xref: /freebsd/sys/kern/kern_event.c (revision d37ea99837e6ad50837fd9fe1771ddf1c3ba6002)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/lock.h>
34 #include <sys/mutex.h>
35 #include <sys/proc.h>
36 #include <sys/malloc.h>
37 #include <sys/unistd.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/fcntl.h>
41 #include <sys/selinfo.h>
42 #include <sys/queue.h>
43 #include <sys/event.h>
44 #include <sys/eventvar.h>
45 #include <sys/poll.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/stat.h>
50 #include <sys/sysctl.h>
51 #include <sys/sysproto.h>
52 #include <sys/uio.h>
53 
54 #include <vm/uma.h>
55 
56 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
57 
58 static int	kqueue_scan(struct file *fp, int maxevents,
59 		    struct kevent *ulistp, const struct timespec *timeout,
60 		    struct thread *td);
61 static void 	kqueue_wakeup(struct kqueue *kq);
62 
63 static fo_rdwr_t	kqueue_read;
64 static fo_rdwr_t	kqueue_write;
65 static fo_ioctl_t	kqueue_ioctl;
66 static fo_poll_t	kqueue_poll;
67 static fo_kqfilter_t	kqueue_kqfilter;
68 static fo_stat_t	kqueue_stat;
69 static fo_close_t	kqueue_close;
70 
71 static struct fileops kqueueops = {
72 	.fo_read = kqueue_read,
73 	.fo_write = kqueue_write,
74 	.fo_ioctl = kqueue_ioctl,
75 	.fo_poll = kqueue_poll,
76 	.fo_kqfilter = kqueue_kqfilter,
77 	.fo_stat = kqueue_stat,
78 	.fo_close = kqueue_close,
79 };
80 
81 static void 	knote_attach(struct knote *kn, struct filedesc *fdp);
82 static void 	knote_drop(struct knote *kn, struct thread *td);
83 static void 	knote_enqueue(struct knote *kn);
84 static void 	knote_dequeue(struct knote *kn);
85 static void 	knote_init(void);
86 static struct 	knote *knote_alloc(void);
87 static void 	knote_free(struct knote *kn);
88 
89 static void	filt_kqdetach(struct knote *kn);
90 static int	filt_kqueue(struct knote *kn, long hint);
91 static int	filt_procattach(struct knote *kn);
92 static void	filt_procdetach(struct knote *kn);
93 static int	filt_proc(struct knote *kn, long hint);
94 static int	filt_fileattach(struct knote *kn);
95 static void	filt_timerexpire(void *knx);
96 static int	filt_timerattach(struct knote *kn);
97 static void	filt_timerdetach(struct knote *kn);
98 static int	filt_timer(struct knote *kn, long hint);
99 
100 static struct filterops file_filtops =
101 	{ 1, filt_fileattach, NULL, NULL };
102 static struct filterops kqread_filtops =
103 	{ 1, NULL, filt_kqdetach, filt_kqueue };
104 static struct filterops proc_filtops =
105 	{ 0, filt_procattach, filt_procdetach, filt_proc };
106 static struct filterops timer_filtops =
107 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
108 
109 static uma_zone_t	knote_zone;
110 static int 		kq_ncallouts = 0;
111 static int 		kq_calloutmax = (4 * 1024);
112 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
113     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
114 
115 #define KNOTE_ACTIVATE(kn) do { 					\
116 	kn->kn_status |= KN_ACTIVE;					\
117 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
118 		knote_enqueue(kn);					\
119 } while(0)
120 
121 #define	KN_HASHSIZE		64		/* XXX should be tunable */
122 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
123 
124 static int
125 filt_nullattach(struct knote *kn)
126 {
127 
128 	return (ENXIO);
129 };
130 
131 struct filterops null_filtops =
132 	{ 0, filt_nullattach, NULL, NULL };
133 
134 extern struct filterops sig_filtops;
135 
136 /*
137  * Table for for all system-defined filters.
