xref: /freebsd/sys/kern/kern_event.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
6  * Copyright (c) 2009 Apple, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_ktrace.h"
35 #include "opt_kqueue.h"
36 
37 #ifdef COMPAT_FREEBSD11
38 #define	_WANT_FREEBSD11_KEVENT
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/capsicum.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/rwlock.h>
48 #include <sys/proc.h>
49 #include <sys/malloc.h>
50 #include <sys/unistd.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/filio.h>
54 #include <sys/fcntl.h>
55 #include <sys/kthread.h>
56 #include <sys/selinfo.h>
57 #include <sys/queue.h>
58 #include <sys/event.h>
59 #include <sys/eventvar.h>
60 #include <sys/poll.h>
61 #include <sys/protosw.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sigio.h>
64 #include <sys/signalvar.h>
65 #include <sys/socket.h>
66 #include <sys/socketvar.h>
67 #include <sys/stat.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysproto.h>
70 #include <sys/syscallsubr.h>
71 #include <sys/taskqueue.h>
72 #include <sys/uio.h>
73 #include <sys/user.h>
74 #ifdef KTRACE
75 #include <sys/ktrace.h>
76 #endif
77 #include <machine/atomic.h>
78 
79 #include <vm/uma.h>
80 
81 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
82 
83 /*
84  * This lock is used if multiple kq locks are required.  This possibly
85  * should be made into a per proc lock.
86  */
87 static struct mtx	kq_global;
88 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
89 #define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
90 	if (!haslck)				\
91 		mtx_lock(lck);			\
92 	haslck = 1;				\
93 } while (0)
94 #define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
95 	if (haslck)				\
96 		mtx_unlock(lck);			\
97 	haslck = 0;				\
98 } while (0)
99 
100 TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
101 
102 static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
103 static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
104 static int	kqueue_register(struct kqueue *kq, struct kevent *kev,
105 		    struct thread *td, int waitok);
106 static int	kqueue_acquire(struct file *fp, struct kqueue **kqp);
107 static void	kqueue_release(struct kqueue *kq, int locked);
108 static void	kqueue_destroy(struct kqueue *kq);
109 static void	kqueue_drain(struct kqueue *kq, struct thread *td);
110 static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
111 		    uintptr_t ident, int waitok);
112 static void	kqueue_task(void *arg, int pending);
113 static int	kqueue_scan(struct kqueue *kq, int maxevents,
114 		    struct kevent_copyops *k_ops,
115 		    const struct timespec *timeout,
116 		    struct kevent *keva, struct thread *td);
117 static void 	kqueue_wakeup(struct kqueue *kq);
118 static struct filterops *kqueue_fo_find(int filt);
119 static void	kqueue_fo_release(int filt);
120 struct g_kevent_args;
121 static int	kern_kevent_generic(struct thread *td,
122 		    struct g_kevent_args *uap,
123 		    struct kevent_copyops *k_ops, const char *struct_name);
124 
125 static fo_ioctl_t	kqueue_ioctl;
126 static fo_poll_t	kqueue_poll;
127 static fo_kqfilter_t	kqueue_kqfilter;
128 static fo_stat_t	kqueue_stat;
129 static fo_close_t	kqueue_close;
130 static fo_fill_kinfo_t	kqueue_fill_kinfo;
131 
132 static struct fileops kqueueops = {
133 	.fo_read = invfo_rdwr,
134 	.fo_write = invfo_rdwr,
135 	.fo_truncate = invfo_truncate,
136 	.fo_ioctl = kqueue_ioctl,
137 	.fo_poll = kqueue_poll,
138 	.fo_kqfilter = kqueue_kqfilter,
139 	.fo_stat = kqueue_stat,
140 	.fo_close = kqueue_close,
141 	.fo_chmod = invfo_chmod,
142 	.fo_chown = invfo_chown,
143 	.fo_sendfile = invfo_sendfile,
144 	.fo_fill_kinfo = kqueue_fill_kinfo,
145 };
146 
147 static int 	knote_attach(struct knote *kn, struct kqueue *kq);
148 static void 	knote_drop(struct knote *kn, struct thread *td);
149 static void 	knote_drop_detached(struct knote *kn, struct thread *td);
150 static void 	knote_enqueue(struct knote *kn);
151 static void 	knote_dequeue(struct knote *kn);
152 static void 	knote_init(void);
153 static struct 	knote *knote_alloc(int waitok);
154 static void 	knote_free(struct knote *kn);
155 
156 static void	filt_kqdetach(struct knote *kn);
157 static int	filt_kqueue(struct knote *kn, long hint);
158 static int	filt_procattach(struct knote *kn);
159 static void	filt_procdetach(struct knote *kn);
160 static int	filt_proc(struct knote *kn, long hint);
161 static int	filt_fileattach(struct knote *kn);
162 static void	filt_timerexpire(void *knx);
163 static int	filt_timerattach(struct knote *kn);
164 static void	filt_timerdetach(struct knote *kn);
165 static void	filt_timerstart(struct knote *kn, sbintime_t to);
166 static void	filt_timertouch(struct knote *kn, struct kevent *kev,
167 		    u_long type);
