(&exec_args_kva_freelist); 1367 mtx_unlock(&exec_args_kva_mtx); 1368 } 1369 } 1370 1371 static void 1372 exec_free_args_kva(void *cookie) 1373 { 1374 1375 exec_release_args_kva(cookie, exec_args_gen); 1376 } 1377 1378 static void 1379 exec_args_kva_lowmem(void *arg __unused) 1380 { 1381 SLIST_HEAD(, exec_args_kva) head; 1382 struct exec_args_kva *argkva; 1383 u_int gen; 1384 int i; 1385 1386 gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1; 1387 1388 /* 1389 * Force an madvise of each KVA range. Any currently allocated ranges 1390 * will have MADV_FREE applied once they are freed. 1391 */ 1392 SLIST_INIT(&head); 1393 mtx_lock(&exec_args_kva_mtx); 1394 SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva); 1395 mtx_unlock(&exec_args_kva_mtx); 1396 while ((argkva = SLIST_FIRST(&head)) != NULL) { 1397 SLIST_REMOVE_HEAD(&head, next); 1398 exec_release_args_kva(argkva, gen); 1399 } 1400 1401 CPU_FOREACH(i) { 1402 argkva = (void *)atomic_readandclear_ptr( 1403 (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva)); 1404 if (argkva != NULL) 1405 exec_release_args_kva(argkva, gen); 1406 } 1407 } 1408 EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL, 1409 EVENTHANDLER_PRI_ANY); 1410 1411 /* 1412 * Allocate temporary demand-paged, zero-filled memory for the file name, 1413 * argument, and environment strings. 1414 */ 1415 int 1416 exec_alloc_args(struct image_args *args) 1417 { 1418 1419 args->buf = (char *)exec_alloc_args_kva(&args->bufkva); 1420 return (0); 1421 } 1422 1423 void 1424 exec_free_args(struct image_args *args) 1425 { 1426 1427 if (args->buf != NULL) { 1428 exec_free_args_kva(args->bufkva); 1429 args->buf = NULL; 1430 } 1431 if (args->fname_buf != NULL) { 1432 free(args->fname_buf, M_TEMP); 1433 args->fname_buf = NULL; 1434 } 1435 if (args->fdp != NULL) 1436 fdescfree_remapped(args->fdp); 1437 } 1438 1439 /* 1440 * A set to functions to fill struct image args. 1441 * 1442 * NOTE: exec_args_add_fname() must be called (possibly with a NULL 1443 * fname) before the other functions. All exec_args_add_arg() calls must 1444 * be made before any exec_args_add_env() calls. exec_args_adjust_args() 1445 * may be called any time after exec_args_add_fname(). 1446 * 1447 * exec_args_add_fname() - install path to be executed 1448 * exec_args_add_arg() - append an argument string 1449 * exec_args_add_env() - append an env string 1450 * exec_args_adjust_args() - adjust location of the argument list to 1451 * allow new arguments to be prepended 1452 */ 1453 int 1454 exec_args_add_fname(struct image_args *args, const char *fname, 1455 enum uio_seg segflg) 1456 { 1457 int error; 1458 size_t length; 1459 1460 KASSERT(args->fname == NULL, ("fname already appended")); 1461 KASSERT(args->endp == NULL, ("already appending to args")); 1462 1463 if (fname != NULL) { 1464 args->fname = args->buf; 1465 error = segflg == UIO_SYSSPACE ? 1466 copystr(fname, args->fname, PATH_MAX, &length) : 1467 copyinstr(fname, args->fname, PATH_MAX, &length); 1468 if (error != 0) 1469 return (error == ENAMETOOLONG ? E2BIG : error); 1470 } else 1471 length = 0; 1472 1473 /* Set up for _arg_*()/_env_*() */ 1474 args->endp = args->buf + length; 1475 /* begin_argv must be set and kept updated */ 1476 args->begin_argv = args->endp; 1477 KASSERT(exec_map_entry_size - length >= ARG_MAX, 1478 ("too little space remaining for arguments %zu < %zu", 1479 exec_map_entry_size - length, (size_t)ARG_MAX)); 1480 args->stringspace = ARG_MAX; 1481 1482 return (0); 1483 } 1484 1485 static int 1486 exec_args_add_str(struct image_args *args, const char *str, 1487 enum uio_seg segflg, int *countp) 1488 { 1489 int error; 1490 size_t length; 1491 1492 KASSERT(args->endp != NULL, ("endp not initialized")); 1493 KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); 1494 1495 error = (segflg == UIO_SYSSPACE) ? 