138  */
139 static struct filterops *sysfilt_ops[] = {
140 	&file_filtops,			/* EVFILT_READ */
141 	&file_filtops,			/* EVFILT_WRITE */
142 	&null_filtops,			/* EVFILT_AIO */
143 	&file_filtops,			/* EVFILT_VNODE */
144 	&proc_filtops,			/* EVFILT_PROC */
145 	&sig_filtops,			/* EVFILT_SIGNAL */
146 	&timer_filtops,			/* EVFILT_TIMER */
147 	&file_filtops,			/* EVFILT_NETDEV */
148 };
149 
150 static int
151 filt_fileattach(struct knote *kn)
152 {
153 
154 	return (fo_kqfilter(kn->kn_fp, kn));
155 }
156 
157 /*ARGSUSED*/
158 static int
159 kqueue_kqfilter(struct file *fp, struct knote *kn)
160 {
161 	struct kqueue *kq = kn->kn_fp->f_data;
162 
163 	if (kn->kn_filter != EVFILT_READ)
164 		return (1);
165 
166 	kn->kn_fop = &kqread_filtops;
167 	SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext);
168 	return (0);
169 }
170 
171 static void
172 filt_kqdetach(struct knote *kn)
173 {
174 	struct kqueue *kq = kn->kn_fp->f_data;
175 
176 	SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext);
177 }
178 
179 /*ARGSUSED*/
180 static int
181 filt_kqueue(struct knote *kn, long hint)
182 {
183 	struct kqueue *kq = kn->kn_fp->f_data;
184 
185 	kn->kn_data = kq->kq_count;
186 	return (kn->kn_data > 0);
187 }
188 
189 static int
190 filt_procattach(struct knote *kn)
191 {
192 	struct proc *p;
193 	int immediate;
194 	int error;
195 
196 	immediate = 0;
197 	p = pfind(kn->kn_id);
198 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
199 		p = zpfind(kn->kn_id);
200 		immediate = 1;
201 	}
202 	if (p == NULL)
203 		return (ESRCH);
204 	if ((error = p_cansee(curthread, p))) {
205 		PROC_UNLOCK(p);
206 		return (error);
207 	}
208 
209 	kn->kn_ptr.p_proc = p;
210 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
211 
212 	/*
213 	 * internal flag indicating registration done by kernel
214 	 */
215 	if (kn->kn_flags & EV_FLAG1) {
216 		kn->kn_data = kn->kn_sdata;		/* ppid */
217 		kn->kn_fflags = NOTE_CHILD;
218 		kn->kn_flags &= ~EV_FLAG1;
219 	}
220 
221 	if (immediate == 0)
222 		SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
223 
224 	/*
225 	 * Immediately activate any exit notes if the target process is a
226 	 * zombie.  This is necessary to handle the case where the target
227 	 * process, e.g. a child, dies before the kevent is registered.
228 	 */
229 	if (immediate && filt_proc(kn, NOTE_EXIT))
230 		KNOTE_ACTIVATE(kn);
231 
232 	PROC_UNLOCK(p);
233 
234 	return (0);
235 }
236 
237 /*
238  * The knote may be attached to a different process, which may exit,
239  * leaving nothing for the knote to be attached to.  So when the process
240  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
241  * it will be deleted when read out.  However, as part of the knote deletion,
242  * this routine is called, so a check is needed to avoid actually performing
243  * a detach, because the original process does not exist any more.
244  */
245 static void
246 filt_procdetach(struct knote *kn)
247 {
248 	struct proc *p = kn->kn_ptr.p_proc;
249 
250 	if (kn->kn_status & KN_DETACHED)
251 		return;
252 
253 	PROC_LOCK(p);
254 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
255 	PROC_UNLOCK(p);
256 }
257 
258 static int
259 filt_proc(struct knote *kn, long hint)
260 {
261 	u_int event;
262 
263 	/*
264 	 * mask off extra data
265 	 */
266 	event = (u_int)hint & NOTE_PCTRLMASK;
267 
268 	/*
269 	 * if the user is interested in this event, record it.
270 	 */
271 	if (kn->kn_sfflags & event)
272 		kn->kn_fflags |= event;
273 
274 	/*
275 	 * process is gone, so flag the event as finished.
276 	 */
277 	if (event == NOTE_EXIT) {
278 		kn->kn_status |= KN_DETACHED;
279 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
280 		return (1);
281 	}
282 
283 	/*
284 	 * process forked, and user wants to track the new process,
285 	 * so attach a new knote to it, and immediately report an
286 	 * event with the parent's pid.
287 	 */
288 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
289 		struct kevent kev;
290 		int error;
291 
292 		/*
293 		 * register knote with new process.