168 static int	filt_timervalidate(struct knote *kn, sbintime_t *to);
169 static int	filt_timer(struct knote *kn, long hint);
170 static int	filt_userattach(struct knote *kn);
171 static void	filt_userdetach(struct knote *kn);
172 static int	filt_user(struct knote *kn, long hint);
173 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
174 		    u_long type);
175 
176 static struct filterops file_filtops = {
177 	.f_isfd = 1,
178 	.f_attach = filt_fileattach,
179 };
180 static struct filterops kqread_filtops = {
181 	.f_isfd = 1,
182 	.f_detach = filt_kqdetach,
183 	.f_event = filt_kqueue,
184 };
185 /* XXX - move to kern_proc.c?  */
186 static struct filterops proc_filtops = {
187 	.f_isfd = 0,
188 	.f_attach = filt_procattach,
189 	.f_detach = filt_procdetach,
190 	.f_event = filt_proc,
191 };
192 static struct filterops timer_filtops = {
193 	.f_isfd = 0,
194 	.f_attach = filt_timerattach,
195 	.f_detach = filt_timerdetach,
196 	.f_event = filt_timer,
197 	.f_touch = filt_timertouch,
198 };
199 static struct filterops user_filtops = {
200 	.f_attach = filt_userattach,
201 	.f_detach = filt_userdetach,
202 	.f_event = filt_user,
203 	.f_touch = filt_usertouch,
204 };
205 
206 static uma_zone_t	knote_zone;
207 static unsigned int	kq_ncallouts = 0;
208 static unsigned int 	kq_calloutmax = 4 * 1024;
209 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
210     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
211 
212 /* XXX - ensure not influx ? */
213 #define KNOTE_ACTIVATE(kn, islock) do { 				\
214 	if ((islock))							\
215 		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
216 	else								\
217 		KQ_LOCK((kn)->kn_kq);					\
218 	(kn)->kn_status |= KN_ACTIVE;					\
219 	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
220 		knote_enqueue((kn));					\
221 	if (!(islock))							\
222 		KQ_UNLOCK((kn)->kn_kq);					\
223 } while(0)
224 #define KQ_LOCK(kq) do {						\
225 	mtx_lock(&(kq)->kq_lock);					\
226 } while (0)
227 #define KQ_FLUX_WAKEUP(kq) do {						\
228 	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
229 		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
230 		wakeup((kq));						\
231 	}								\
232 } while (0)
233 #define KQ_UNLOCK_FLUX(kq) do {						\
234 	KQ_FLUX_WAKEUP(kq);						\
235 	mtx_unlock(&(kq)->kq_lock);					\
236 } while (0)
237 #define KQ_UNLOCK(kq) do {						\
238 	mtx_unlock(&(kq)->kq_lock);					\
239 } while (0)
240 #define KQ_OWNED(kq) do {						\
241 	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
242 } while (0)
243 #define KQ_NOTOWNED(kq) do {						\
244 	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
245 } while (0)
246 
247 static struct knlist *
248 kn_list_lock(struct knote *kn)
249 {
250 	struct knlist *knl;
251 
252 	knl = kn->kn_knlist;
253 	if (knl != NULL)
254 		knl->kl_lock(knl->kl_lockarg);
255 	return (knl);
256 }
257 
258 static void
259 kn_list_unlock(struct knlist *knl)
260 {
261 	bool do_free;
262 
263 	if (knl == NULL)
264 		return;
265 	do_free = knl->kl_autodestroy && knlist_empty(knl);
266 	knl->kl_unlock(knl->kl_lockarg);
267 	if (do_free) {
268 		knlist_destroy(knl);
269 		free(knl, M_KQUEUE);
270 	}
271 }
272 
273 static bool
274 kn_in_flux(struct knote *kn)
275 {
276 
277 	return (kn->kn_influx > 0);
278 }
279 
280 static void
281 kn_enter_flux(struct knote *kn)
282 {
283 
284 	KQ_OWNED(kn->kn_kq);
285 	MPASS(kn->kn_influx < INT_MAX);
286 	kn->kn_influx++;
287 }
288 
289 static bool
290 kn_leave_flux(struct knote *kn)
291 {
292 
293 	KQ_OWNED(kn->kn_kq);
294 	MPASS(kn->kn_influx > 0);
295 	kn->kn_influx--;
296 	return (kn->kn_influx == 0);
297 }
298 
299 #define	KNL_ASSERT_LOCK(knl, islocked) do {				\
300 	if (islocked)							\
301 		KNL_ASSERT_LOCKED(knl);				\
302 	else								\
303 		KNL_ASSERT_UNLOCKED(knl);				\
304 } while (0)
305 #ifdef INVARIANTS
306 #define	KNL_ASSERT_LOCKED(knl) do {					\
307 	knl->kl_assert_locked((knl)->kl_lockarg);			\
308 } while (0)
309 #define	KNL_ASSERT_UNLOCKED(knl) do {					\
310 	knl->kl_assert_unlocked((knl)->kl_lockarg);			\
311 } while (0)
312 #else /* !INVARIANTS */
313 #define	KNL_ASSERT_LOCKED(knl) do {} while(0)
314 #define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
315 #endif /* INVARIANTS */
316 
317 #ifndef	KN_HASHSIZE
318 #define	KN_HASHSIZE		64		/* XXX should be tunable */
319 #endif
320 
321 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
322 
323 static int
324 filt_nullattach(struct knote *kn)
325 {
326 
327 	return (ENXIO);
328 };
329 
330 struct filterops null_filtops = {
331 	.f_isfd = 0,
332 	.f_attach = filt_nullattach,
333 };
334 
335 /* XXX - make SYSINIT to add these, and move into respective modules. */
336 extern struct filterops sig_filtops;
337 extern struct filterops fs_filtops;
338 
339 /*
340  * Table for for all system-defined filters.
