xref: /freebsd/sys/kern/kern_exec.c (revision ce51f79913aa28a32217a424845a2649019535af)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1993, David Greenman
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_capsicum.h"
31 #include "opt_hwpmc_hooks.h"
32 #include "opt_hwt_hooks.h"
33 #include "opt_ktrace.h"
34 #include "opt_vm.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/acct.h>
39 #include <sys/asan.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/eventhandler.h>
43 #include <sys/exec.h>
44 #include <sys/fcntl.h>
45 #include <sys/filedesc.h>
46 #include <sys/imgact.h>
47 #include <sys/imgact_elf.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/mount.h>
53 #include <sys/mutex.h>
54 #include <sys/namei.h>
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/ptrace.h>
58 #include <sys/reg.h>
59 #include <sys/resourcevar.h>
60 #include <sys/rwlock.h>
61 #include <sys/sched.h>
62 #include <sys/sdt.h>
63 #include <sys/sf_buf.h>
64 #include <sys/shm.h>
65 #include <sys/signalvar.h>
66 #include <sys/smp.h>
67 #include <sys/stat.h>
68 #include <sys/syscallsubr.h>
69 #include <sys/sysctl.h>
70 #include <sys/sysent.h>
71 #include <sys/sysproto.h>
72 #include <sys/timers.h>
73 #include <sys/ucoredump.h>
74 #include <sys/umtxvar.h>
75 #include <sys/vnode.h>
76 #include <sys/wait.h>
77 #ifdef KTRACE
78 #include <sys/ktrace.h>
79 #endif
80 
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_kern.h>
87 #include <vm/vm_extern.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pager.h>
90 
91 #ifdef	HWPMC_HOOKS
92 #include <sys/pmckern.h>
93 #endif
94 
95 #ifdef HWT_HOOKS
96 #include <dev/hwt/hwt_hook.h>
97 #endif
98 
99 #include <security/audit/audit.h>
100 #include <security/mac/mac_framework.h>
101 
102 #ifdef KDTRACE_HOOKS
103 #include <sys/dtrace_bsd.h>
104 dtrace_execexit_func_t	dtrace_fasttrap_exec;
105 #endif
106 
107 SDT_PROVIDER_DECLARE(proc);
108 SDT_PROBE_DEFINE1(proc, , , exec, "char *");
109 SDT_PROBE_DEFINE1(proc, , , exec__failure, "int");
110 SDT_PROBE_DEFINE1(proc, , , exec__success, "char *");
111 
112 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
113 
114 int coredump_pack_fileinfo = 1;
115 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN,
116     &coredump_pack_fileinfo, 0,
117     "Enable file path packing in 'procstat -f' coredump notes");
118 
119 int coredump_pack_vmmapinfo = 1;
120 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN,
121     &coredump_pack_vmmapinfo, 0,
122     "Enable file path packing in 'procstat -v' coredump notes");
123 
124 static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS);
125 static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS);
126 static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS);
127 static int do_execve(struct thread *td, struct image_args *args,
128     struct mac *mac_p, struct vmspace *oldvmspace);
129 
130 /* XXX This should be vm_size_t. */
131 SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD|
132     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU",
133     "Location of process' ps_strings structure");
134 
135 /* XXX This should be vm_size_t. */
136 SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD|
137     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU",
138     "Top of process stack");
139 
140 SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE,
141     NULL, 0, sysctl_kern_stackprot, "I",
142     "Stack memory permissions");
143 
144 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
145 SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
146     &ps_arg_cache_limit, 0,
147     "Process' command line characters cache limit");
148 
149 static int disallow_high_osrel;
150 SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW,
151     &disallow_high_osrel, 0,
152     "Disallow execution of binaries built for higher version of the world");
153 
154 static int map_at_zero = 0;
155 SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0,
156     "Permit processes to map an object at virtual address 0.");
157 
158 static int core_dump_can_intr = 1;
159 SYSCTL_INT(_kern, OID_AUTO, core_dump_can_intr, CTLFLAG_RWTUN,
160     &core_dump_can_intr, 0,
161     "Core dumping interruptible with SIGKILL");
162 
163 static int
sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)164 sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
165 {
166 	struct proc *p;
167 	vm_offset_t ps_strings;
168 
169 	p = curproc;
170 #ifdef SCTL_MASK32
171 	if (req->flags & SCTL_MASK32) {
172 		unsigned int val;
173 		val = (unsigned int)PROC_PS_STRINGS(p);
174 		return (SYSCTL_OUT(req, &val, sizeof(val)));
175 	}
176 #endif
177 	ps_strings = PROC_PS_STRINGS(p);
178 	return (SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)));
179 }
180 
181 static int
sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)182 sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
183 {
184 	struct proc *p;
185 	vm_offset_t val;
186 
187 	p = curproc;
188 #ifdef SCTL_MASK32
189 	if (req->flags & SCTL_MASK32) {
190 		unsigned int val32;
191 
192 		val32 = round_page((unsigned int)p->p_vmspace->vm_stacktop);
193 		return (SYSCTL_OUT(req, &val32, sizeof(val32)));
194 	}
195 #endif
196 	val = round_page(p->p_vmspace->vm_stacktop);
197 	return (SYSCTL_OUT(req, &val, sizeof(val)));
198 }
199 
200 static int
sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)201 sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
202 {
203 	struct proc *p;
204 
205 	p = curproc;
206 	return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot,
207 	    sizeof(p->p_sysent->sv_stackprot)));
208 }
209 
210 /*
211  * Each of the items is a pointer to a `const struct execsw', hence the
212  * double pointer here.
213  */
214 static const struct execsw **execsw;
215 
216 #ifndef _SYS_SYSPROTO_H_
217 struct execve_args {
218 	char    *fname;
219 	char    **argv;
220 	char    **envv;
221 };
222 #endif
223 
224 int
sys_execve(struct thread * td,struct execve_args * uap)225 sys_execve(struct thread *td, struct execve_args *uap)
226 {
227 	struct image_args args;
228 	struct vmspace *oldvmspace;
229 	int error;
230 
231 	error = pre_execve(td, &oldvmspace);
232 	if (error != 0)
233 		return (error);
234 	error = exec_copyin_args(&args, uap->fname, uap->argv, uap->envv);
235 	if (error == 0)
236 		error = kern_execve(td, &args, NULL, oldvmspace);
237 	post_execve(td, error, oldvmspace);
238 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
239 	return (error);
240 }
241 
242 #ifndef _SYS_SYSPROTO_H_
243 struct fexecve_args {
244 	int	fd;
245 	char	**argv;
246 	char	**envv;
247 };
248 #endif
249 int
sys_fexecve(struct thread * td,struct fexecve_args * uap)250 sys_fexecve(struct thread *td, struct fexecve_args *uap)
251 {
252 	struct image_args args;
253 	struct vmspace *oldvmspace;
254 	int error;
255 
256 	error = pre_execve(td, &oldvmspace);
257 	if (error != 0)
258 		return (error);
259 	error = exec_copyin_args(&args, NULL, uap->argv, uap->envv);
260 	if (error == 0) {
261 		args.fd = uap->fd;
262 		error = kern_execve(td, &args, NULL, oldvmspace);
263 	}
264 	post_execve(td, error, oldvmspace);
265 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
266 	return (error);
267 }
268 
269 #ifndef _SYS_SYSPROTO_H_
270 struct __mac_execve_args {
271 	char	*fname;
272 	char	**argv;
273 	char	**envv;
274 	struct mac	*mac_p;
275 };
276 #endif
277 
278 int
sys___mac_execve(struct thread * td,struct __mac_execve_args * uap)279 sys___mac_execve(struct thread *td, struct __mac_execve_args *uap)
280 {
281 #ifdef MAC
282 	struct image_args args;
283 	struct vmspace *oldvmspace;
284 	int error;
285 
286 	error = pre_execve(td, &oldvmspace);
287 	if (error != 0)
288 		return (error);
289 	error = exec_copyin_args(&args, uap->fname, uap->argv, uap->envv);
290 	if (error == 0)
291 		error = kern_execve(td, &args, uap->mac_p, oldvmspace);
292 	post_execve(td, error, oldvmspace);
293 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
294 	return (error);
295 #else
296 	return (ENOSYS);
297 #endif
298 }
299 
300 int
pre_execve(struct thread * td,struct vmspace ** oldvmspace)301 pre_execve(struct thread *td, struct vmspace **oldvmspace)
302 {
303 	struct proc *p;
304 	int error;
305 
306 	KASSERT(td == curthread, ("non-current thread %p", td));
307 	error = 0;
308 	p = td->td_proc;
309 	if ((p->p_flag & P_HADTHREADS) != 0) {
310 		PROC_LOCK(p);
311 		if (thread_single(p, SINGLE_BOUNDARY) != 0)
312 			error = ERESTART;
313 		PROC_UNLOCK(p);
314 	}
315 	KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0,
316 	    ("nested execve"));
317 	*oldvmspace = p->p_vmspace;
318 	return (error);
319 }
320 
321 void
post_execve(struct thread * td,int error,struct vmspace * oldvmspace)322 post_execve(struct thread *td, int error, struct vmspace *oldvmspace)
323 {
324 	struct proc *p;
325 
326 	KASSERT(td == curthread, ("non-current thread %p", td));
327 	p = td->td_proc;
328 	if ((p->p_flag & P_HADTHREADS) != 0) {
329 		PROC_LOCK(p);
330 		/*
331 		 * If success, we upgrade to SINGLE_EXIT state to
332 		 * force other threads to suicide.