294 		 */
295 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
296 		kev.filter = kn->kn_filter;
297 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
298 		kev.fflags = kn->kn_sfflags;
299 		kev.data = kn->kn_id;			/* parent */
300 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
301 		error = kqueue_register(kn->kn_kq, &kev, NULL);
302 		if (error)
303 			kn->kn_fflags |= NOTE_TRACKERR;
304 	}
305 
306 	return (kn->kn_fflags != 0);
307 }
308 
309 static void
310 filt_timerexpire(void *knx)
311 {
312 	struct knote *kn = knx;
313 	struct callout *calloutp;
314 	struct timeval tv;
315 	int tticks;
316 
317 	kn->kn_data++;
318 	KNOTE_ACTIVATE(kn);
319 
320 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
321 		tv.tv_sec = kn->kn_sdata / 1000;
322 		tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
323 		tticks = tvtohz(&tv);
324 		calloutp = (struct callout *)kn->kn_hook;
325 		callout_reset(calloutp, tticks, filt_timerexpire, kn);
326 	}
327 }
328 
329 /*
330  * data contains amount of time to sleep, in milliseconds
331  */
332 static int
333 filt_timerattach(struct knote *kn)
334 {
335 	struct callout *calloutp;
336 	struct timeval tv;
337 	int tticks;
338 
339 	if (kq_ncallouts >= kq_calloutmax)
340 		return (ENOMEM);
341 	kq_ncallouts++;
342 
343 	tv.tv_sec = kn->kn_sdata / 1000;
344 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
345 	tticks = tvtohz(&tv);
346 
347 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
348 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
349 	    M_KQUEUE, M_WAITOK);
350 	callout_init(calloutp, 0);
351 	kn->kn_hook = calloutp;
352 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
353 
354 	return (0);
355 }
356 
357 static void
358 filt_timerdetach(struct knote *kn)
359 {
360 	struct callout *calloutp;
361 
362 	calloutp = (struct callout *)kn->kn_hook;
363 	callout_drain(calloutp);
364 	FREE(calloutp, M_KQUEUE);
365 	kq_ncallouts--;
366 }
367 
368 static int
369 filt_timer(struct knote *kn, long hint)
370 {
371 
372 	return (kn->kn_data != 0);
373 }
374 
375 /*
376  * MPSAFE
377  */
378 int
379 kqueue(struct thread *td, struct kqueue_args *uap)
380 {
381 	struct filedesc *fdp;
382 	struct kqueue *kq;
383 	struct file *fp;
384 	int fd, error;
385 
386 	mtx_lock(&Giant);
387 	fdp = td->td_proc->p_fd;
388 	error = falloc(td, &fp, &fd);
389 	if (error)
390 		goto done2;
391 	/* An extra reference on `nfp' has been held for us by falloc(). */
392 	kq = malloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
393 	TAILQ_INIT(&kq->kq_head);
394 	FILE_LOCK(fp);
395 	fp->f_flag = FREAD | FWRITE;
396 	fp->f_type = DTYPE_KQUEUE;
397 	fp->f_ops = &kqueueops;
398 	fp->f_data = kq;
399 	FILE_UNLOCK(fp);
400 	fdrop(fp, td);
401 	FILEDESC_LOCK(fdp);
402 	td->td_retval[0] = fd;
403 	if (fdp->fd_knlistsize < 0)
404 		fdp->fd_knlistsize = 0;		/* this process has a kq */
405 	FILEDESC_UNLOCK(fdp);
406 	kq->kq_fdp = fdp;
407 done2:
408 	mtx_unlock(&Giant);
409 	return (error);
410 }
411 
412 #ifndef _SYS_SYSPROTO_H_
413 struct kevent_args {
414 	int	fd;
415 	const struct kevent *changelist;
416 	int	nchanges;
417 	struct	kevent *eventlist;
418 	int	nevents;