341  */
342 static struct mtx	filterops_lock;
343 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
344 	MTX_DEF);
345 static struct {
346 	struct filterops *for_fop;
347 	int for_nolock;
348 	int for_refcnt;
349 } sysfilt_ops[EVFILT_SYSCOUNT] = {
350 	{ &file_filtops, 1 },			/* EVFILT_READ */
351 	{ &file_filtops, 1 },			/* EVFILT_WRITE */
352 	{ &null_filtops },			/* EVFILT_AIO */
353 	{ &file_filtops, 1 },			/* EVFILT_VNODE */
354 	{ &proc_filtops, 1 },			/* EVFILT_PROC */
355 	{ &sig_filtops, 1 },			/* EVFILT_SIGNAL */
356 	{ &timer_filtops, 1 },			/* EVFILT_TIMER */
357 	{ &file_filtops, 1 },			/* EVFILT_PROCDESC */
358 	{ &fs_filtops, 1 },			/* EVFILT_FS */
359 	{ &null_filtops },			/* EVFILT_LIO */
360 	{ &user_filtops, 1 },			/* EVFILT_USER */
361 	{ &null_filtops },			/* EVFILT_SENDFILE */
362 	{ &file_filtops, 1 },                   /* EVFILT_EMPTY */
363 };
364 
365 /*
366  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
367  * method.
368  */
369 static int
370 filt_fileattach(struct knote *kn)
371 {
372 
373 	return (fo_kqfilter(kn->kn_fp, kn));
374 }
375 
376 /*ARGSUSED*/
377 static int
378 kqueue_kqfilter(struct file *fp, struct knote *kn)
379 {
380 	struct kqueue *kq = kn->kn_fp->f_data;
381 
382 	if (kn->kn_filter != EVFILT_READ)
383 		return (EINVAL);
384 
385 	kn->kn_status |= KN_KQUEUE;
386 	kn->kn_fop = &kqread_filtops;
387 	knlist_add(&kq->kq_sel.si_note, kn, 0);
388 
389 	return (0);
390 }
391 
392 static void
393 filt_kqdetach(struct knote *kn)
394 {
395 	struct kqueue *kq = kn->kn_fp->f_data;
396 
397 	knlist_remove(&kq->kq_sel.si_note, kn, 0);
398 }
399 
400 /*ARGSUSED*/
401 static int
402 filt_kqueue(struct knote *kn, long hint)
403 {
404 	struct kqueue *kq = kn->kn_fp->f_data;
405 
406 	kn->kn_data = kq->kq_count;
407 	return (kn->kn_data > 0);
408 }
409 
410 /* XXX - move to kern_proc.c?  */
411 static int
412 filt_procattach(struct knote *kn)
413 {
414 	struct proc *p;
415 	int error;
416 	bool exiting, immediate;
417 
418 	exiting = immediate = false;
419 	if (kn->kn_sfflags & NOTE_EXIT)
420 		p = pfind_any(kn->kn_id);
421 	else
422 		p = pfind(kn->kn_id);
423 	if (p == NULL)
424 		return (ESRCH);
425 	if (p->p_flag & P_WEXIT)
426 		exiting = true;
427 
428 	if ((error = p_cansee(curthread, p))) {
429 		PROC_UNLOCK(p);
430 		return (error);
431 	}
432 
433 	kn->kn_ptr.p_proc = p;
434 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
435 
436 	/*
437 	 * Internal flag indicating registration done by kernel for the
438 	 * purposes of getting a NOTE_CHILD notification.
439 	 */
440 	if (kn->kn_flags & EV_FLAG2) {
441 		kn->kn_flags &= ~EV_FLAG2;
442 		kn->kn_data = kn->kn_sdata;		/* ppid */
443 		kn->kn_fflags = NOTE_CHILD;
444 		kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
445 		immediate = true; /* Force immediate activation of child note. */
446 	}
447 	/*
448 	 * Internal flag indicating registration done by kernel (for other than
449 	 * NOTE_CHILD).
450 	 */
451 	if (kn->kn_flags & EV_FLAG1) {
452 		kn->kn_flags &= ~EV_FLAG1;
453 	}
454 
455 	knlist_add(p->p_klist, kn, 1);
456 
457 	/*
458 	 * Immediately activate any child notes or, in the case of a zombie
459 	 * target process, exit notes.  The latter is necessary to handle the
460 	 * case where the target process, e.g. a child, dies before the kevent
461 	 * is registered.
462 	 */
463 	if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
464 		KNOTE_ACTIVATE(kn, 0);
465 
466 	PROC_UNLOCK(p);
467 
468 	return (0);
469 }
470 
471 /*
472  * The knote may be attached to a different process, which may exit,
473  * leaving nothing for the knote to be attached to.  So when the process
474  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
475  * it will be deleted when read out.  However, as part of the knote deletion,
476  * this routine is called, so a check is needed to avoid actually performing
477  * a detach, because the original process does not exist any more.