1496 copystr(str, args->endp, args->stringspace, &length) : 1497 copyinstr(str, args->endp, args->stringspace, &length); 1498 if (error != 0) 1499 return (error == ENAMETOOLONG ? E2BIG : error); 1500 args->stringspace -= length; 1501 args->endp += length; 1502 (*countp)++; 1503 1504 return (0); 1505 } 1506 1507 int 1508 exec_args_add_arg(struct image_args *args, const char *argp, 1509 enum uio_seg segflg) 1510 { 1511 1512 KASSERT(args->envc == 0, ("appending args after env")); 1513 1514 return (exec_args_add_str(args, argp, segflg, &args->argc)); 1515 } 1516 1517 int 1518 exec_args_add_env(struct image_args *args, const char *envp, 1519 enum uio_seg segflg) 1520 { 1521 1522 if (args->envc == 0) 1523 args->begin_envv = args->endp; 1524 1525 return (exec_args_add_str(args, envp, segflg, &args->envc)); 1526 } 1527 1528 int 1529 exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend) 1530 { 1531 ssize_t offset; 1532 1533 KASSERT(args->endp != NULL, ("endp not initialized")); 1534 KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); 1535 1536 offset = extend - consume; 1537 if (args->stringspace < offset) 1538 return (E2BIG); 1539 memmove(args->begin_argv + extend, args->begin_argv + consume, 1540 args->endp - args->begin_argv + consume); 1541 if (args->envc > 0) 1542 args->begin_envv += offset; 1543 args->endp += offset; 1544 args->stringspace -= offset; 1545 return (0); 1546 } 1547 1548 char * 1549 exec_args_get_begin_envv(struct image_args *args) 1550 { 1551 1552 KASSERT(args->endp != NULL, ("endp not initialized")); 1553 1554 if (args->envc > 0) 1555 return (args->begin_envv); 1556 return (args->endp); 1557 } 1558 1559 void 1560 exec_stackgap(struct image_params *imgp, uintptr_t *dp) 1561 { 1562 if (imgp->sysent->sv_stackgap == NULL || 1563 (imgp->proc->p_fctl0 & (NT_FREEBSD_FCTL_ASLR_DISABLE | 1564 NT_FREEBSD_FCTL_ASG_DISABLE)) != 0 || 1565 (imgp->map_flags & MAP_ASLR) == 0) 1566 return; 1567 imgp->sysent->sv_stackgap(imgp, dp); 1568 } 1569 1570 /* 1571 * Copy strings out to the new process address space, constructing new arg 1572 * and env vector tables. Return a pointer to the base so that it can be used 1573 * as the initial stack pointer. 1574 */ 1575 int 1576 exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 1577 { 1578 int argc, envc; 1579 char **vectp; 1580 char *stringp; 1581 uintptr_t destp, ustringp; 1582 struct ps_strings *arginfo; 1583 struct proc *p; 1584 size_t execpath_len; 1585 int error, szsigcode, szps; 1586 char canary[sizeof(long) * 8]; 1587 1588 szps = sizeof(pagesizes[0]) * MAXPAGESIZES; 1589 /* 1590 * Calculate string base and vector table pointers. 1591 * Also deal with signal trampoline code for this exec type. 1592 */ 1593 if (imgp->execpath != NULL && imgp->auxargs != NULL) 1594 execpath_len = strlen(imgp->execpath) + 1; 1595 else 1596 execpath_len = 0; 1597 p = imgp->proc; 1598 szsigcode = 0; 1599 arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings; 1600 imgp->ps_strings = arginfo; 1601 if (p->p_sysent->sv_sigcode_base == 0) { 1602 if (p->p_sysent->sv_szsigcode != NULL) 1603 szsigcode = *(p->p_sysent->sv_szsigcode); 1604 } 1605 destp = (uintptr_t)arginfo; 1606 1607 /* 1608 * install sigcode 1609 */ 1610 if (szsigcode != 0) { 1611 destp -= szsigcode; 1612 destp = rounddown2(destp, sizeof(void *)); 1613 error = copyout(p->p_sysent->sv_sigcode, (void *)destp, 1614 szsigcode); 1615 if (error != 0) 1616 return (error); 1617 } 1618 1619 /* 1620 * Copy the image path for the rtld. 1621 */ 1622 if (execpath_len != 0) { 1623 destp -= execpath_len; 1624 destp = rounddown2(destp, sizeof(void *)); 1625 imgp->execpathp = (void *)destp; 1626 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 1627 if (error != 0) 1628 return (error); 1629 } 1630 1631 /* 1632 * Prepare the canary for SSP. 1633 */ 1634 arc4rand(canary, sizeof(canary), 0); 1635 destp -= sizeof(canary); 1636 imgp->canary = (void *)destp; 1637 error = copyout(canary, imgp->canary, sizeof(canary)); 1638 if (error != 0) 1639 return (error); 1640 imgp->canarylen = sizeof(canary); 1641 1642 /* 1643 * Prepare the pagesizes array. 1644 */ 1645 destp -= szps; 1646 destp = rounddown2(destp, sizeof(void *)); 1647 imgp->pagesizes = (void *)destp; 1648 error = copyout(pagesizes, imgp->pagesizes, szps); 1649 if (error != 0) 1650 return (error); 1651 imgp->pagesizeslen = szps; 1652 1653 /* 1654 * Allocate room for the argument and environment strings. 1655 */ 1656 destp -= ARG_MAX - imgp->args->stringspace; 1657 destp = rounddown2(destp, sizeof(void *)); 1658 ustringp = destp; 1659 1660 exec_stackgap(imgp, &destp); 1661 1662 if (imgp->auxargs) { 1663 /* 1664 * Allocate room on the stack for the ELF auxargs 1665 * array. It has up to AT_COUNT entries. 1666 */ 1667 destp -= AT_COUNT * sizeof(Elf_Auxinfo); 1668 destp = rounddown2(destp, sizeof(void *)); 1669 } 1670 1671 vectp = (char **)destp; 1672 1673 /* 1674 * Allocate room for the argv[] and env vectors including the 1675 * terminating NULL pointers. 1676 */ 1677 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 1678 1679 /* 1680 * vectp also becomes our initial stack base 1681 */ 1682 *stack_base = (uintptr_t)vectp; 1683 1684 stringp = imgp->args->begin_argv; 1685 argc = imgp->args->argc; 1686 envc = imgp->args->envc; 1687 1688 /* 1689 * Copy out strings - arguments and environment. 1690 */ 1691 error = copyout(stringp, (void *)ustringp, 1692 ARG_MAX - imgp->args->stringspace); 1693 if (error != 0) 1694 return (error); 1695 1696 /* 1697 * Fill in "ps_strings" struct for ps, w, etc. 1698 */ 1699 imgp->argv = vectp; 1700 if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 || 1701 suword32(&arginfo->ps_nargvstr, argc) != 0) 1702 return (EFAULT); 1703 1704 /* 1705 * Fill in argument portion of vector table. 1706 */ 1707 for (; argc > 0; --argc) { 1708 if (suword(vectp++, ustringp) != 0) 1709 return (EFAULT); 1710 while (*stringp++ != 0) 1711 ustringp++; 1712 ustringp++; 1713 } 1714 1715 /* a null vector table pointer separates the argp's from the envp's */ 1716 if (suword(vectp++, 0) != 0) 1717 return (EFAULT); 1718 1719 imgp->envv = vectp; 1720 if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 || 1721 suword32(&arginfo->ps_nenvstr, envc) != 0) 1722 return (EFAULT); 1723 1724 /* 1725 * Fill in environment portion of vector table. 1726 */ 1727 for (; envc > 0; --envc) { 1728 if (suword(vectp++, ustringp) != 0) 1729 return (EFAULT); 1730 while (*stringp++ != 0) 1731 ustringp++; 1732 ustringp++; 1733 } 1734 1735 /* end of vector table is a null pointer */ 1736 if (suword(vectp, 0) != 0) 1737 return (EFAULT); 1738 1739 if (imgp->auxargs) { 1740 vectp++; 1741 error = imgp->sysent->sv_copyout_auxargs(imgp, 1742 (uintptr_t)vectp); 1743 if (error != 0) 1744 return (error); 1745 } 1746 1747 return (0); 1748 } 1749 1750 /* 1751 * Check permissions of file to execute. 1752 * Called with imgp->vp locked. 1753 * Return 0 for success or error code on failure. 