419 	const struct timespec *timeout;
420 };
421 #endif
422 /*
423  * MPSAFE
424  */
425 int
426 kevent(struct thread *td, struct kevent_args *uap)
427 {
428 	struct kevent *kevp;
429 	struct kqueue *kq;
430 	struct file *fp;
431 	struct timespec ts;
432 	int i, n, nerrors, error;
433 
434 	if ((error = fget(td, uap->fd, &fp)) != 0)
435 		return (error);
436 	if (fp->f_type != DTYPE_KQUEUE) {
437 		fdrop(fp, td);
438 		return (EBADF);
439 	}
440 	if (uap->timeout != NULL) {
441 		error = copyin(uap->timeout, &ts, sizeof(ts));
442 		if (error)
443 			goto done_nogiant;
444 		uap->timeout = &ts;
445 	}
446 	mtx_lock(&Giant);
447 
448 	kq = fp->f_data;
449 	nerrors = 0;
450 
451 	while (uap->nchanges > 0) {
452 		n = uap->nchanges > KQ_NEVENTS ? KQ_NEVENTS : uap->nchanges;
453 		error = copyin(uap->changelist, kq->kq_kev,
454 		    n * sizeof(struct kevent));
455 		if (error)
456 			goto done;
457 		for (i = 0; i < n; i++) {
458 			kevp = &kq->kq_kev[i];
459 			kevp->flags &= ~EV_SYSFLAGS;
460 			error = kqueue_register(kq, kevp, td);
461 			if (error) {
462 				if (uap->nevents != 0) {
463 					kevp->flags = EV_ERROR;
464 					kevp->data = error;
465 					(void) copyout(kevp,
466 					    uap->eventlist,
467 					    sizeof(*kevp));
468 					uap->eventlist++;
469 					uap->nevents--;
470 					nerrors++;
471 				} else {
472 					goto done;
473 				}
474 			}
475 		}
476 		uap->nchanges -= n;
477 		uap->changelist += n;
478 	}
479 	if (nerrors) {
480         	td->td_retval[0] = nerrors;
481 		error = 0;
482 		goto done;
483 	}
484 
485 	error = kqueue_scan(fp, uap->nevents, uap->eventlist, uap->timeout, td);
486 done:
487 	mtx_unlock(&Giant);
488 done_nogiant:
489 	if (fp != NULL)
490 		fdrop(fp, td);
491 	return (error);
492 }
493 
494 int
495 kqueue_add_filteropts(int filt, struct filterops *filtops)
496 {
497 
498 	if (filt > 0)
499 		panic("filt(%d) > 0", filt);
500 	if (filt + EVFILT_SYSCOUNT < 0)
501 		panic("filt(%d) + EVFILT_SYSCOUNT(%d) == %d < 0",
502 		    filt, EVFILT_SYSCOUNT, filt + EVFILT_SYSCOUNT);
503 	if (sysfilt_ops[~filt] != &null_filtops)
504 		panic("sysfilt_ops[~filt(%d)] != &null_filtops", filt);
505 	sysfilt_ops[~filt] = filtops;
506 	return (0);
507 }
508 
509 int
510 kqueue_del_filteropts(int filt)
511 {
512 
513 	if (filt > 0)
514 		panic("filt(%d) > 0", filt);
515 	if (filt + EVFILT_SYSCOUNT < 0)
516 		panic("filt(%d) + EVFILT_SYSCOUNT(%d) == %d < 0",
517 		    filt, EVFILT_SYSCOUNT, filt + EVFILT_SYSCOUNT);
518 	if (sysfilt_ops[~filt] == &null_filtops)
519 		panic("sysfilt_ops[~filt(%d)] != &null_filtops", filt);
520 	sysfilt_ops[~filt] = &null_filtops;
521 	return (0);
522 }
523 
524 int
525 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td)
526 {
527 	struct filedesc *fdp = kq->kq_fdp;
528 	struct filterops *fops;
529 	struct file *fp = NULL;
530 	struct knote *kn = NULL;
531 	int s, error = 0;
532 
533 	if (kev->filter < 0) {
534 		if (kev->filter + EVFILT_SYSCOUNT < 0)
535 			return (EINVAL);
536 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
537 	} else {
538 		/*
539 		 * XXX
540 		 * filter attach routine is responsible for insuring that
541 		 * the identifier can be attached to it.