478  */
479 /* XXX - move to kern_proc.c?  */
480 static void
481 filt_procdetach(struct knote *kn)
482 {
483 
484 	knlist_remove(kn->kn_knlist, kn, 0);
485 	kn->kn_ptr.p_proc = NULL;
486 }
487 
488 /* XXX - move to kern_proc.c?  */
489 static int
490 filt_proc(struct knote *kn, long hint)
491 {
492 	struct proc *p;
493 	u_int event;
494 
495 	p = kn->kn_ptr.p_proc;
496 	if (p == NULL) /* already activated, from attach filter */
497 		return (0);
498 
499 	/* Mask off extra data. */
500 	event = (u_int)hint & NOTE_PCTRLMASK;
501 
502 	/* If the user is interested in this event, record it. */
503 	if (kn->kn_sfflags & event)
504 		kn->kn_fflags |= event;
505 
506 	/* Process is gone, so flag the event as finished. */
507 	if (event == NOTE_EXIT) {
508 		kn->kn_flags |= EV_EOF | EV_ONESHOT;
509 		kn->kn_ptr.p_proc = NULL;
510 		if (kn->kn_fflags & NOTE_EXIT)
511 			kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
512 		if (kn->kn_fflags == 0)
513 			kn->kn_flags |= EV_DROP;
514 		return (1);
515 	}
516 
517 	return (kn->kn_fflags != 0);
518 }
519 
520 /*
521  * Called when the process forked. It mostly does the same as the
522  * knote(), activating all knotes registered to be activated when the
523  * process forked. Additionally, for each knote attached to the
524  * parent, check whether user wants to track the new process. If so
525  * attach a new knote to it, and immediately report an event with the
526  * child's pid.
527  */
528 void
529 knote_fork(struct knlist *list, int pid)
530 {
531 	struct kqueue *kq;
532 	struct knote *kn;
533 	struct kevent kev;
534 	int error;
535 
536 	if (list == NULL)
537 		return;
538 	list->kl_lock(list->kl_lockarg);
539 
540 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
541 		kq = kn->kn_kq;
542 		KQ_LOCK(kq);
543 		if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
544 			KQ_UNLOCK(kq);
545 			continue;
546 		}
547 
548 		/*
549 		 * The same as knote(), activate the event.
550 		 */
551 		if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
552 			kn->kn_status |= KN_HASKQLOCK;
553 			if (kn->kn_fop->f_event(kn, NOTE_FORK))
554 				KNOTE_ACTIVATE(kn, 1);
555 			kn->kn_status &= ~KN_HASKQLOCK;
556 			KQ_UNLOCK(kq);
557 			continue;
558 		}
559 
560 		/*
561 		 * The NOTE_TRACK case. In addition to the activation
562 		 * of the event, we need to register new events to
563 		 * track the child. Drop the locks in preparation for
564 		 * the call to kqueue_register().
565 		 */
566 		kn_enter_flux(kn);
567 		KQ_UNLOCK(kq);
568 		list->kl_unlock(list->kl_lockarg);
569 
570 		/*
571 		 * Activate existing knote and register tracking knotes with
572 		 * new process.
573 		 *
574 		 * First register a knote to get just the child notice. This
575 		 * must be a separate note from a potential NOTE_EXIT
576 		 * notification since both NOTE_CHILD and NOTE_EXIT are defined
577 		 * to use the data field (in conflicting ways).
578 		 */
579 		kev.ident = pid;
580 		kev.filter = kn->kn_filter;
581 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
582 		    EV_FLAG2;
583 		kev.fflags = kn->kn_sfflags;
584 		kev.data = kn->kn_id;		/* parent */
585 		kev.udata = kn->kn_kevent.udata;/* preserve udata */
586 		error = kqueue_register(kq, &kev, NULL, 0);
587 		if (error)
588 			kn->kn_fflags |= NOTE_TRACKERR;
589 
590 		/*
591 		 * Then register another knote to track other potential events
592 		 * from the new process.
593 		 */
594 		kev.ident = pid;
595 		kev.filter = kn->kn_filter;
596 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
597 		kev.fflags = kn->kn_sfflags;
598 		kev.data = kn->kn_id;		/* parent */
599 		kev.udata = kn->kn_kevent.udata;/* preserve udata */
600 		error = kqueue_register(kq, &kev, NULL, 0);
601 		if (error)
602 			kn->kn_fflags |= NOTE_TRACKERR;
603 		if (kn->kn_fop->f_event(kn, NOTE_FORK))
604 			KNOTE_ACTIVATE(kn, 0);
605 		KQ_LOCK(kq);
606 		kn_leave_flux(kn);
607 		KQ_UNLOCK_FLUX(kq);
608 		list->kl_lock(list->kl_lockarg);
609 	}
610 	list->kl_unlock(list->kl_lockarg);
611 }
612 
613 /*
614  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
615  * interval timer support code.
616  */
617 
618 #define NOTE_TIMER_PRECMASK						\
619     (NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
620 
621 static sbintime_t
622 timer2sbintime(intptr_t data, int flags)
623 {
624 	int64_t secs;
625 
626         /*
627          * Macros for converting to the fractional second portion of an
628          * sbintime_t using 64bit multiplication to improve precision.