333 		 */
334 		if (error == EJUSTRETURN)
335 			thread_single(p, SINGLE_EXIT);
336 		else
337 			thread_single_end(p, SINGLE_BOUNDARY);
338 		PROC_UNLOCK(p);
339 	}
340 	exec_cleanup(td, oldvmspace);
341 }
342 
343 /*
344  * kern_execve() has the astonishing property of not always returning to
345  * the caller.  If sufficiently bad things happen during the call to
346  * do_execve(), it can end up calling exit1(); as a result, callers must
347  * avoid doing anything which they might need to undo (e.g., allocating
348  * memory).
349  */
350 int
kern_execve(struct thread * td,struct image_args * args,struct mac * mac_p,struct vmspace * oldvmspace)351 kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
352     struct vmspace *oldvmspace)
353 {
354 
355 	TSEXEC(td->td_proc->p_pid, args->begin_argv);
356 	AUDIT_ARG_ARGV(args->begin_argv, args->argc,
357 	    exec_args_get_begin_envv(args) - args->begin_argv);
358 	AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc,
359 	    args->endp - exec_args_get_begin_envv(args));
360 #ifdef KTRACE
361 	if (KTRPOINT(td, KTR_ARGS)) {
362 		ktrdata(KTR_ARGS, args->begin_argv,
363 		    exec_args_get_begin_envv(args) - args->begin_argv);
364         }
365 	if (KTRPOINT(td, KTR_ENVS)) {
366 		ktrdata(KTR_ENVS, exec_args_get_begin_envv(args),
367 		    args->endp - exec_args_get_begin_envv(args));
368         }
369 #endif
370 	/* Must have at least one argument. */
371 	if (args->argc == 0) {
372 		exec_free_args(args);
373 		return (EINVAL);
374 	}
375 	return (do_execve(td, args, mac_p, oldvmspace));
376 }
377 
378 static void
execve_nosetid(struct image_params * imgp)379 execve_nosetid(struct image_params *imgp)
380 {
381 	imgp->credential_setid = false;
382 	if (imgp->newcred != NULL) {
383 		crfree(imgp->newcred);
384 		imgp->newcred = NULL;
385 	}
386 }
387 
388 /*
389  * In-kernel implementation of execve().  All arguments are assumed to be
390  * userspace pointers from the passed thread.
391  */
392 static int
do_execve(struct thread * td,struct image_args * args,struct mac * mac_p,struct vmspace * oldvmspace)393 do_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
394     struct vmspace *oldvmspace)
395 {
396 	struct proc *p = td->td_proc;
397 	struct nameidata nd;
398 	struct ucred *oldcred;
399 	struct uidinfo *euip = NULL;
400 	uintptr_t stack_base;
401 	struct image_params image_params, *imgp;
402 	struct vattr attr;
403 	struct pargs *oldargs = NULL, *newargs = NULL;
404 	struct sigacts *oldsigacts = NULL, *newsigacts = NULL;
405 #ifdef KTRACE
406 	struct ktr_io_params *kiop;
407 #endif
408 	struct vnode *oldtextvp, *newtextvp;
409 	struct vnode *oldtextdvp, *newtextdvp;
410 	char *oldbinname, *newbinname;
411 	bool credential_changing;
412 #ifdef MAC
413 	struct label *interpvplabel = NULL;
414 	bool will_transition;
415 #endif
416 #ifdef HWPMC_HOOKS
417 	struct pmckern_procexec pe;
418 #endif
419 	int error, i, orig_osrel;
420 	uint32_t orig_fctl0;
421 	Elf_Brandinfo *orig_brandinfo;
422 	size_t freepath_size;
423 	static const char fexecv_proc_title[] = "(fexecv)";
424 
425 	imgp = &image_params;
426 	oldtextvp = oldtextdvp = NULL;
427 	newtextvp = newtextdvp = NULL;
428 	newbinname = oldbinname = NULL;
429 #ifdef KTRACE
430 	kiop = NULL;
431 #endif
432 
433 	/*
434 	 * Lock the process and set the P_INEXEC flag to indicate that
435 	 * it should be left alone until we're done here.  This is
436 	 * necessary to avoid race conditions - e.g. in ptrace() -
437 	 * that might allow a local user to illicitly obtain elevated
438 	 * privileges.
439 	 */
440 	PROC_LOCK(p);
441 	KASSERT((p->p_flag & P_INEXEC) == 0,
442 	    ("%s(): process already has P_INEXEC flag", __func__));
443 	p->p_flag |= P_INEXEC;
444 	PROC_UNLOCK(p);
445 
446 	/*
447 	 * Initialize part of the common data
448 	 */
449 	bzero(imgp, sizeof(*imgp));
450 	imgp->proc = p;
451 	imgp->attr = &attr;
452 	imgp->args = args;
453 	oldcred = p->p_ucred;
454 	orig_osrel = p->p_osrel;
455 	orig_fctl0 = p->p_fctl0;
456 	orig_brandinfo = p->p_elf_brandinfo;
457 
458 #ifdef MAC
459 	error = mac_execve_enter(imgp, mac_p);
460 	if (error)
461 		goto exec_fail;
462 #endif
463 
464 	SDT_PROBE1(proc, , , exec, args->fname);
465 
466 interpret:
467 	if (args->fname != NULL) {
468 #ifdef CAPABILITY_MODE
469 		if (CAP_TRACING(td))
470 			ktrcapfail(CAPFAIL_NAMEI, args->fname);
471 		/*
472 		 * While capability mode can't reach this point via direct
473 		 * path arguments to execve(), we also don't allow
474 		 * interpreters to be used in capability mode (for now).
475 		 * Catch indirect lookups and return a permissions error.
476 		 */
477 		if (IN_CAPABILITY_MODE(td)) {
478 			error = ECAPMODE;
479 			goto exec_fail;
480 		}
481 #endif
482 
483 		/*
484 		 * Translate the file name. namei() returns a vnode
485 		 * pointer in ni_vp among other things.
486 		 */
487 		NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
488 		    AUDITVNODE1 | WANTPARENT, UIO_SYSSPACE,
489 		    args->fname);
490 
491 		error = namei(&nd);
492 		if (error)
493 			goto exec_fail;
494 
495 		newtextvp = nd.ni_vp;
496 		newtextdvp = nd.ni_dvp;
497 		nd.ni_dvp = NULL;
498 		newbinname = malloc(nd.ni_cnd.cn_namelen + 1, M_PARGS,
499 		    M_WAITOK);
500 		memcpy(newbinname, nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen);
501 		newbinname[nd.ni_cnd.cn_namelen] = '\0';
502 		imgp->vp = newtextvp;
503 
504 		/*
505 		 * Do the best to calculate the full path to the image file.
506 		 */
507 		if (args->fname[0] == '/') {
508 			imgp->execpath = args->fname;
509 		} else {
510 			VOP_UNLOCK(imgp->vp);
511 			freepath_size = MAXPATHLEN;
512 			if (vn_fullpath_hardlink(newtextvp, newtextdvp,
513 			    newbinname, nd.ni_cnd.cn_namelen, &imgp->execpath,
514 			    &imgp->freepath, &freepath_size) != 0)
515 				imgp->execpath = args->fname;
516 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
517 		}
518 	} else if (imgp->interpreter_vp) {
519 		/*
520 		 * An image activator has already provided an open vnode
521 		 */
522 		newtextvp = imgp->interpreter_vp;
523 		imgp->interpreter_vp = NULL;
524 		if (vn_fullpath(newtextvp, &imgp->execpath,
525 		    &imgp->freepath) != 0)
526 			imgp->execpath = args->fname;
527 		vn_lock(newtextvp, LK_SHARED | LK_RETRY);
528 		AUDIT_ARG_VNODE1(newtextvp);
529 		imgp->vp = newtextvp;
530 	} else {
531 		AUDIT_ARG_FD(args->fd);
532 
533 		/*
534 		 * If the descriptors was not opened with O_PATH, then
535 		 * we require that it was opened with O_EXEC or
536 		 * O_RDONLY.  In either case, exec_check_permissions()
537 		 * below checks _current_ file access mode regardless
538 		 * of the permissions additionally checked at the
539 		 * open(2).
540 		 */
541 		error = fgetvp_exec(td, args->fd, &cap_fexecve_rights,
542 		    &newtextvp);
543 		if (error != 0)
544 			goto exec_fail;
545 
546 		if (vn_fullpath(newtextvp, &imgp->execpath,
547 		    &imgp->freepath) != 0)
548 			imgp->execpath = args->fname;
549 		vn_lock(newtextvp, LK_SHARED | LK_RETRY);
550 		AUDIT_ARG_VNODE1(newtextvp);
551 		imgp->vp = newtextvp;
552 	}
553 
554 	/*
555 	 * Check file permissions.  Also 'opens' file and sets its vnode to
556 	 * text mode.
557 	 */
558 	error = exec_check_permissions(imgp);
559 	if (error)
560 		goto exec_fail_dealloc;
561 
562 	imgp->object = imgp->vp->v_object;
563 	if (imgp->object != NULL)
564 		vm_object_reference(imgp->object);
565 
566 	error = exec_map_first_page(imgp);
567 	if (error)
568 		goto exec_fail_dealloc;
569 
570 	imgp->proc->p_osrel = 0;
571 	imgp->proc->p_fctl0 = 0;
572 	imgp->proc->p_elf_brandinfo = NULL;
573 
574 	/*
575 	 * Implement image setuid/setgid.
576 	 *
577 	 * Determine new credentials before attempting image activators
578 	 * so that it can be used by process_exec handlers to determine
579 	 * credential/setid changes.
580 	 *
581 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
582 	 * the process is being traced.