542 		 */
543 		printf("unknown filter: %d\n", kev->filter);
544 		return (EINVAL);
545 	}
546 
547 	FILEDESC_LOCK(fdp);
548 	if (fops->f_isfd) {
549 		/* validate descriptor */
550 		if ((u_int)kev->ident >= fdp->fd_nfiles ||
551 		    (fp = fdp->fd_ofiles[kev->ident]) == NULL) {
552 			FILEDESC_UNLOCK(fdp);
553 			return (EBADF);
554 		}
555 		fhold(fp);
556 
557 		if (kev->ident < fdp->fd_knlistsize) {
558 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
559 				if (kq == kn->kn_kq &&
560 				    kev->filter == kn->kn_filter)
561 					break;
562 		}
563 	} else {
564 		if (fdp->fd_knhashmask != 0) {
565 			struct klist *list;
566 
567 			list = &fdp->fd_knhash[
568 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
569 			SLIST_FOREACH(kn, list, kn_link)
570 				if (kev->ident == kn->kn_id &&
571 				    kq == kn->kn_kq &&
572 				    kev->filter == kn->kn_filter)
573 					break;
574 		}
575 	}
576 	FILEDESC_UNLOCK(fdp);
577 
578 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
579 		error = ENOENT;
580 		goto done;
581 	}
582 
583 	/*
584 	 * kn now contains the matching knote, or NULL if no match
585 	 */
586 	if (kev->flags & EV_ADD) {
587 
588 		if (kn == NULL) {
589 			kn = knote_alloc();
590 			if (kn == NULL) {
591 				error = ENOMEM;
592 				goto done;
593 			}
594 			kn->kn_fp = fp;
595 			kn->kn_kq = kq;
596 			kn->kn_fop = fops;
597 
598 			/*
599 			 * apply reference count to knote structure, and
600 			 * do not release it at the end of this routine.
601 			 */
602 			fp = NULL;
603 
604 			kn->kn_sfflags = kev->fflags;
605 			kn->kn_sdata = kev->data;
606 			kev->fflags = 0;
607 			kev->data = 0;
608 			kn->kn_kevent = *kev;
609 
610 			knote_attach(kn, fdp);
611 			if ((error = fops->f_attach(kn)) != 0) {
612 				knote_drop(kn, td);
613 				goto done;
614 			}
615 		} else {
616 			/*
617 			 * The user may change some filter values after the
618 			 * initial EV_ADD, but doing so will not reset any
619 			 * filter which has already been triggered.
620 			 */
621 			kn->kn_sfflags = kev->fflags;
622 			kn->kn_sdata = kev->data;
623 			kn->kn_kevent.udata = kev->udata;
624 		}
625 
626 		s = splhigh();
627 		if (kn->kn_fop->f_event(kn, 0))
628 			KNOTE_ACTIVATE(kn);
629 		splx(s);
630 
631 	} else if (kev->flags & EV_DELETE) {
632 		kn->kn_fop->f_detach(kn);
633 		knote_drop(kn, td);
634 		goto done;
635 	}
636 
637 	if ((kev->flags & EV_DISABLE) &&
638 	    ((kn->kn_status & KN_DISABLED) == 0)) {
639 		s = splhigh();
640 		kn->kn_status |= KN_DISABLED;
641 		splx(s);
642 	}
643 
644 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
645 		s = splhigh();
646 		kn->kn_status &= ~KN_DISABLED;
647 		if ((kn->kn_status & KN_ACTIVE) &&
648 		    ((kn->kn_status & KN_QUEUED) == 0))
649 			knote_enqueue(kn);
650 		splx(s);
651 	}
652 
653 done:
654 	if (fp != NULL)
655 		fdrop(fp, td);
656 	return (error);
657 }
658 
659 static int
660 kqueue_scan(struct file *fp, int maxevents, struct kevent *ulistp,
661 	const struct timespec *tsp, struct thread *td)
662 {
663 	struct kqueue *kq;
664 	struct kevent *kevp;
665 	struct timeval atv, rtv, ttv;
666 	struct knote *kn, marker;
667 	int s, count, timeout, nkev = 0, error = 0;
668 
669 	FILE_LOCK_ASSERT(fp, MA_NOTOWNED);
670 
671 	kq = fp->f_data;
672 	count = maxevents;
673 	if (count == 0)
674 		goto done;
675 
676 	if (tsp != NULL) {
677 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
678 		if (itimerfix(&atv)) {
679 			error = EINVAL;
680 			goto done;
681 		}
682 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
683 			timeout = -1;
684 		else
685 			timeout = atv.tv_sec > 24 * 60 * 60 ?