629          */
630 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
631 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
632 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
633 	switch (flags & NOTE_TIMER_PRECMASK) {
634 	case NOTE_SECONDS:
635 #ifdef __LP64__
636 		if (data > (SBT_MAX / SBT_1S))
637 			return (SBT_MAX);
638 #endif
639 		return ((sbintime_t)data << 32);
640 	case NOTE_MSECONDS: /* FALLTHROUGH */
641 	case 0:
642 		if (data >= 1000) {
643 			secs = data / 1000;
644 #ifdef __LP64__
645 			if (secs > (SBT_MAX / SBT_1S))
646 				return (SBT_MAX);
647 #endif
648 			return (secs << 32 | MS_TO_SBT(data % 1000));
649 		}
650 		return (MS_TO_SBT(data));
651 	case NOTE_USECONDS:
652 		if (data >= 1000000) {
653 			secs = data / 1000000;
654 #ifdef __LP64__
655 			if (secs > (SBT_MAX / SBT_1S))
656 				return (SBT_MAX);
657 #endif
658 			return (secs << 32 | US_TO_SBT(data % 1000000));
659 		}
660 		return (US_TO_SBT(data));
661 	case NOTE_NSECONDS:
662 		if (data >= 1000000000) {
663 			secs = data / 1000000000;
664 #ifdef __LP64__
665 			if (secs > (SBT_MAX / SBT_1S))
666 				return (SBT_MAX);
667 #endif
668 			return (secs << 32 | US_TO_SBT(data % 1000000000));
669 		}
670 		return (NS_TO_SBT(data));
671 	default:
672 		break;
673 	}
674 	return (-1);
675 }
676 
677 struct kq_timer_cb_data {
678 	struct callout c;
679 	sbintime_t next;	/* next timer event fires at */
680 	sbintime_t to;		/* precalculated timer period, 0 for abs */
681 };
682 
683 static void
684 filt_timerexpire(void *knx)
685 {
686 	struct knote *kn;
687 	struct kq_timer_cb_data *kc;
688 
689 	kn = knx;
690 	kn->kn_data++;
691 	KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
692 
693 	if ((kn->kn_flags & EV_ONESHOT) != 0)
694 		return;
695 	kc = kn->kn_ptr.p_v;
696 	if (kc->to == 0)
697 		return;
698 	kc->next += kc->to;
699 	callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
700 	    PCPU_GET(cpuid), C_ABSOLUTE);
701 }
702 
703 /*
704  * data contains amount of time to sleep
705  */
706 static int
707 filt_timervalidate(struct knote *kn, sbintime_t *to)
708 {
709 	struct bintime bt;
710 	sbintime_t sbt;
711 
712 	if (kn->kn_sdata < 0)
713 		return (EINVAL);
714 	if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
715 		kn->kn_sdata = 1;
716 	/*
717 	 * The only fflags values supported are the timer unit
718 	 * (precision) and the absolute time indicator.
719 	 */
720 	if ((kn->kn_sfflags & ~(NOTE_TIMER_PRECMASK | NOTE_ABSTIME)) != 0)
721 		return (EINVAL);
722 
723 	*to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
724 	if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
725 		getboottimebin(&bt);
726 		sbt = bttosbt(bt);
727 		*to -= sbt;
728 	}
729 	if (*to < 0)
730 		return (EINVAL);
731 	return (0);
732 }
733 
734 static int
735 filt_timerattach(struct knote *kn)
736 {
737 	struct kq_timer_cb_data *kc;
738 	sbintime_t to;
739 	unsigned int ncallouts;
740 	int error;
741 
742 	error = filt_timervalidate(kn, &to);
743 	if (error != 0)
744 		return (error);
745 
746 	do {
747 		ncallouts = kq_ncallouts;
748 		if (ncallouts >= kq_calloutmax)
749 			return (ENOMEM);
750 	} while (!atomic_cmpset_int(&kq_ncallouts, ncallouts, ncallouts + 1));
751 
752 	if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
753 		kn->kn_flags |= EV_CLEAR;	/* automatically set */
754 	kn->kn_status &= ~KN_DETACHED;		/* knlist_add clears it */
755 	kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
756 	callout_init(&kc->c, 1);
757 	filt_timerstart(kn, to);
758 
759 	return (0);
760 }
761 
762 static void
763 filt_timerstart(struct knote *kn, sbintime_t to)
764 {
765 	struct kq_timer_cb_data *kc;
766 
767 	kc = kn->kn_ptr.p_v;
768 	if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
769 		kc->next = to;
770 		kc->to = 0;
771 	} else {
772 		kc->next = to + sbinuptime();
773 		kc->to = to;
774 	}
775 	callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
776 	    PCPU_GET(cpuid), C_ABSOLUTE);
777 }
778 
779 static void
780 filt_timerdetach(struct knote *kn)
781 {
782 	struct kq_timer_cb_data *kc;
783 	unsigned int old __unused;
784 
785 	kc = kn->kn_ptr.p_v;
786 	callout_drain(&kc->c);
787 	free(kc, M_KQUEUE);
788 	old = atomic_fetchadd_int(&kq_ncallouts, -1);
789 	KASSERT(old > 0, ("Number of callouts cannot become negative"));
790 	kn->kn_status |= KN_DETACHED;	/* knlist_remove sets it */
791 }
792 
793 static void
794 filt_timertouch(struct knote *kn, struct kevent *kev, u_long type)
795 {
796 	struct kq_timer_cb_data *kc;
797 	struct kqueue *kq;
798 	sbintime_t to;
799 	int error;
800 
801 	switch (type) {
802 	case EVENT_REGISTER:
803 		/* Handle re-added timers that update data/fflags */
804 		if (kev->flags & EV_ADD) {
805 			kc = kn->kn_ptr.p_v;
806 
807 			/* Drain any existing callout. */
808 			callout_drain(&kc->c);
809 
810 			/* Throw away any existing undelivered record
811 			 * of the timer expiration. This is done under
812 			 * the presumption that if a process is
813 			 * re-adding this timer with new parameters,
814 			 * it is no longer interested in what may have
815 			 * happened under the old parameters. If it is
816 			 * interested, it can wait for the expiration,
817 			 * delete the old timer definition, and then
818 			 * add the new one.