583 	 *
584 	 * We disable setuid/setgid/etc in capability mode on the basis
585 	 * that most setugid applications are not written with that
586 	 * environment in mind, and will therefore almost certainly operate
587 	 * incorrectly. In principle there's no reason that setugid
588 	 * applications might not be useful in capability mode, so we may want
589 	 * to reconsider this conservative design choice in the future.
590 	 *
591 	 * XXXMAC: For the time being, use NOSUID to also prohibit
592 	 * transitions on the file system.
593 	 */
594 	credential_changing = false;
595 	credential_changing |= (attr.va_mode & S_ISUID) &&
596 	    oldcred->cr_uid != attr.va_uid;
597 	credential_changing |= (attr.va_mode & S_ISGID) &&
598 	    oldcred->cr_gid != attr.va_gid;
599 #ifdef MAC
600 	will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp,
601 	    interpvplabel, imgp) != 0;
602 	credential_changing |= will_transition;
603 #endif
604 
605 	/* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */
606 	if (credential_changing)
607 		imgp->proc->p_pdeathsig = 0;
608 
609 	if (credential_changing &&
610 #ifdef CAPABILITY_MODE
611 	    ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) &&
612 #endif
613 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
614 	    (p->p_flag & P_TRACED) == 0) {
615 		imgp->credential_setid = true;
616 		VOP_UNLOCK(imgp->vp);
617 		imgp->newcred = crdup(oldcred);
618 		if (attr.va_mode & S_ISUID) {
619 			euip = uifind(attr.va_uid);
620 			change_euid(imgp->newcred, euip);
621 		}
622 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
623 		if (attr.va_mode & S_ISGID)
624 			change_egid(imgp->newcred, attr.va_gid);
625 		/*
626 		 * Implement correct POSIX saved-id behavior.
627 		 *
628 		 * XXXMAC: Note that the current logic will save the
629 		 * uid and gid if a MAC domain transition occurs, even
630 		 * though maybe it shouldn't.
631 		 */
632 		change_svuid(imgp->newcred, imgp->newcred->cr_uid);
633 		change_svgid(imgp->newcred, imgp->newcred->cr_gid);
634 	} else {
635 		/*
636 		 * Implement correct POSIX saved-id behavior.
637 		 *
638 		 * XXX: It's not clear that the existing behavior is
639 		 * POSIX-compliant.  A number of sources indicate that the
640 		 * saved uid/gid should only be updated if the new ruid is
641 		 * not equal to the old ruid, or the new euid is not equal
642 		 * to the old euid and the new euid is not equal to the old
643 		 * ruid.  The FreeBSD code always updates the saved uid/gid.
644 		 * Also, this code uses the new (replaced) euid and egid as
645 		 * the source, which may or may not be the right ones to use.
646 		 */
647 		if (oldcred->cr_svuid != oldcred->cr_uid ||
648 		    oldcred->cr_svgid != oldcred->cr_gid) {
649 			VOP_UNLOCK(imgp->vp);
650 			imgp->newcred = crdup(oldcred);
651 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
652 			change_svuid(imgp->newcred, imgp->newcred->cr_uid);
653 			change_svgid(imgp->newcred, imgp->newcred->cr_gid);
654 		}
655 	}
656 	/* The new credentials are installed into the process later. */
657 
658 	/*
659 	 *	Loop through the list of image activators, calling each one.
660 	 *	An activator returns -1 if there is no match, 0 on success,
661 	 *	and an error otherwise.
662 	 */
663 	error = -1;
664 	for (i = 0; error == -1 && execsw[i]; ++i) {
665 		if (execsw[i]->ex_imgact == NULL)
666 			continue;
667 		error = (*execsw[i]->ex_imgact)(imgp);
668 	}
669 
670 	if (error) {
671 		if (error == -1)
672 			error = ENOEXEC;
673 		goto exec_fail_dealloc;
674 	}
675 
676 	/*
677 	 * Special interpreter operation, cleanup and loop up to try to
678 	 * activate the interpreter.
679 	 */
680 	if (imgp->interpreted) {
681 		exec_unmap_first_page(imgp);
682 		/*
683 		 * The text reference needs to be removed for scripts.
684 		 * There is a short period before we determine that
685 		 * something is a script where text reference is active.
686 		 * The vnode lock is held over this entire period
687 		 * so nothing should illegitimately be blocked.
688 		 */
689 		MPASS(imgp->textset);
690 		VOP_UNSET_TEXT_CHECKED(newtextvp);
691 		imgp->textset = false;
692 		/* free name buffer and old vnode */
693 #ifdef MAC
694 		mac_execve_interpreter_enter(newtextvp, &interpvplabel);
695 #endif
696 		if (imgp->opened) {
697 			VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td);
698 			imgp->opened = false;
699 		}
700 		vput(newtextvp);
701 		imgp->vp = newtextvp = NULL;
702 		if (args->fname != NULL) {
703 			if (newtextdvp != NULL) {
704 				vrele(newtextdvp);
705 				newtextdvp = NULL;
706 			}
707 			NDFREE_PNBUF(&nd);
708 			free(newbinname, M_PARGS);
709 			newbinname = NULL;
710 		}
711 		vm_object_deallocate(imgp->object);
712 		imgp->object = NULL;
713 		execve_nosetid(imgp);
714 		imgp->execpath = NULL;
715 		free(imgp->freepath, M_TEMP);
716 		imgp->freepath = NULL;
717 		/* set new name to that of the interpreter */
718 		if (imgp->interpreter_vp) {
719 			args->fname = NULL;
720 		} else {
721 			args->fname = imgp->interpreter_name;
722 		}
723 		goto interpret;
724 	}
725 
726 	/*
727 	 * NB: We unlock the vnode here because it is believed that none
728 	 * of the sv_copyout_strings/sv_fixup operations require the vnode.
729 	 */
730 	VOP_UNLOCK(imgp->vp);
731 
732 	if (disallow_high_osrel &&
733 	    P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) {
734 		error = ENOEXEC;
735 		uprintf("Osrel %d for image %s too high\n", p->p_osrel,
736 		    imgp->execpath != NULL ? imgp->execpath : "<unresolved>");
737 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
738 		goto exec_fail_dealloc;
739 	}
740 
741 	/*
742 	 * Copy out strings (args and env) and initialize stack base.
743 	 */
744 	error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base);
745 	if (error != 0) {
746 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
747 		goto exec_fail_dealloc;
748 	}
749 
750 	/*
751 	 * Stack setup.
752 	 */
753 	error = (*p->p_sysent->sv_fixup)(&stack_base, imgp);
754 	if (error != 0) {
755 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
756 		goto exec_fail_dealloc;
757 	}
758 
759 	/*
760 	 * For security and other reasons, the file descriptor table cannot be
761 	 * shared after an exec.
762 	 */
763 	fdunshare(td);
764 	pdunshare(td);
765 	/* close files on exec */
766 	fdcloseexec(td);
767 
768 	/*
769 	 * Malloc things before we need locks.
770 	 */
771 	i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv;
772 	/* Cache arguments if they fit inside our allowance */
773 	if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
774 		newargs = pargs_alloc(i);
775 		bcopy(imgp->args->begin_argv, newargs->ar_args, i);
776 	}
777 
778 	/*
779 	 * For security and other reasons, signal handlers cannot
780 	 * be shared after an exec. The new process gets a copy of the old
781 	 * handlers. In execsigs(), the new process will have its signals
782 	 * reset.
783 	 */
784 	if (sigacts_shared(p->p_sigacts)) {
785 		oldsigacts = p->p_sigacts;
786 		newsigacts = sigacts_alloc();
787 		sigacts_copy(newsigacts, oldsigacts);
788 	}
789 
790 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
791 
792 	PROC_LOCK(p);
793 	if (oldsigacts)
794 		p->p_sigacts = newsigacts;
795 	/* Stop profiling */
796 	stopprofclock(p);
797 
798 	/* reset caught signals */
799 	execsigs(p);
800 
801 	/* name this process - nameiexec(p, ndp) */
802 	bzero(p->p_comm, sizeof(p->p_comm));
803 	if (args->fname)
804 		bcopy(nd.ni_cnd.cn_nameptr, p->p_comm,
805 		    min(nd.ni_cnd.cn_namelen, MAXCOMLEN));
806 	else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0)
807 		bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title));
808 	bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
809 #ifdef KTR
810 	sched_clear_tdname(td);
811 #endif
812 
813 	/*
814 	 * mark as execed, wakeup the process that vforked (if any) and tell
815 	 * it that it now has its own resources back
816 	 */
817 	p->p_flag |= P_EXEC;
818 	td->td_pflags2 &= ~TDP2_UEXTERR;
819 	if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0)
820 		p->p_flag2 &= ~P2_NOTRACE;
821 	if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0)
822 		p->p_flag2 &= ~P2_STKGAP_DISABLE;
823 	p->p_flag2 &= ~(P2_MEMBAR_PRIVE | P2_MEMBAR_PRIVE_SYNCORE |
824 	    P2_MEMBAR_GLOBE);
825 	if (p->p_flag & P_PPWAIT) {
826 		p->p_flag &= ~(P_PPWAIT | P_PPTRACE);
827 		cv_broadcast(&p->p_pwait);
828 		/* STOPs are no longer ignored, arrange for AST */
829 		signotify(td);
830 	}
831 
832 	if ((imgp->sysent->sv_setid_allowed != NULL &&
833 	    !(*imgp->sysent->sv_setid_allowed)(td, imgp)) ||
834 	    (p->p_flag2 & P2_NO_NEW_PRIVS) != 0)
835 		execve_nosetid(imgp);
836 
837 	/*
838 	 * Implement image setuid/setgid installation.