686 			    24 * 60 * 60 * hz : tvtohz(&atv);
687 		getmicrouptime(&rtv);
688 		timevaladd(&atv, &rtv);
689 	} else {
690 		atv.tv_sec = 0;
691 		atv.tv_usec = 0;
692 		timeout = 0;
693 	}
694 	goto start;
695 
696 retry:
697 	if (atv.tv_sec || atv.tv_usec) {
698 		getmicrouptime(&rtv);
699 		if (timevalcmp(&rtv, &atv, >=))
700 			goto done;
701 		ttv = atv;
702 		timevalsub(&ttv, &rtv);
703 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
704 			24 * 60 * 60 * hz : tvtohz(&ttv);
705 	}
706 
707 start:
708 	kevp = kq->kq_kev;
709 	s = splhigh();
710 	if (kq->kq_count == 0) {
711 		if (timeout < 0) {
712 			error = EWOULDBLOCK;
713 		} else {
714 			kq->kq_state |= KQ_SLEEP;
715 			error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
716 		}
717 		splx(s);
718 		if (error == 0)
719 			goto retry;
720 		/* don't restart after signals... */
721 		if (error == ERESTART)
722 			error = EINTR;
723 		else if (error == EWOULDBLOCK)
724 			error = 0;
725 		goto done;
726 	}
727 
728 	TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
729 	while (count) {
730 		kn = TAILQ_FIRST(&kq->kq_head);
731 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
732 		if (kn == &marker) {
733 			splx(s);
734 			if (count == maxevents)
735 				goto retry;
736 			goto done;
737 		}
738 		if (kn->kn_status & KN_DISABLED) {
739 			kn->kn_status &= ~KN_QUEUED;
740 			kq->kq_count--;
741 			continue;
742 		}
743 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
744 		    kn->kn_fop->f_event(kn, 0) == 0) {
745 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
746 			kq->kq_count--;
747 			continue;
748 		}
749 		*kevp = kn->kn_kevent;
750 		kevp++;
751 		nkev++;
752 		if (kn->kn_flags & EV_ONESHOT) {
753 			kn->kn_status &= ~KN_QUEUED;
754 			kq->kq_count--;
755 			splx(s);
756 			kn->kn_fop->f_detach(kn);
757 			knote_drop(kn, td);
758 			s = splhigh();
759 		} else if (kn->kn_flags & EV_CLEAR) {
760 			kn->kn_data = 0;
761 			kn->kn_fflags = 0;
762 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
763 			kq->kq_count--;
764 		} else {
765 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
766 		}
767 		count--;
768 		if (nkev == KQ_NEVENTS) {
769 			splx(s);
770 			error = copyout(&kq->kq_kev, ulistp,
771 			    sizeof(struct kevent) * nkev);
772 			ulistp += nkev;
773 			nkev = 0;
774 			kevp = kq->kq_kev;
775 			s = splhigh();
776 			if (error)
777 				break;
778 		}
779 	}
780 	TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
781 	splx(s);
782 done:
783 	if (nkev != 0)
784 		error = copyout(&kq->kq_kev, ulistp,
785 		    sizeof(struct kevent) * nkev);
786         td->td_retval[0] = maxevents - count;
787 	return (error);
788 }
789 
790 /*
791  * XXX
792  * This could be expanded to call kqueue_scan, if desired.
793  */
794 /*ARGSUSED*/
795 static int
796 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
797 	int flags, struct thread *td)
798 {
799 	return (ENXIO);
800 }
801 
802 /*ARGSUSED*/
803 static int
804 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
805 	 int flags, struct thread *td)
806 {
807 	return (ENXIO);
808 }
809 
810 /*ARGSUSED*/
811 static int
812 kqueue_ioctl(struct file *fp, u_long com, void *data,
813 	struct ucred *active_cred, struct thread *td)
814 {
815 	return (ENOTTY);
816 }
817 
818 /*ARGSUSED*/
819 static int
820 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
821 	struct thread *td)
822 {
823 	struct kqueue *kq;
824 	int revents = 0;
825 	int s = splnet();
826 
827 	kq = fp->f_data;
828         if (events & (POLLIN | POLLRDNORM)) {