1754 */ 1755 int 1756 exec_check_permissions(struct image_params *imgp) 1757 { 1758 struct vnode *vp = imgp->vp; 1759 struct vattr *attr = imgp->attr; 1760 struct thread *td; 1761 int error; 1762 1763 td = curthread; 1764 1765 /* Get file attributes */ 1766 error = VOP_GETATTR(vp, attr, td->td_ucred); 1767 if (error) 1768 return (error); 1769 1770 #ifdef MAC 1771 error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp); 1772 if (error) 1773 return (error); 1774 #endif 1775 1776 /* 1777 * 1) Check if file execution is disabled for the filesystem that 1778 * this file resides on. 1779 * 2) Ensure that at least one execute bit is on. Otherwise, a 1780 * privileged user will always succeed, and we don't want this 1781 * to happen unless the file really is executable. 1782 * 3) Ensure that the file is a regular file. 1783 */ 1784 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || 1785 (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 || 1786 (attr->va_type != VREG)) 1787 return (EACCES); 1788 1789 /* 1790 * Zero length files can't be exec'd 1791 */ 1792 if (attr->va_size == 0) 1793 return (ENOEXEC); 1794 1795 /* 1796 * Check for execute permission to file based on current credentials. 1797 */ 1798 error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); 1799 if (error) 1800 return (error); 1801 1802 /* 1803 * Check number of open-for-writes on the file and deny execution 1804 * if there are any. 1805 * 1806 * Add a text reference now so no one can write to the 1807 * executable while we're activating it. 1808 * 1809 * Remember if this was set before and unset it in case this is not 1810 * actually an executable image. 1811 */ 1812 error = VOP_SET_TEXT(vp); 1813 if (error != 0) 1814 return (error); 1815 imgp->textset = true; 1816 1817 /* 1818 * Call filesystem specific open routine (which does nothing in the 1819 * general case). 1820 */ 1821 error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); 1822 if (error == 0) 1823 imgp->opened = 1; 1824 return (error); 1825 } 1826 1827 /* 1828 * Exec handler registration 1829 */ 1830 int 1831 exec_register(const struct execsw *execsw_arg) 1832 { 1833 const struct execsw **es, **xs, **newexecsw; 1834 u_int count = 2; /* New slot and trailing NULL */ 1835 1836 if (execsw) 1837 for (es = execsw; *es; es++) 1838 count++; 1839 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); 1840 xs = newexecsw; 1841 if (execsw) 1842 for (es = execsw; *es; es++) 1843 *xs++ = *es; 1844 *xs++ = execsw_arg; 1845 *xs = NULL; 1846 if (execsw) 1847 free(execsw, M_TEMP); 1848 execsw = newexecsw; 1849 return (0); 1850 } 1851 1852 int 1853 exec_unregister(const struct execsw *execsw_arg) 1854 { 1855 const struct execsw **es, **xs, **newexecsw; 1856 int count = 1; 1857 1858 if (execsw == NULL) 1859 panic("unregister with no handlers left?\n"); 1860 1861 for (es = execsw; *es; es++) { 1862 if (*es == execsw_arg) 1863 break; 1864 } 1865 if (*es == NULL) 1866 return (ENOENT); 1867 for (es = execsw; *es; es++) 1868 if (*es != execsw_arg) 1869 count++; 1870 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); 1871 xs = newexecsw; 1872 for (es = execsw; *es; es++) 1873 if (*es != execsw_arg) 1874 *xs++ = *es; 1875 *xs = NULL; 1876 if (execsw) 1877 free(execsw, M_TEMP); 1878 execsw = newexecsw; 1879 return (0); 1880 } 1881 1882 /* 1883 * Write out a core segment to the compression stream. 1884 */ 1885 static int 1886 compress_chunk(struct coredump_params *cp, char *base, char *buf, u_int len) 1887 { 1888 u_int chunk_len; 1889 int error; 1890 1891 while (len > 0) { 1892 chunk_len = MIN(len, CORE_BUF_SIZE); 1893 1894 /* 1895 * We can get EFAULT error here. 1896 * In that case zero out the current chunk of the segment. 