839 	 */
840 	if (imgp->credential_setid) {
841 		/*
842 		 * Turn off syscall tracing for set-id programs, except for
843 		 * root.  Record any set-id flags first to make sure that
844 		 * we do not regain any tracing during a possible block.
845 		 */
846 		setsugid(p);
847 #ifdef KTRACE
848 		kiop = ktrprocexec(p);
849 #endif
850 		/*
851 		 * Close any file descriptors 0..2 that reference procfs,
852 		 * then make sure file descriptors 0..2 are in use.
853 		 *
854 		 * Both fdsetugidsafety() and fdcheckstd() may call functions
855 		 * taking sleepable locks, so temporarily drop our locks.
856 		 */
857 		PROC_UNLOCK(p);
858 		VOP_UNLOCK(imgp->vp);
859 		fdsetugidsafety(td);
860 		error = fdcheckstd(td);
861 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
862 		if (error != 0)
863 			goto exec_fail_dealloc;
864 		PROC_LOCK(p);
865 #ifdef MAC
866 		if (will_transition) {
867 			mac_vnode_execve_transition(oldcred, imgp->newcred,
868 			    imgp->vp, interpvplabel, imgp);
869 		}
870 #endif
871 	} else {
872 		if (oldcred->cr_uid == oldcred->cr_ruid &&
873 		    oldcred->cr_gid == oldcred->cr_rgid)
874 			p->p_flag &= ~P_SUGID;
875 	}
876 	/*
877 	 * Set the new credentials.
878 	 */
879 	if (imgp->newcred != NULL) {
880 		proc_set_cred(p, imgp->newcred);
881 		crfree(oldcred);
882 		oldcred = NULL;
883 	}
884 
885 	/*
886 	 * Store the vp for use in kern.proc.pathname.  This vnode was
887 	 * referenced by namei() or by fexecve variant of fname handling.
888 	 */
889 	oldtextvp = p->p_textvp;
890 	p->p_textvp = newtextvp;
891 	oldtextdvp = p->p_textdvp;
892 	p->p_textdvp = newtextdvp;
893 	newtextdvp = NULL;
894 	oldbinname = p->p_binname;
895 	p->p_binname = newbinname;
896 	newbinname = NULL;
897 
898 #ifdef KDTRACE_HOOKS
899 	/*
900 	 * Tell the DTrace fasttrap provider about the exec if it
901 	 * has declared an interest.
902 	 */
903 	if (dtrace_fasttrap_exec)
904 		dtrace_fasttrap_exec(p);
905 #endif
906 
907 	/*
908 	 * Notify others that we exec'd, and clear the P_INEXEC flag
909 	 * as we're now a bona fide freshly-execed process.
910 	 */
911 	KNOTE_LOCKED(p->p_klist, NOTE_EXEC);
912 	p->p_flag &= ~P_INEXEC;
913 
914 	/* clear "fork but no exec" flag, as we _are_ execing */
915 	p->p_acflag &= ~AFORK;
916 
917 	/*
918 	 * Free any previous argument cache and replace it with
919 	 * the new argument cache, if any.
920 	 */
921 	oldargs = p->p_args;
922 	p->p_args = newargs;
923 	newargs = NULL;
924 
925 	PROC_UNLOCK(p);
926 
927 #ifdef	HWPMC_HOOKS
928 	/*
929 	 * Check if system-wide sampling is in effect or if the
930 	 * current process is using PMCs.  If so, do exec() time
931 	 * processing.  This processing needs to happen AFTER the
932 	 * P_INEXEC flag is cleared.
933 	 */
934 	if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) {
935 		VOP_UNLOCK(imgp->vp);
936 		pe.pm_credentialschanged = credential_changing;
937 		pe.pm_baseaddr = imgp->reloc_base;
938 		pe.pm_dynaddr = imgp->et_dyn_addr;
939 
940 		PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe);
941 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
942 	}
943 #endif
944 
945 #ifdef HWT_HOOKS
946 	if ((td->td_proc->p_flag2 & P2_HWT) != 0) {
947 		struct hwt_record_entry ent;
948 
949 		VOP_UNLOCK(imgp->vp);
950 		ent.fullpath = imgp->execpath;
951 		ent.addr = imgp->et_dyn_addr;
952 		ent.baseaddr = imgp->reloc_base;
953 		ent.record_type = HWT_RECORD_EXECUTABLE;
954 		HWT_CALL_HOOK(td, HWT_EXEC, &ent);
955 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
956 	}
957 #endif
958 
959 	/* Set values passed into the program in registers. */
960 	(*p->p_sysent->sv_setregs)(td, imgp, stack_base);
961 
962 	VOP_MMAPPED(imgp->vp);
963 
964 	SDT_PROBE1(proc, , , exec__success, args->fname);
965 
966 exec_fail_dealloc:
967 	if (error != 0) {
968 		p->p_osrel = orig_osrel;
969 		p->p_fctl0 = orig_fctl0;
970 		p->p_elf_brandinfo = orig_brandinfo;
971 	}
972 
973 	if (imgp->firstpage != NULL)
974 		exec_unmap_first_page(imgp);
975 
976 	if (imgp->vp != NULL) {
977 		if (imgp->opened)
978 			VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td);
979 		if (imgp->textset)
980 			VOP_UNSET_TEXT_CHECKED(imgp->vp);
981 		if (error != 0)
982 			vput(imgp->vp);
983 		else
984 			VOP_UNLOCK(imgp->vp);
985 		if (args->fname != NULL)
986 			NDFREE_PNBUF(&nd);
987 		if (newtextdvp != NULL)
988 			vrele(newtextdvp);
989 		free(newbinname, M_PARGS);
990 	}
991 
992 	if (imgp->object != NULL)
993 		vm_object_deallocate(imgp->object);
994 
995 	free(imgp->freepath, M_TEMP);
996 
997 	if (error == 0) {
998 		if (p->p_ptevents & PTRACE_EXEC) {
999 			PROC_LOCK(p);
1000 			if (p->p_ptevents & PTRACE_EXEC)
1001 				td->td_dbgflags |= TDB_EXEC;
1002 			PROC_UNLOCK(p);
1003 		}
1004 	} else {
1005 exec_fail:
1006 		/* we're done here, clear P_INEXEC */
1007 		PROC_LOCK(p);
1008 		p->p_flag &= ~P_INEXEC;
1009 		PROC_UNLOCK(p);
1010 
1011 		SDT_PROBE1(proc, , , exec__failure, error);
1012 	}
1013 
1014 	if (imgp->newcred != NULL && oldcred != NULL)
1015 		crfree(imgp->newcred);
1016 
1017 #ifdef MAC
1018 	mac_execve_exit(imgp);
1019 	mac_execve_interpreter_exit(interpvplabel);
1020 #endif
1021 	exec_free_args(args);
1022 
1023 	/*
1024 	 * Handle deferred decrement of ref counts.
1025 	 */
1026 	if (oldtextvp != NULL)
1027 		vrele(oldtextvp);
1028 	if (oldtextdvp != NULL)
1029 		vrele(oldtextdvp);
1030 	free(oldbinname, M_PARGS);
1031 #ifdef KTRACE
1032 	ktr_io_params_free(kiop);
1033 #endif
1034 	pargs_drop(oldargs);
1035 	pargs_drop(newargs);
1036 	if (oldsigacts != NULL)
1037 		sigacts_free(oldsigacts);
1038 	if (euip != NULL)
1039 		uifree(euip);
1040 
1041 	if (error && imgp->vmspace_destroyed) {
1042 		/* sorry, no more process anymore. exit gracefully */
1043 		exec_cleanup(td, oldvmspace);
1044 		exit1(td, 0, SIGABRT);
1045 		/* NOT REACHED */
1046 	}
1047 
1048 #ifdef KTRACE
1049 	if (error == 0)
1050 		ktrprocctor(p);
1051 #endif
1052 
1053 	/*
1054 	 * We don't want cpu_set_syscall_retval() to overwrite any of
1055 	 * the register values put in place by exec_setregs().
1056 	 * Implementations of cpu_set_syscall_retval() will leave
1057 	 * registers unmodified when returning EJUSTRETURN.
1058 	 */
1059 	return (error == 0 ? EJUSTRETURN : error);
1060 }
1061 
1062 void
exec_cleanup(struct thread * td,struct vmspace * oldvmspace)1063 exec_cleanup(struct thread *td, struct vmspace *oldvmspace)
1064 {
1065 	if ((td->td_pflags & TDP_EXECVMSPC) != 0) {
1066 		KASSERT(td->td_proc->p_vmspace != oldvmspace,
1067 		    ("oldvmspace still used"));
1068 		vmspace_free(oldvmspace);
1069 		td->td_pflags &= ~TDP_EXECVMSPC;
1070 	}
1071 }
1072 
1073 int
exec_map_first_page(struct image_params * imgp)1074 exec_map_first_page(struct image_params *imgp)
1075 {
1076 	vm_object_t object;
1077 	vm_page_t m;
1078 	int error;
1079 
1080 	if (imgp->firstpage != NULL)
1081 		exec_unmap_first_page(imgp);
1082 
1083 	object = imgp->vp->v_object;
1084 	if (object == NULL)
1085 		return (EACCES);
1086 #if VM_NRESERVLEVEL > 0
1087 	if ((object->flags & OBJ_COLORED) == 0) {
1088 		VM_OBJECT_WLOCK(object);
1089 		vm_object_color(object, 0);
1090 		VM_OBJECT_WUNLOCK(object);
1091 	}
1092 #endif
1093 	error = vm_page_grab_valid_unlocked(&m, object, 0,
1094 	    VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) |
1095 	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
1096 
1097 	if (error != VM_PAGER_OK)
1098 		return (EIO);
1099 	imgp->firstpage = sf_buf_alloc(m, 0);
1100 	imgp->image_header = (char *)sf_buf_kva(imgp->firstpage);
1101 
1102 	return (0);
1103 }
1104 
1105 void
exec_unmap_first_page(struct image_params * imgp)1106 exec_unmap_first_page(struct image_params *imgp)
1107 {
1108 	vm_page_t m;
1109 
1110 	if (imgp->firstpage != NULL) {
1111 		m = sf_buf_page(imgp->firstpage);
1112 		sf_buf_free(imgp->firstpage);
1113 		imgp->firstpage = NULL;
1114 		vm_page_unwire(m, PQ_ACTIVE);
1115 	}
1116 }
1117 
1118 void
exec_onexec_old(struct thread * td)1119 exec_onexec_old(struct thread *td)
1120 {
1121 	sigfastblock_clear(td);
1122 	umtx_exec(td->td_proc);
1123 }
1124 
1125 /*
1126  * This is an optimization which removes the unmanaged shared page
1127  * mapping. In combination with pmap_remove_pages(), which cleans all
1128  * managed mappings in the process' vmspace pmap, no work will be left
1129  * for pmap_remove(min, max).