829                 if (kq->kq_count) {
830                         revents |= events & (POLLIN | POLLRDNORM);
831 		} else {
832                         selrecord(td, &kq->kq_sel);
833 			kq->kq_state |= KQ_SEL;
834 		}
835 	}
836 	splx(s);
837 	return (revents);
838 }
839 
840 /*ARGSUSED*/
841 static int
842 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
843 	struct thread *td)
844 {
845 	struct kqueue *kq;
846 
847 	kq = fp->f_data;
848 	bzero((void *)st, sizeof(*st));
849 	st->st_size = kq->kq_count;
850 	st->st_blksize = sizeof(struct kevent);
851 	st->st_mode = S_IFIFO;
852 	return (0);
853 }
854 
855 /*ARGSUSED*/
856 static int
857 kqueue_close(struct file *fp, struct thread *td)
858 {
859 	struct kqueue *kq = fp->f_data;
860 	struct filedesc *fdp = kq->kq_fdp;
861 	struct knote **knp, *kn, *kn0;
862 	int i;
863 
864 	GIANT_REQUIRED;
865 
866 	FILEDESC_LOCK(fdp);
867 	for (i = 0; i < fdp->fd_knlistsize; i++) {
868 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
869 		kn = *knp;
870 		while (kn != NULL) {
871 			kn0 = SLIST_NEXT(kn, kn_link);
872 			if (kq == kn->kn_kq) {
873 				kn->kn_fop->f_detach(kn);
874 				*knp = kn0;
875 				FILE_LOCK(kn->kn_fp);
876 				FILEDESC_UNLOCK(fdp);
877 				fdrop_locked(kn->kn_fp, td);
878 				knote_free(kn);
879 				FILEDESC_LOCK(fdp);
880 			} else {
881 				knp = &SLIST_NEXT(kn, kn_link);
882 			}
883 			kn = kn0;
884 		}
885 	}
886 	if (fdp->fd_knhashmask != 0) {
887 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
888 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
889 			kn = *knp;
890 			while (kn != NULL) {
891 				kn0 = SLIST_NEXT(kn, kn_link);
892 				if (kq == kn->kn_kq) {
893 					kn->kn_fop->f_detach(kn);
894 					*knp = kn0;
895 		/* XXX non-fd release of kn->kn_ptr */
896 					FILEDESC_UNLOCK(fdp);
897 					knote_free(kn);
898 					FILEDESC_LOCK(fdp);
899 				} else {
900 					knp = &SLIST_NEXT(kn, kn_link);
901 				}
902 				kn = kn0;
903 			}
904 		}
905 	}
906 	FILEDESC_UNLOCK(fdp);
907 	if (kq->kq_state & KQ_SEL) {
908 		kq->kq_state &= ~KQ_SEL;
909 		selwakeuppri(&kq->kq_sel, PSOCK);
910 	}
911 	free(kq, M_KQUEUE);
912 	fp->f_data = NULL;
913 
914 	return (0);
915 }
916 
917 static void
918 kqueue_wakeup(struct kqueue *kq)
919 {
920 
921 	if (kq->kq_state & KQ_SLEEP) {
922 		kq->kq_state &= ~KQ_SLEEP;
923 		wakeup(kq);
924 	}
925 	if (kq->kq_state & KQ_SEL) {
926 		kq->kq_state &= ~KQ_SEL;
927 		selwakeuppri(&kq->kq_sel, PSOCK);
928 	}
929 	KNOTE(&kq->kq_sel.si_note, 0);
930 }
931 
932 /*
933  * walk down a list of knotes, activating them if their event has triggered.
934  */
935 void
936 knote(struct klist *list, long hint)
937 {
938 	struct knote *kn;
939 
940 	SLIST_FOREACH(kn, list, kn_selnext)
941 		if (kn->kn_fop->f_event(kn, hint))
942 			KNOTE_ACTIVATE(kn);
943 }
944 
945 /*
946  * remove all knotes from a specified klist
947  */
948 void
949 knote_remove(struct thread *td, struct klist *list)
950 {
951 	struct knote *kn;
952 
953 	while ((kn = SLIST_FIRST(list)) != NULL) {
954 		kn->kn_fop->f_detach(kn);
955 		knote_drop(kn, td);
956 	}
957 }
958 
959 /*
960  * remove all knotes referencing a specified fd
961  */
962 void
963 knote_fdclose(struct thread *td, int fd)
964 {
965 	struct filedesc *fdp = td->td_proc->p_fd;
966 	struct klist *list;
967 
968 	FILEDESC_LOCK(fdp);
969 	list = &fdp->fd_knlist[fd];
970 	FILEDESC_UNLOCK(fdp);
971 	knote_remove(td, list);
972 }
973 
974 static void
975 knote_attach(struct knote *kn, struct filedesc *fdp)
976 {