819 			 *
820 			 * This has to be done while the kq is locked:
821 			 *   - if enqueued, dequeue
822 			 *   - make it no longer active
823 			 *   - clear the count of expiration events
824 			 */
825 			kq = kn->kn_kq;
826 			KQ_LOCK(kq);
827 			if (kn->kn_status & KN_QUEUED)
828 				knote_dequeue(kn);
829 
830 			kn->kn_status &= ~KN_ACTIVE;
831 			kn->kn_data = 0;
832 			KQ_UNLOCK(kq);
833 
834 			/* Reschedule timer based on new data/fflags */
835 			kn->kn_sfflags = kev->fflags;
836 			kn->kn_sdata = kev->data;
837 			error = filt_timervalidate(kn, &to);
838 			if (error != 0) {
839 			  	kn->kn_flags |= EV_ERROR;
840 				kn->kn_data = error;
841 			} else
842 			  	filt_timerstart(kn, to);
843 		}
844 		break;
845 
846         case EVENT_PROCESS:
847 		*kev = kn->kn_kevent;
848 		if (kn->kn_flags & EV_CLEAR) {
849 			kn->kn_data = 0;
850 			kn->kn_fflags = 0;
851 		}
852 		break;
853 
854 	default:
855 		panic("filt_timertouch() - invalid type (%ld)", type);
856 		break;
857 	}
858 }
859 
860 static int
861 filt_timer(struct knote *kn, long hint)
862 {
863 
864 	return (kn->kn_data != 0);
865 }
866 
867 static int
868 filt_userattach(struct knote *kn)
869 {
870 
871 	/*
872 	 * EVFILT_USER knotes are not attached to anything in the kernel.
873 	 */
874 	kn->kn_hook = NULL;
875 	if (kn->kn_fflags & NOTE_TRIGGER)
876 		kn->kn_hookid = 1;
877 	else
878 		kn->kn_hookid = 0;
879 	return (0);
880 }
881 
882 static void
883 filt_userdetach(__unused struct knote *kn)
884 {
885 
886 	/*
887 	 * EVFILT_USER knotes are not attached to anything in the kernel.
888 	 */
889 }
890 
891 static int
892 filt_user(struct knote *kn, __unused long hint)
893 {
894 
895 	return (kn->kn_hookid);
896 }
897 
898 static void
899 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
900 {
901 	u_int ffctrl;
902 
903 	switch (type) {
904 	case EVENT_REGISTER:
905 		if (kev->fflags & NOTE_TRIGGER)
906 			kn->kn_hookid = 1;
907 
908 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
909 		kev->fflags &= NOTE_FFLAGSMASK;
910 		switch (ffctrl) {
911 		case NOTE_FFNOP:
912 			break;
913 
914 		case NOTE_FFAND:
915 			kn->kn_sfflags &= kev->fflags;
916 			break;
917 
918 		case NOTE_FFOR:
919 			kn->kn_sfflags |= kev->fflags;
920 			break;
921 
922 		case NOTE_FFCOPY:
923 			kn->kn_sfflags = kev->fflags;
924 			break;
925 
926 		default:
927 			/* XXX Return error? */
928 			break;
929 		}
930 		kn->kn_sdata = kev->data;
931 		if (kev->flags & EV_CLEAR) {
932 			kn->kn_hookid = 0;
933 			kn->kn_data = 0;
934 			kn->kn_fflags = 0;
935 		}
936 		break;
937 
938         case EVENT_PROCESS:
939 		*kev = kn->kn_kevent;
940 		kev->fflags = kn->kn_sfflags;
941 		kev->data = kn->kn_sdata;
942 		if (kn->kn_flags & EV_CLEAR) {
943 			kn->kn_hookid = 0;
944 			kn->kn_data = 0;
945 			kn->kn_fflags = 0;
946 		}
947 		break;
948 
949 	default:
950 		panic("filt_usertouch() - invalid type (%ld)", type);
951 		break;
952 	}
953 }
954 
955 int
956 sys_kqueue(struct thread *td, struct kqueue_args *uap)
957 {
958 
959 	return (kern_kqueue(td, 0, NULL));
960 }
961 
962 static void
963 kqueue_init(struct kqueue *kq)
964 {
965 
966 	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
967 	TAILQ_INIT(&kq->kq_head);
968 	knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
969 	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
970 }
971 
972 int
973 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
974 {
975 	struct filedesc *fdp;
976 	struct kqueue *kq;
977 	struct file *fp;
978 	struct ucred *cred;
979 	int fd, error;
980 
981 	fdp = td->td_proc->p_fd;
982 	cred = td->td_ucred;
983 	if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
984 		return (ENOMEM);
985 
986 	error = falloc_caps(td, &fp, &fd, flags, fcaps);
987 	if (error != 0) {
988 		chgkqcnt(cred->cr_ruidinfo, -1, 0);
989 		return (error);
990 	}
991 
992 	/* An extra reference on `fp' has been held for us by falloc(). */
993 	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