1130  */
1131 void
exec_free_abi_mappings(struct proc * p)1132 exec_free_abi_mappings(struct proc *p)
1133 {
1134 	struct vmspace *vmspace;
1135 
1136 	vmspace = p->p_vmspace;
1137 	if (refcount_load(&vmspace->vm_refcnt) != 1)
1138 		return;
1139 
1140 	if (!PROC_HAS_SHP(p))
1141 		return;
1142 
1143 	pmap_remove(vmspace_pmap(vmspace), vmspace->vm_shp_base,
1144 	    vmspace->vm_shp_base + p->p_sysent->sv_shared_page_len);
1145 }
1146 
1147 /*
1148  * Run down the current address space and install a new one.
1149  */
1150 int
exec_new_vmspace(struct image_params * imgp,struct sysentvec * sv)1151 exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv)
1152 {
1153 	int error;
1154 	struct proc *p = imgp->proc;
1155 	struct vmspace *vmspace = p->p_vmspace;
1156 	struct thread *td = curthread;
1157 	vm_offset_t sv_minuser;
1158 	vm_map_t map;
1159 
1160 	imgp->vmspace_destroyed = true;
1161 	imgp->sysent = sv;
1162 
1163 	if (p->p_sysent->sv_onexec_old != NULL)
1164 		p->p_sysent->sv_onexec_old(td);
1165 	itimers_exec(p);
1166 
1167 	EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp);
1168 
1169 	/*
1170 	 * Blow away entire process VM, if address space not shared,
1171 	 * otherwise, create a new VM space so that other threads are
1172 	 * not disrupted
1173 	 */
1174 	map = &vmspace->vm_map;
1175 	if (map_at_zero)
1176 		sv_minuser = sv->sv_minuser;
1177 	else
1178 		sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE);
1179 	if (refcount_load(&vmspace->vm_refcnt) == 1 &&
1180 	    vm_map_min(map) == sv_minuser &&
1181 	    vm_map_max(map) == sv->sv_maxuser &&
1182 	    cpu_exec_vmspace_reuse(p, map)) {
1183 		exec_free_abi_mappings(p);
1184 		shmexit(vmspace);
1185 		pmap_remove_pages(vmspace_pmap(vmspace));
1186 		vm_map_remove(map, vm_map_min(map), vm_map_max(map));
1187 		/*
1188 		 * An exec terminates mlockall(MCL_FUTURE).
1189 		 * ASLR and W^X states must be re-evaluated.
1190 		 */
1191 		vm_map_lock(map);
1192 		vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR |
1193 		    MAP_ASLR_IGNSTART | MAP_ASLR_STACK | MAP_WXORX);
1194 		vm_map_unlock(map);
1195 	} else {
1196 		error = vmspace_exec(p, sv_minuser, sv->sv_maxuser);
1197 		if (error)
1198 			return (error);
1199 		vmspace = p->p_vmspace;
1200 		map = &vmspace->vm_map;
1201 	}
1202 	map->flags |= imgp->map_flags;
1203 
1204 	return (sv->sv_onexec != NULL ? sv->sv_onexec(p, imgp) : 0);
1205 }
1206 
1207 /*
1208  * Compute the stack size limit and map the main process stack.
1209  * Map the shared page.
1210  */
1211 int
exec_map_stack(struct image_params * imgp)1212 exec_map_stack(struct image_params *imgp)
1213 {
1214 	struct rlimit rlim_stack;
1215 	struct sysentvec *sv;
1216 	struct proc *p;
1217 	vm_map_t map;
1218 	struct vmspace *vmspace;
1219 	vm_offset_t stack_addr, stack_top;
1220 	vm_offset_t sharedpage_addr;
1221 	u_long ssiz;
1222 	int error, find_space, stack_off;
1223 	vm_prot_t stack_prot;
1224 	vm_object_t obj;
1225 
1226 	p = imgp->proc;
1227 	sv = p->p_sysent;
1228 
1229 	if (imgp->stack_sz != 0) {
1230 		ssiz = trunc_page(imgp->stack_sz);
1231 		PROC_LOCK(p);
1232 		lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack);
1233 		PROC_UNLOCK(p);
1234 		if (ssiz > rlim_stack.rlim_max)
1235 			ssiz = rlim_stack.rlim_max;
1236 		if (ssiz > rlim_stack.rlim_cur) {
1237 			rlim_stack.rlim_cur = ssiz;
1238 			kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack);
1239 		}
1240 	} else if (sv->sv_maxssiz != NULL) {
1241 		ssiz = *sv->sv_maxssiz;
1242 	} else {
1243 		ssiz = maxssiz;
1244 	}
1245 
1246 	vmspace = p->p_vmspace;
1247 	map = &vmspace->vm_map;
1248 
1249 	stack_prot = sv->sv_shared_page_obj != NULL && imgp->stack_prot != 0 ?
1250 	    imgp->stack_prot : sv->sv_stackprot;
1251 	if ((map->flags & MAP_ASLR_STACK) != 0) {
1252 		stack_addr = round_page((vm_offset_t)p->p_vmspace->vm_daddr +
1253 		    lim_max(curthread, RLIMIT_DATA));
1254 		find_space = VMFS_ANY_SPACE;
1255 	} else {
1256 		stack_addr = sv->sv_usrstack - ssiz;
1257 		find_space = VMFS_NO_SPACE;
1258 	}
1259 	error = vm_map_find(map, NULL, 0, &stack_addr, (vm_size_t)ssiz,
1260 	    sv->sv_usrstack, find_space, stack_prot, VM_PROT_ALL,
1261 	    MAP_STACK_AREA);
1262 	if (error != KERN_SUCCESS) {
1263 		uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x "
1264 		    "failed, mach error %d errno %d\n", (uintmax_t)ssiz,
1265 		    stack_prot, error, vm_mmap_to_errno(error));
1266 		return (vm_mmap_to_errno(error));
1267 	}
1268 
1269 	stack_top = stack_addr + ssiz;
1270 	if ((map->flags & MAP_ASLR_STACK) != 0) {
1271 		/* Randomize within the first page of the stack. */
1272 		arc4rand(&stack_off, sizeof(stack_off), 0);
1273 		stack_top -= rounddown2(stack_off & PAGE_MASK, sizeof(void *));
1274 	}
1275 
1276 	/* Map a shared page */
1277 	obj = sv->sv_shared_page_obj;
1278 	if (obj == NULL) {
1279 		sharedpage_addr = 0;
1280 		goto out;
1281 	}
1282 
1283 	/*
1284 	 * If randomization is disabled then the shared page will
1285 	 * be mapped at address specified in sysentvec.
1286 	 * Otherwise any address above .data section can be selected.
1287 	 * Same logic is used for stack address randomization.
1288 	 * If the address randomization is applied map a guard page
1289 	 * at the top of UVA.
1290 	 */
1291 	vm_object_reference(obj);
1292 	if ((imgp->imgp_flags & IMGP_ASLR_SHARED_PAGE) != 0) {
1293 		sharedpage_addr = round_page((vm_offset_t)p->p_vmspace->vm_daddr +
1294 		    lim_max(curthread, RLIMIT_DATA));
1295 
1296 		error = vm_map_fixed(map, NULL, 0,
1297 		    sv->sv_maxuser - PAGE_SIZE, PAGE_SIZE,
1298 		    VM_PROT_NONE, VM_PROT_NONE, MAP_CREATE_GUARD);
1299 		if (error != KERN_SUCCESS) {
1300 			/*
1301 			 * This is not fatal, so let's just print a warning
1302 			 * and continue.
1303 			 */
1304 			uprintf("%s: Mapping guard page at the top of UVA failed"
1305 			    " mach error %d errno %d",
1306 			    __func__, error, vm_mmap_to_errno(error));
1307 		}
1308 
1309 		error = vm_map_find(map, obj, 0,
1310 		    &sharedpage_addr, sv->sv_shared_page_len,
1311 		    sv->sv_maxuser, VMFS_ANY_SPACE,
1312 		    VM_PROT_READ | VM_PROT_EXECUTE,
1313 		    VM_PROT_READ | VM_PROT_EXECUTE,
1314 		    MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
1315 	} else {
1316 		sharedpage_addr = sv->sv_shared_page_base;
1317 		vm_map_fixed(map, obj, 0,
1318 		    sharedpage_addr, sv->sv_shared_page_len,
1319 		    VM_PROT_READ | VM_PROT_EXECUTE,
1320 		    VM_PROT_READ | VM_PROT_EXECUTE,
1321 		    MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
1322 	}
1323 	if (error != KERN_SUCCESS) {
1324 		uprintf("%s: mapping shared page at addr: %p"
1325 		    "failed, mach error %d errno %d\n", __func__,
1326 		    (void *)sharedpage_addr, error, vm_mmap_to_errno(error));
1327 		vm_object_deallocate(obj);
1328 		return (vm_mmap_to_errno(error));
1329 	}
1330 out:
1331 	/*
1332 	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they
1333 	 * are still used to enforce the stack rlimit on the process stack.