977 	struct klist *list, *tmp_knhash;
978 	u_long tmp_knhashmask;
979 	int size;
980 
981 	FILEDESC_LOCK(fdp);
982 
983 	if (! kn->kn_fop->f_isfd) {
984 		if (fdp->fd_knhashmask == 0) {
985 			FILEDESC_UNLOCK(fdp);
986 			tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
987 			    &tmp_knhashmask);
988 			FILEDESC_LOCK(fdp);
989 			if (fdp->fd_knhashmask == 0) {
990 				fdp->fd_knhash = tmp_knhash;
991 				fdp->fd_knhashmask = tmp_knhashmask;
992 			} else {
993 				free(tmp_knhash, M_KQUEUE);
994 			}
995 		}
996 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
997 		goto done;
998 	}
999 
1000 	if (fdp->fd_knlistsize <= kn->kn_id) {
1001 		size = fdp->fd_knlistsize;
1002 		while (size <= kn->kn_id)
1003 			size += KQEXTENT;
1004 		FILEDESC_UNLOCK(fdp);
1005 		MALLOC(list, struct klist *,
1006 		    size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
1007 		FILEDESC_LOCK(fdp);
1008 		if (fdp->fd_knlistsize > kn->kn_id) {
1009 			FREE(list, M_KQUEUE);
1010 			goto bigenough;
1011 		}
1012 		if (fdp->fd_knlist != NULL) {
1013 			bcopy(fdp->fd_knlist, list,
1014 			    fdp->fd_knlistsize * sizeof(struct klist *));
1015 			FREE(fdp->fd_knlist, M_KQUEUE);
1016 		}
1017 		bzero((caddr_t)list +
1018 		    fdp->fd_knlistsize * sizeof(struct klist *),
1019 		    (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1020 		fdp->fd_knlistsize = size;
1021 		fdp->fd_knlist = list;
1022 	}
1023 bigenough:
1024 	list = &fdp->fd_knlist[kn->kn_id];
1025 done:
1026 	FILEDESC_UNLOCK(fdp);
1027 	SLIST_INSERT_HEAD(list, kn, kn_link);
1028 	kn->kn_status = 0;
1029 }
1030 
1031 /*
1032  * should be called at spl == 0, since we don't want to hold spl
1033  * while calling fdrop and free.
1034  */
1035 static void
1036 knote_drop(struct knote *kn, struct thread *td)
1037 {
1038         struct filedesc *fdp = td->td_proc->p_fd;
1039 	struct klist *list;
1040 
1041 	FILEDESC_LOCK(fdp);
1042 	if (kn->kn_fop->f_isfd)
1043 		list = &fdp->fd_knlist[kn->kn_id];
1044 	else
1045 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1046 	if (kn->kn_fop->f_isfd)
1047 		FILE_LOCK(kn->kn_fp);
1048 	FILEDESC_UNLOCK(fdp);
1049 
1050 	SLIST_REMOVE(list, kn, knote, kn_link);
1051 	if (kn->kn_status & KN_QUEUED)
1052 		knote_dequeue(kn);
1053 	if (kn->kn_fop->f_isfd)
1054 		fdrop_locked(kn->kn_fp, td);
1055 	knote_free(kn);
1056 }
1057 
1058 
1059 static void
1060 knote_enqueue(struct knote *kn)
1061 {
1062 	struct kqueue *kq = kn->kn_kq;
1063 	int s = splhigh();
1064 
1065 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1066 
1067 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1068 	kn->kn_status |= KN_QUEUED;
1069 	kq->kq_count++;
1070 	splx(s);
1071 	kqueue_wakeup(kq);
1072 }
1073 
1074 static void
1075 knote_dequeue(struct knote *kn)
1076 {
1077 	struct kqueue *kq = kn->kn_kq;
1078 	int s = splhigh();
1079 
1080 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1081 
1082 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1083 	kn->kn_status &= ~KN_QUEUED;
1084 	kq->kq_count--;
1085 	splx(s);
1086 }
1087 
1088 static void
1089 knote_init(void)
1090 {
1091 	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
1092 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1093 
1094 }
1095 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
1096 
1097 static struct knote *
1098 knote_alloc(void)
1099 {
1100 	return ((struct knote *)uma_zalloc(knote_zone, M_WAITOK));
1101 }
1102 
1103 static void
1104 knote_free(struct knote *kn)
1105 {
1106 	uma_zfree(knote_zone, kn);
1107 }
1108