994 	kqueue_init(kq);
995 	kq->kq_fdp = fdp;
996 	kq->kq_cred = crhold(cred);
997 
998 	FILEDESC_XLOCK(fdp);
999 	TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
1000 	FILEDESC_XUNLOCK(fdp);
1001 
1002 	finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
1003 	fdrop(fp, td);
1004 
1005 	td->td_retval[0] = fd;
1006 	return (0);
1007 }
1008 
1009 struct g_kevent_args {
1010 	int	fd;
1011 	void	*changelist;
1012 	int	nchanges;
1013 	void	*eventlist;
1014 	int	nevents;
1015 	const struct timespec *timeout;
1016 };
1017 
1018 int
1019 sys_kevent(struct thread *td, struct kevent_args *uap)
1020 {
1021 	struct kevent_copyops k_ops = {
1022 		.arg = uap,
1023 		.k_copyout = kevent_copyout,
1024 		.k_copyin = kevent_copyin,
1025 		.kevent_size = sizeof(struct kevent),
1026 	};
1027 	struct g_kevent_args gk_args = {
1028 		.fd = uap->fd,
1029 		.changelist = uap->changelist,
1030 		.nchanges = uap->nchanges,
1031 		.eventlist = uap->eventlist,
1032 		.nevents = uap->nevents,
1033 		.timeout = uap->timeout,
1034 	};
1035 
1036 	return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent"));
1037 }
1038 
1039 static int
1040 kern_kevent_generic(struct thread *td, struct g_kevent_args *uap,
1041     struct kevent_copyops *k_ops, const char *struct_name)
1042 {
1043 	struct timespec ts, *tsp;
1044 #ifdef KTRACE
1045 	struct kevent *eventlist = uap->eventlist;
1046 #endif
1047 	int error;
1048 
1049 	if (uap->timeout != NULL) {
1050 		error = copyin(uap->timeout, &ts, sizeof(ts));
1051 		if (error)
1052 			return (error);
1053 		tsp = &ts;
1054 	} else
1055 		tsp = NULL;
1056 
1057 #ifdef KTRACE
1058 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
1059 		ktrstructarray(struct_name, UIO_USERSPACE, uap->changelist,
1060 		    uap->nchanges, k_ops->kevent_size);
1061 #endif
1062 
1063 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
1064 	    k_ops, tsp);
1065 
1066 #ifdef KTRACE
1067 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
1068 		ktrstructarray(struct_name, UIO_USERSPACE, eventlist,
1069 		    td->td_retval[0], k_ops->kevent_size);
1070 #endif
1071 
1072 	return (error);
1073 }
1074 
1075 /*
1076  * Copy 'count' items into the destination list pointed to by uap->eventlist.
1077  */
1078 static int
1079 kevent_copyout(void *arg, struct kevent *kevp, int count)
1080 {
1081 	struct kevent_args *uap;
1082 	int error;
1083 
1084 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1085 	uap = (struct kevent_args *)arg;
1086 
1087 	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
1088 	if (error == 0)
1089 		uap->eventlist += count;
1090 	return (error);
1091 }
1092 
1093 /*
1094  * Copy 'count' items from the list pointed to by uap->changelist.
1095  */
1096 static int
1097 kevent_copyin(void *arg, struct kevent *kevp, int count)
1098 {
1099 	struct kevent_args *uap;
1100 	int error;
1101 
1102 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1103 	uap = (struct kevent_args *)arg;
1104 
1105 	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
1106 	if (error == 0)
1107 		uap->changelist += count;
1108 	return (error);
1109 }
1110 
1111 #ifdef COMPAT_FREEBSD11
1112 static int
1113 kevent11_copyout(void *arg, struct kevent *kevp, int count)
1114 {
1115 	struct freebsd11_kevent_args *uap;
1116 	struct kevent_freebsd11 kev11;
1117 	int error, i;
1118 
1119 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1120 	uap = (struct freebsd11_kevent_args *)arg;
1121 
1122 	for (i = 0; i < count; i++) {
1123 		kev11.ident = kevp->ident;
1124 		kev11.filter = kevp->filter;
1125 		kev11.flags = kevp->flags;
1126 		kev11.fflags = kevp->fflags;
1127 		kev11.data = kevp->data;
1128 		kev11.udata = kevp->udata;
1129 		error = copyout(&kev11, uap->eventlist, sizeof(kev11));
1130 		if (error != 0)
1131 			break;
1132 		uap->eventlist++;
1133 		kevp++;
1134 	}
1135 	return (error);
1136 }
1137 
1138 /*
1139  * Copy 'count' items from the list pointed to by uap->changelist.