1334 	 */
1335 	vmspace->vm_maxsaddr = (char *)stack_addr;
1336 	vmspace->vm_stacktop = stack_top;
1337 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
1338 	vmspace->vm_shp_base = sharedpage_addr;
1339 
1340 	return (0);
1341 }
1342 
1343 /*
1344  * Copy out argument and environment strings from the old process address
1345  * space into the temporary string buffer.
1346  */
1347 int
exec_copyin_args(struct image_args * args,const char * fname,char ** argv,char ** envv)1348 exec_copyin_args(struct image_args *args, const char *fname,
1349     char **argv, char **envv)
1350 {
1351 	u_long arg, env;
1352 	int error;
1353 
1354 	bzero(args, sizeof(*args));
1355 	if (argv == NULL)
1356 		return (EFAULT);
1357 
1358 	/*
1359 	 * Allocate demand-paged memory for the file name, argument, and
1360 	 * environment strings.
1361 	 */
1362 	error = exec_alloc_args(args);
1363 	if (error != 0)
1364 		return (error);
1365 
1366 	/*
1367 	 * Copy the file name.
1368 	 */
1369 	error = exec_args_add_fname(args, fname, UIO_USERSPACE);
1370 	if (error != 0)
1371 		goto err_exit;
1372 
1373 	/*
1374 	 * extract arguments first
1375 	 */
1376 	for (;;) {
1377 		error = fueword(argv++, &arg);
1378 		if (error == -1) {
1379 			error = EFAULT;
1380 			goto err_exit;
1381 		}
1382 		if (arg == 0)
1383 			break;
1384 		error = exec_args_add_arg(args, (char *)(uintptr_t)arg,
1385 		    UIO_USERSPACE);
1386 		if (error != 0)
1387 			goto err_exit;
1388 	}
1389 
1390 	/*
1391 	 * extract environment strings
1392 	 */
1393 	if (envv) {
1394 		for (;;) {
1395 			error = fueword(envv++, &env);
1396 			if (error == -1) {
1397 				error = EFAULT;
1398 				goto err_exit;
1399 			}
1400 			if (env == 0)
1401 				break;
1402 			error = exec_args_add_env(args,
1403 			    (char *)(uintptr_t)env, UIO_USERSPACE);
1404 			if (error != 0)
1405 				goto err_exit;
1406 		}
1407 	}
1408 
1409 	return (0);
1410 
1411 err_exit:
1412 	exec_free_args(args);
1413 	return (error);
1414 }
1415 
1416 struct exec_args_kva {
1417 	vm_offset_t addr;
1418 	u_int gen;
1419 	SLIST_ENTRY(exec_args_kva) next;
1420 };
1421 
1422 DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva);
1423 
1424 static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist;
1425 static struct mtx exec_args_kva_mtx;
1426 static u_int exec_args_gen;
1427 
1428 static void
exec_prealloc_args_kva(void * arg __unused)1429 exec_prealloc_args_kva(void *arg __unused)
1430 {
1431 	struct exec_args_kva *argkva;
1432 	u_int i;
1433 
1434 	SLIST_INIT(&exec_args_kva_freelist);
1435 	mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF);
1436 	for (i = 0; i < exec_map_entries; i++) {
1437 		argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK);
1438 		argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size);
1439 		argkva->gen = exec_args_gen;
1440 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1441 	}
1442 }
1443 SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL);
1444 
1445 static vm_offset_t
exec_alloc_args_kva(void ** cookie)1446 exec_alloc_args_kva(void **cookie)
1447 {
1448 	struct exec_args_kva *argkva;
1449 
1450 	argkva = (void *)atomic_readandclear_ptr(
1451 	    (uintptr_t *)DPCPU_PTR(exec_args_kva));
1452 	if (argkva == NULL) {
1453 		mtx_lock(&exec_args_kva_mtx);
1454 		while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL)
1455 			(void)mtx_sleep(&exec_args_kva_freelist,
1456 			    &exec_args_kva_mtx, 0, "execkva", 0);
1457 		SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next);
1458 		mtx_unlock(&exec_args_kva_mtx);
1459 	}
1460 	kasan_mark((void *)argkva->addr, exec_map_entry_size,
1461 	    exec_map_entry_size, 0);
1462 	*(struct exec_args_kva **)cookie = argkva;
1463 	return (argkva->addr);
1464 }
1465 
1466 static void
exec_release_args_kva(struct exec_args_kva * argkva,u_int gen)1467 exec_release_args_kva(struct exec_args_kva *argkva, u_int gen)
1468 {
1469 	vm_offset_t base;
1470 
1471 	base = argkva->addr;
1472 	kasan_mark((void *)argkva->addr, 0, exec_map_entry_size,
1473 	    KASAN_EXEC_ARGS_FREED);
1474 	if (argkva->gen != gen) {
1475 		(void)vm_map_madvise(exec_map, base, base + exec_map_entry_size,
1476 		    MADV_FREE);
1477 		argkva->gen = gen;
1478 	}
1479 	if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva),
1480 	    (uintptr_t)NULL, (uintptr_t)argkva)) {
1481 		mtx_lock(&exec_args_kva_mtx);
1482 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1483 		wakeup_one(&exec_args_kva_freelist);
1484 		mtx_unlock(&exec_args_kva_mtx);
1485 	}
1486 }
1487 
1488 static void
exec_free_args_kva(void * cookie)1489 exec_free_args_kva(void *cookie)
1490 {
1491 
1492 	exec_release_args_kva(cookie, exec_args_gen);
1493 }
1494 
1495 static void
exec_args_kva_lowmem(void * arg __unused,int flags __unused)1496 exec_args_kva_lowmem(void *arg __unused, int flags __unused)
1497 {
1498 	SLIST_HEAD(, exec_args_kva) head;
1499 	struct exec_args_kva *argkva;
1500 	u_int gen;
1501 	int i;
1502 
1503 	gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1;
1504 
1505 	/*
1506 	 * Force an madvise of each KVA range. Any currently allocated ranges
1507 	 * will have MADV_FREE applied once they are freed.
1508 	 */
1509 	SLIST_INIT(&head);
1510 	mtx_lock(&exec_args_kva_mtx);
1511 	SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva);
1512 	mtx_unlock(&exec_args_kva_mtx);
1513 	while ((argkva = SLIST_FIRST(&head)) != NULL) {
1514 		SLIST_REMOVE_HEAD(&head, next);
1515 		exec_release_args_kva(argkva, gen);
1516 	}
1517 
1518 	CPU_FOREACH(i) {
1519 		argkva = (void *)atomic_readandclear_ptr(
1520 		    (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva));
1521 		if (argkva != NULL)
1522 			exec_release_args_kva(argkva, gen);
1523 	}
1524 }
1525 EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL,
1526     EVENTHANDLER_PRI_ANY);
1527 
1528 /*
1529  * Allocate temporary demand-paged, zero-filled memory for the file name,
1530  * argument, and environment strings.
1531  */
1532 int
exec_alloc_args(struct image_args * args)1533 exec_alloc_args(struct image_args *args)
1534 {
1535 
1536 	args->buf = (char *)exec_alloc_args_kva(&args->bufkva);
1537 	return (0);
1538 }
1539 
1540 void
exec_free_args(struct image_args * args)1541 exec_free_args(struct image_args *args)
1542 {
1543 
1544 	if (args->buf != NULL) {
1545 		exec_free_args_kva(args->bufkva);
1546 		args->buf = NULL;
1547 	}
1548 	if (args->fname_buf != NULL) {
1549 		free(args->fname_buf, M_TEMP);
1550 		args->fname_buf = NULL;
1551 	}
1552 }
1553 
1554 /*
1555  * A set to functions to fill struct image args.
1556  *
1557  * NOTE: exec_args_add_fname() must be called (possibly with a NULL
1558  * fname) before the other functions.  All exec_args_add_arg() calls must
1559  * be made before any exec_args_add_env() calls.  exec_args_adjust_args()
1560  * may be called any time after exec_args_add_fname().
1561  *
1562  * exec_args_add_fname() - install path to be executed
1563  * exec_args_add_arg() - append an argument string
1564  * exec_args_add_env() - append an env string
1565  * exec_args_adjust_args() - adjust location of the argument list to
1566  *                           allow new arguments to be prepended
1567  */
1568 int
exec_args_add_fname(struct image_args * args,const char * fname,enum uio_seg segflg)1569 exec_args_add_fname(struct image_args *args, const char *fname,
1570     enum uio_seg segflg)
1571 {
1572 	int error;
1573 	size_t length;
1574 
1575 	KASSERT(args->fname == NULL, ("fname already appended"));
1576 	KASSERT(args->endp == NULL, ("already appending to args"));
1577 
1578 	if (fname != NULL) {
1579 		args->fname = args->buf;
1580 		error = segflg == UIO_SYSSPACE ?