1897 */ 1898 error = copyin(base, buf, chunk_len); 1899 if (error != 0) 1900 bzero(buf, chunk_len); 1901 error = compressor_write(cp->comp, buf, chunk_len); 1902 if (error != 0) 1903 break; 1904 base += chunk_len; 1905 len -= chunk_len; 1906 } 1907 return (error); 1908 } 1909 1910 int 1911 core_write(struct coredump_params *cp, const void *base, size_t len, 1912 off_t offset, enum uio_seg seg, size_t *resid) 1913 { 1914 1915 return (vn_rdwr_inchunks(UIO_WRITE, cp->vp, __DECONST(void *, base), 1916 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1917 cp->active_cred, cp->file_cred, resid, cp->td)); 1918 } 1919 1920 int 1921 core_output(char *base, size_t len, off_t offset, struct coredump_params *cp, 1922 void *tmpbuf) 1923 { 1924 vm_map_t map; 1925 struct mount *mp; 1926 size_t resid, runlen; 1927 int error; 1928 bool success; 1929 1930 KASSERT((uintptr_t)base % PAGE_SIZE == 0, 1931 ("%s: user address %p is not page-aligned", __func__, base)); 1932 1933 if (cp->comp != NULL) 1934 return (compress_chunk(cp, base, tmpbuf, len)); 1935 1936 map = &cp->td->td_proc->p_vmspace->vm_map; 1937 for (; len > 0; base += runlen, offset += runlen, len -= runlen) { 1938 /* 1939 * Attempt to page in all virtual pages in the range. If a 1940 * virtual page is not backed by the pager, it is represented as 1941 * a hole in the file. This can occur with zero-filled 1942 * anonymous memory or truncated files, for example. 1943 */ 1944 for (runlen = 0; runlen < len; runlen += PAGE_SIZE) { 1945 error = vm_fault(map, (uintptr_t)base + runlen, 1946 VM_PROT_READ, VM_FAULT_NOFILL, NULL); 1947 if (runlen == 0) 1948 success = error == KERN_SUCCESS; 1949 else if ((error == KERN_SUCCESS) != success) 1950 break; 1951 } 1952 1953 if (success) { 1954 error = core_write(cp, base, runlen, offset, 1955 UIO_USERSPACE, &resid); 1956 if (error != 0) { 1957 if (error != EFAULT) 1958 break; 1959 1960 /* 1961 * EFAULT may be returned if the user mapping 1962 * could not be accessed, e.g., because a mapped 1963 * file has been truncated. Skip the page if no 1964 * progress was made, to protect against a 1965 * hypothetical scenario where vm_fault() was 1966 * successful but core_write() returns EFAULT 1967 * anyway. 1968 */ 1969 runlen -= resid; 1970 if (runlen == 0) { 1971 success = false; 1972 runlen = PAGE_SIZE; 1973 } 1974 } 1975 } 1976 if (!success) { 1977 error = vn_start_write(cp->vp, &mp, V_WAIT); 1978 if (error != 0) 1979 break; 1980 vn_lock(cp->vp, LK_EXCLUSIVE | LK_RETRY); 1981 error = vn_truncate_locked(cp->vp, offset + runlen, 1982 false, cp->td->td_ucred); 1983 VOP_UNLOCK(cp->vp); 1984 vn_finished_write(mp); 1985 if (error != 0) 1986 break; 1987 } 1988 } 1989 return (error); 1990 } 1991 1992 /* 1993 * Drain into a core file. 1994 */ 1995 int 1996 sbuf_drain_core_output(void *arg, const char *data, int len) 1997 { 1998 struct coredump_params *cp; 1999 struct proc *p; 2000 int error, locked; 2001 2002 cp = arg; 2003 p = cp->td->td_proc; 2004 2005 /* 2006 * Some kern_proc out routines that print to this sbuf may 2007 * call us with the process lock held. Draining with the 2008 * non-sleepable lock held is unsafe. The lock is needed for 2009 * those routines when dumping a live process. In our case we 2010 * can safely release the lock before draining and acquire 2011 * again after. 2012 */ 2013 locked = PROC_LOCKED(p); 2014 if (locked) 2015 PROC_UNLOCK(p); 2016 if (cp->comp != NULL) 2017 error = compressor_write(cp->comp, __DECONST(char *, data), len); 2018 else 2019 error = core_write(cp, __DECONST(void *, data), len, cp->offset, 2020 UIO_SYSSPACE, NULL); 2021 if (locked) 2022 PROC_LOCK(p); 2023 if (error != 0) 2024 return (-error); 2025 cp->offset += len; 2026 return (len); 2027 } 2028