1581 		    copystr(fname, args->fname, PATH_MAX, &length) :
1582 		    copyinstr(fname, args->fname, PATH_MAX, &length);
1583 		if (error != 0)
1584 			return (error == ENAMETOOLONG ? E2BIG : error);
1585 	} else
1586 		length = 0;
1587 
1588 	/* Set up for _arg_*()/_env_*() */
1589 	args->endp = args->buf + length;
1590 	/* begin_argv must be set and kept updated */
1591 	args->begin_argv = args->endp;
1592 	KASSERT(exec_map_entry_size - length >= ARG_MAX,
1593 	    ("too little space remaining for arguments %zu < %zu",
1594 	    exec_map_entry_size - length, (size_t)ARG_MAX));
1595 	args->stringspace = ARG_MAX;
1596 
1597 	return (0);
1598 }
1599 
1600 static int
exec_args_add_str(struct image_args * args,const char * str,enum uio_seg segflg,int * countp)1601 exec_args_add_str(struct image_args *args, const char *str,
1602     enum uio_seg segflg, int *countp)
1603 {
1604 	int error;
1605 	size_t length;
1606 
1607 	KASSERT(args->endp != NULL, ("endp not initialized"));
1608 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1609 
1610 	error = (segflg == UIO_SYSSPACE) ?
1611 	    copystr(str, args->endp, args->stringspace, &length) :
1612 	    copyinstr(str, args->endp, args->stringspace, &length);
1613 	if (error != 0)
1614 		return (error == ENAMETOOLONG ? E2BIG : error);
1615 	args->stringspace -= length;
1616 	args->endp += length;
1617 	(*countp)++;
1618 
1619 	return (0);
1620 }
1621 
1622 int
exec_args_add_arg(struct image_args * args,const char * argp,enum uio_seg segflg)1623 exec_args_add_arg(struct image_args *args, const char *argp,
1624     enum uio_seg segflg)
1625 {
1626 
1627 	KASSERT(args->envc == 0, ("appending args after env"));
1628 
1629 	return (exec_args_add_str(args, argp, segflg, &args->argc));
1630 }
1631 
1632 int
exec_args_add_env(struct image_args * args,const char * envp,enum uio_seg segflg)1633 exec_args_add_env(struct image_args *args, const char *envp,
1634     enum uio_seg segflg)
1635 {
1636 
1637 	if (args->envc == 0)
1638 		args->begin_envv = args->endp;
1639 
1640 	return (exec_args_add_str(args, envp, segflg, &args->envc));
1641 }
1642 
1643 int
exec_args_adjust_args(struct image_args * args,size_t consume,ssize_t extend)1644 exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend)
1645 {
1646 	ssize_t offset;
1647 
1648 	KASSERT(args->endp != NULL, ("endp not initialized"));
1649 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1650 
1651 	offset = extend - consume;
1652 	if (args->stringspace < offset)
1653 		return (E2BIG);
1654 	memmove(args->begin_argv + extend, args->begin_argv + consume,
1655 	    args->endp - args->begin_argv + consume);
1656 	if (args->envc > 0)
1657 		args->begin_envv += offset;
1658 	args->endp += offset;
1659 	args->stringspace -= offset;
1660 	return (0);
1661 }
1662 
1663 char *
exec_args_get_begin_envv(struct image_args * args)1664 exec_args_get_begin_envv(struct image_args *args)
1665 {
1666 
1667 	KASSERT(args->endp != NULL, ("endp not initialized"));
1668 
1669 	if (args->envc > 0)
1670 		return (args->begin_envv);
1671 	return (args->endp);
1672 }
1673 
1674 /*
1675  * Copy strings out to the new process address space, constructing new arg
1676  * and env vector tables. Return a pointer to the base so that it can be used
1677  * as the initial stack pointer.
1678  */
1679 int
exec_copyout_strings(struct image_params * imgp,uintptr_t * stack_base)1680 exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
1681 {
1682 	int argc, envc;
1683 	char **vectp;
1684 	char *stringp;
1685 	uintptr_t destp, ustringp;
1686 	struct ps_strings *arginfo;
1687 	struct proc *p;
1688 	struct sysentvec *sysent;
1689 	size_t execpath_len;
1690 	int error, szsigcode;
1691 	char canary[sizeof(long) * 8];
1692 
1693 	p = imgp->proc;
1694 	sysent = p->p_sysent;
1695 
1696 	destp =	PROC_PS_STRINGS(p);
1697 	arginfo = imgp->ps_strings = (void *)destp;
1698 
1699 	/*
1700 	 * Install sigcode.
1701 	 */
1702 	if (sysent->sv_shared_page_base == 0 && sysent->sv_szsigcode != NULL) {
1703 		szsigcode = *(sysent->sv_szsigcode);
1704 		destp -= szsigcode;
1705 		destp = rounddown2(destp, sizeof(void *));
1706 		error = copyout(sysent->sv_sigcode, (void *)destp, szsigcode);
1707 		if (error != 0)
1708 			return (error);
1709 	}
1710 
1711 	/*
1712 	 * Copy the image path for the rtld.
1713 	 */
1714 	if (imgp->execpath != NULL && imgp->auxargs != NULL) {
1715 		execpath_len = strlen(imgp->execpath) + 1;
1716 		destp -= execpath_len;
1717 		destp = rounddown2(destp, sizeof(void *));
1718 		imgp->execpathp = (void *)destp;
1719 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
1720 		if (error != 0)
1721 			return (error);
1722 	}
1723 
1724 	/*
1725 	 * Prepare the canary for SSP.
1726 	 */
1727 	arc4rand(canary, sizeof(canary), 0);
1728 	destp -= sizeof(canary);
1729 	imgp->canary = (void *)destp;
1730 	error = copyout(canary, imgp->canary, sizeof(canary));
1731 	if (error != 0)
1732 		return (error);
1733 	imgp->canarylen = sizeof(canary);
1734 
1735 	/*
1736 	 * Prepare the pagesizes array.
1737 	 */
1738 	imgp->pagesizeslen = sizeof(pagesizes[0]) * MAXPAGESIZES;
1739 	destp -= imgp->pagesizeslen;
1740 	destp = rounddown2(destp, sizeof(void *));
1741 	imgp->pagesizes = (void *)destp;
1742 	error = copyout(pagesizes, imgp->pagesizes, imgp->pagesizeslen);
1743 	if (error != 0)
1744 		return (error);
1745 
1746 	/*
1747 	 * Allocate room for the argument and environment strings.
1748 	 */
1749 	destp -= ARG_MAX - imgp->args->stringspace;
1750 	destp = rounddown2(destp, sizeof(void *));
1751 	ustringp = destp;
1752 
1753 	if (imgp->auxargs) {
1754 		/*
1755 		 * Allocate room on the stack for the ELF auxargs
1756 		 * array.  It has up to AT_COUNT entries.
1757 		 */
1758 		destp -= AT_COUNT * sizeof(Elf_Auxinfo);
1759 		destp = rounddown2(destp, sizeof(void *));
1760 	}
1761 
1762 	vectp = (char **)destp;
1763 
1764 	/*
1765 	 * Allocate room for the argv[] and env vectors including the
1766 	 * terminating NULL pointers.
1767 	 */
1768 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
1769 
1770 	/*
1771 	 * vectp also becomes our initial stack base
1772 	 */
1773 	*stack_base = (uintptr_t)vectp;
1774 
1775 	stringp = imgp->args->begin_argv;
1776 	argc = imgp->args->argc;
1777 	envc = imgp->args->envc;
1778 
1779 	/*
1780 	 * Copy out strings - arguments and environment.
1781 	 */
1782 	error = copyout(stringp, (void *)ustringp,
1783 	    ARG_MAX - imgp->args->stringspace);
1784 	if (error != 0)
1785 		return (error);
1786 
1787 	/*
1788 	 * Fill in "ps_strings" struct for ps, w, etc.
1789 	 */
1790 	imgp->argv = vectp;
1791 	if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 ||
1792 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
1793 		return (EFAULT);
1794 
1795 	/*
1796 	 * Fill in argument portion of vector table.
1797 	 */
1798 	for (; argc > 0; --argc) {
1799 		if (suword(vectp++, ustringp) != 0)
1800 			return (EFAULT);
1801 		while (*stringp++ != 0)
1802 			ustringp++;
1803 		ustringp++;
1804 	}
1805 
1806 	/* a null vector table pointer separates the argp's from the envp's */
1807 	if (suword(vectp++, 0) != 0)
1808 		return (EFAULT);
1809 
1810 	imgp->envv = vectp;
1811 	if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 ||
1812 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
1813 		return (EFAULT);
1814 
1815 	/*
1816 	 * Fill in environment portion of vector table.
1817 	 */
1818 	for (; envc > 0; --envc) {
1819 		if (suword(vectp++, ustringp) != 0)
1820 			return (EFAULT);
1821 		while (*stringp++ != 0)
1822 			ustringp++;
1823 		ustringp++;
1824 	}
1825 
1826 	/* end of vector table is a null pointer */
1827 	if (suword(vectp, 0) != 0)
1828 		return (EFAULT);
1829 
1830 	if (imgp->auxargs) {
1831 		vectp++;
1832 		error = imgp->sysent->sv_copyout_auxargs(imgp,
1833 		    (uintptr_t)vectp);
1834 		if (error != 0)
1835 			return (error);
1836 	}
1837 
1838 	return (0);
1839 }
1840 
1841 /*
1842  * Check permissions of file to execute.
1843  *	Called with imgp->vp locked.
1844  *	Return 0 for success or error code on failure.
1845  */
1846 int
exec_check_permissions(struct image_params * imgp)1847 exec_check_permissions(struct image_params *imgp)
1848 {
1849 	struct vnode *vp = imgp->vp;
1850 	struct vattr *attr = imgp->attr;
1851 	struct thread *td;
1852 	int error;
1853 
1854 	td = curthread;
1855 
1856 	/* Get file attributes */
1857 	error = VOP_GETATTR(vp, attr, td->td_ucred);
1858 	if (error)
1859 		return (error);
1860 
1861 #ifdef MAC
1862 	error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp);
1863 	if (error)
1864 		return (error);
1865 #endif
1866 
1867 	/*
1868 	 * 1) Check if file execution is disabled for the filesystem that
1869 	 *    this file resides on.
1870 	 * 2) Ensure that at least one execute bit is on. Otherwise, a
1871 	 *    privileged user will always succeed, and we don't want this
1872 	 *    to happen unless the file really is executable.
1873 	 * 3) Ensure that the file is a regular file.
1874 	 */
1875 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1876 	    (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 ||
1877 	    (attr->va_type != VREG))
1878 		return (EACCES);
1879 
1880 	/*
1881 	 * Zero length files can't be exec'd
1882 	 */
1883 	if (attr->va_size == 0)
1884 		return (ENOEXEC);
1885 
1886 	/*
1887 	 *  Check for execute permission to file based on current credentials.
1888 	 */
1889 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
1890 	if (error)
1891 		return (error);
1892 
1893 	/*
1894 	 * Check number of open-for-writes on the file and deny execution
1895 	 * if there are any.
1896 	 *
1897 	 * Add a text reference now so no one can write to the
1898 	 * executable while we're activating it.
1899 	 *
1900 	 * Remember if this was set before and unset it in case this is not
1901 	 * actually an executable image.
1902 	 */
1903 	error = VOP_SET_TEXT(vp);
1904 	if (error != 0)
1905 		return (error);
1906 	imgp->textset = true;
1907 
1908 	/*
1909 	 * Call filesystem specific open routine (which does nothing in the
1910 	 * general case).
1911 	 */
1912 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
1913 	if (error == 0)
1914 		imgp->opened = true;
1915 	return (error);
1916 }
1917 
1918 /*
1919  * Exec handler registration
1920  */
1921 int
exec_register(const struct execsw * execsw_arg)1922 exec_register(const struct execsw *execsw_arg)
1923 {
1924 	const struct execsw **es, **xs, **newexecsw;
1925 	u_int count = 2;	/* New slot and trailing NULL */
1926 
1927 	if (execsw)
1928 		for (es = execsw; *es; es++)
1929 			count++;
1930 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1931 	xs = newexecsw;
1932 	if (execsw)
1933 		for (es = execsw; *es; es++)
1934 			*xs++ = *es;
1935 	*xs++ = execsw_arg;
1936 	*xs = NULL;
1937 	if (execsw)
1938 		free(execsw, M_TEMP);
1939 	execsw = newexecsw;
1940 	return (0);
1941 }
1942 
1943 int
exec_unregister(const struct execsw * execsw_arg)1944 exec_unregister(const struct execsw *execsw_arg)
1945 {
1946 	const struct execsw **es, **xs, **newexecsw;
1947 	int count = 1;
1948 
1949 	if (execsw == NULL)
1950 		panic("unregister with no handlers left?\n");
1951 
1952 	for (es = execsw; *es; es++) {
1953 		if (*es == execsw_arg)
1954 			break;
1955 	}
1956 	if (*es == NULL)
1957 		return (ENOENT);
1958 	for (es = execsw; *es; es++)
1959 		if (*es != execsw_arg)
1960 			count++;
1961 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1962 	xs = newexecsw;
1963 	for (es = execsw; *es; es++)
1964 		if (*es != execsw_arg)
1965 			*xs++ = *es;
1966 	*xs = NULL;
1967 	if (execsw)
1968 		free(execsw, M_TEMP);
1969 	execsw = newexecsw;
1970 	return (0);
1971 }
1972 
1973 /*
1974  * Write out a core segment to the compression stream.
1975  */
1976 static int
compress_chunk(struct coredump_params * cp,char * base,char * buf,size_t len)1977 compress_chunk(struct coredump_params *cp, char *base, char *buf, size_t len)
1978 {
1979 	size_t chunk_len;
1980 	int error;
1981 
1982 	error = 0;
1983 	while (len > 0) {
1984 		chunk_len = MIN(len, CORE_BUF_SIZE);
1985 
1986 		/*
1987 		 * We can get EFAULT error here.
1988 		 * In that case zero out the current chunk of the segment.
1989 		 */
1990 		error = copyin(base, buf, chunk_len);
1991 		if (error != 0)
1992 			bzero(buf, chunk_len);
1993 		error = compressor_write(cp->comp, buf, chunk_len);
1994 		if (error != 0)
1995 			break;
1996 		base += chunk_len;
1997 		len -= chunk_len;
1998 	}
1999 	return (error);
2000 }
2001 
2002 int
core_write(struct coredump_params * cp,const void * base,size_t len,off_t offset,enum uio_seg seg,size_t * resid)2003 core_write(struct coredump_params *cp, const void *base, size_t len,
2004     off_t offset, enum uio_seg seg, size_t *resid)
2005 {
2006 	return ((*cp->cdw->write_fn)(cp->cdw, base, len, offset, seg,
2007 	    cp->active_cred, resid, cp->td));
2008 }
2009 
2010 static int
core_extend(struct coredump_params * cp,off_t newsz)2011 core_extend(struct coredump_params *cp, off_t newsz)
2012 {
2013 	return ((*cp->cdw->extend_fn)(cp->cdw, newsz, cp->active_cred));
2014 }
2015 
2016 int
core_output(char * base,size_t len,off_t offset,struct coredump_params * cp,void * tmpbuf)2017 core_output(char *base, size_t len, off_t offset, struct coredump_params *cp,
2018     void *tmpbuf)
2019 {
2020 	vm_map_t map;
2021 	size_t resid, runlen;
2022 	int error;
2023 	bool success;
2024 
2025 	KASSERT((uintptr_t)base % PAGE_SIZE == 0,
2026 	    ("%s: user address %p is not page-aligned", __func__, base));
2027 
2028 	if (cp->comp != NULL)
2029 		return (compress_chunk(cp, base, tmpbuf, len));
2030 
2031 	error = 0;
2032 	map = &cp->td->td_proc->p_vmspace->vm_map;
2033 	for (; len > 0; base += runlen, offset += runlen, len -= runlen) {
2034 		/*
2035 		 * Attempt to page in all virtual pages in the range.  If a
2036 		 * virtual page is not backed by the pager, it is represented as
2037 		 * a hole in the file.  This can occur with zero-filled
2038 		 * anonymous memory or truncated files, for example.
2039 		 */
2040 		for (runlen = 0; runlen < len; runlen += PAGE_SIZE) {
2041 			if (core_dump_can_intr && curproc_sigkilled())
2042 				return (EINTR);
2043 			error = vm_fault(map, (uintptr_t)base + runlen,
2044 			    VM_PROT_READ, VM_FAULT_NOFILL, NULL);
2045 			if (runlen == 0)
2046 				success = error == KERN_SUCCESS;
2047 			else if ((error == KERN_SUCCESS) != success)
2048 				break;
2049 		}
2050 
2051 		if (success) {
2052 			error = core_write(cp, base, runlen, offset,
2053 			    UIO_USERSPACE, &resid);
2054 			if (error != 0) {
2055 				if (error != EFAULT)
2056 					break;
2057 
2058 				/*
2059 				 * EFAULT may be returned if the user mapping
2060 				 * could not be accessed, e.g., because a mapped
2061 				 * file has been truncated.  Skip the page if no
2062 				 * progress was made, to protect against a
2063 				 * hypothetical scenario where vm_fault() was
2064 				 * successful but core_write() returns EFAULT
2065 				 * anyway.
2066 				 */
2067 				runlen -= resid;
2068 				if (runlen == 0) {
2069 					success = false;
2070 					runlen = PAGE_SIZE;
2071 				}
2072 			}
2073 		}
2074 		if (!success) {
2075 			error = core_extend(cp, offset + runlen);
2076 			if (error != 0)
2077 				break;
2078 		}
2079 	}
2080 	return (error);
2081 }
2082 
2083 /*
2084  * Drain into a core file.
2085  */
2086 int
sbuf_drain_core_output(void * arg,const char * data,int len)2087 sbuf_drain_core_output(void *arg, const char *data, int len)
2088 {
2089 	struct coredump_params *cp;
2090 	struct proc *p;
2091 	int error, locked;
2092 
2093 	cp = arg;
2094 	p = cp->td->td_proc;
2095 
2096 	/*
2097 	 * Some kern_proc out routines that print to this sbuf may
2098 	 * call us with the process lock held. Draining with the
2099 	 * non-sleepable lock held is unsafe. The lock is needed for
2100 	 * those routines when dumping a live process. In our case we
2101 	 * can safely release the lock before draining and acquire
2102 	 * again after.
2103 	 */
2104 	locked = PROC_LOCKED(p);
2105 	if (locked)
2106 		PROC_UNLOCK(p);
2107 	if (cp->comp != NULL)
2108 		error = compressor_write(cp->comp, __DECONST(char *, data),
2109 		    len);
2110 	else
2111 		error = core_write(cp, __DECONST(void *, data), len, cp->offset,
2112 		    UIO_SYSSPACE, NULL);
2113 	if (locked)
2114 		PROC_LOCK(p);
2115 	if (error != 0)
2116 		return (-error);
2117 	cp->offset += len;
2118 	return (len);
2119 }
2120