1140  */
1141 static int
1142 kevent11_copyin(void *arg, struct kevent *kevp, int count)
1143 {
1144 	struct freebsd11_kevent_args *uap;
1145 	struct kevent_freebsd11 kev11;
1146 	int error, i;
1147 
1148 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1149 	uap = (struct freebsd11_kevent_args *)arg;
1150 
1151 	for (i = 0; i < count; i++) {
1152 		error = copyin(uap->changelist, &kev11, sizeof(kev11));
1153 		if (error != 0)
1154 			break;
1155 		kevp->ident = kev11.ident;
1156 		kevp->filter = kev11.filter;
1157 		kevp->flags = kev11.flags;
1158 		kevp->fflags = kev11.fflags;
1159 		kevp->data = (uintptr_t)kev11.data;
1160 		kevp->udata = kev11.udata;
1161 		bzero(&kevp->ext, sizeof(kevp->ext));
1162 		uap->changelist++;
1163 		kevp++;
1164 	}
1165 	return (error);
1166 }
1167 
1168 int
1169 freebsd11_kevent(struct thread *td, struct freebsd11_kevent_args *uap)
1170 {
1171 	struct kevent_copyops k_ops = {
1172 		.arg = uap,
1173 		.k_copyout = kevent11_copyout,
1174 		.k_copyin = kevent11_copyin,
1175 		.kevent_size = sizeof(struct kevent_freebsd11),
1176 	};
1177 	struct g_kevent_args gk_args = {
1178 		.fd = uap->fd,
1179 		.changelist = uap->changelist,
1180 		.nchanges = uap->nchanges,
1181 		.eventlist = uap->eventlist,
1182 		.nevents = uap->nevents,
1183 		.timeout = uap->timeout,
1184 	};
1185 
1186 	return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent_freebsd11"));
1187 }
1188 #endif
1189 
1190 int
1191 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
1192     struct kevent_copyops *k_ops, const struct timespec *timeout)
1193 {
1194 	cap_rights_t rights;
1195 	struct file *fp;
1196 	int error;
1197 
1198 	cap_rights_init(&rights);
1199 	if (nchanges > 0)
1200 		cap_rights_set(&rights, CAP_KQUEUE_CHANGE);
1201 	if (nevents > 0)
1202 		cap_rights_set(&rights, CAP_KQUEUE_EVENT);
1203 	error = fget(td, fd, &rights, &fp);
1204 	if (error != 0)
1205 		return (error);
1206 
1207 	error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
1208 	fdrop(fp, td);
1209 
1210 	return (error);
1211 }
1212 
1213 static int
1214 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
1215     struct kevent_copyops *k_ops, const struct timespec *timeout)
1216 {
1217 	struct kevent keva[KQ_NEVENTS];
1218 	struct kevent *kevp, *changes;
1219 	int i, n, nerrors, error;
1220 
1221 	nerrors = 0;
1222 	while (nchanges > 0) {
1223 		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
1224 		error = k_ops->k_copyin(k_ops->arg, keva, n);
1225 		if (error)
1226 			return (error);
1227 		changes = keva;
1228 		for (i = 0; i < n; i++) {
1229 			kevp = &changes[i];
1230 			if (!kevp->filter)
1231 				continue;
1232 			kevp->flags &= ~EV_SYSFLAGS;
1233 			error = kqueue_register(kq, kevp, td, 1);
1234 			if (error || (kevp->flags & EV_RECEIPT)) {
1235 				if (nevents == 0)
1236 					return (error);
1237 				kevp->flags = EV_ERROR;
1238 				kevp->data = error;
1239 				(void)k_ops->k_copyout(k_ops->arg, kevp, 1);
1240 				nevents--;
1241 				nerrors++;
1242 			}
1243 		}
1244 		nchanges -= n;
1245 	}
1246 	if (nerrors) {
1247 		td->td_retval[0] = nerrors;
1248 		return (0);
1249 	}
1250 
1251 	return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
1252 }
1253 
1254 int
1255 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
1256     struct kevent_copyops *k_ops, const struct timespec *timeout)
1257 {
1258 	struct kqueue *kq;
1259 	int error;
1260 
1261 	error = kqueue_acquire(fp, &kq);
1262 	if (error != 0)
1263 		return (error);
1264 	error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
1265 	kqueue_release(kq, 0);
1266 	return (error);
1267 }
1268 
1269 /*
1270  * Performs a kevent() call on a temporarily created kqueue. This can be
1271  * used to perform one-shot polling, similar to poll() and select().
1272  */
1273 int
1274 kern_kevent_anonymous(struct thread *td, int nevents,
1275     struct kevent_copyops *k_ops)
1276 {
1277 	struct kqueue kq = {};
1278 	int error;
1279 
1280 	kqueue_init(&kq);
1281 	kq.kq_refcnt = 1;
1282 	error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
1283 	kqueue_drain(&kq, td);
1284 	kqueue_destroy(&kq);
1285 	return (error);
1286 }
1287 
1288 int
1289 kqueue_add_filteropts(int filt, struct filterops *filtops)
1290 {
1291 	int error;
1292 
1293 	error = 0;
1294 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
1295 		printf(
1296 "trying to add a filterop that is out of range: %d is beyond %d\n",
1297 		    ~filt, EVFILT_SYSCOUNT);
1298 		return EINVAL;
1299 	}
1300 	mtx_lock(&filterops_lock);
1301 	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
1302 	    sysfilt_ops[~filt].for_fop != NULL)
1303 		error = EEXIST;
1304 	else {
1305 		sysfilt_ops[~filt].for_fop = filtops;
1306 		sysfilt_ops[~filt].for_refcnt = 0;
1307 	}
1308 	mtx_unlock(&filterops_lock);
1309 
1310 	return (error);
1311 }
1312 
1313 int
1314 kqueue_del_filteropts(int filt)
1315 {
1316 	int error;
1317 
1318 	error = 0;
1319 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1320 		return EINVAL;
1321 
1322 	mtx_lock(&filterops_lock);
1323 	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
1324 	    sysfilt_ops[~filt].for_fop == NULL)
1325 		error = EINVAL;
1326 	else if (sysfilt_ops[~filt].for_refcnt != 0)
1327 		error = EBUSY;
1328 	else {
1329 		sysfilt_ops[~filt].for_fop = &null_filtops;
1330 		sysfilt_ops[~filt].for_refcnt = 0;
1331 	}
1332 	mtx_unlock(&filterops_lock);
1333 
1334 	return error;
1335 }
1336 
1337 static struct filterops *
1338 kqueue_fo_find(int filt)
1339 {
1340 
1341 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1342 		return NULL;
1343 
1344 	if (sysfilt_ops[~filt].for_nolock)
1345 		return sysfilt_ops[~filt].for_fop;
1346 
1347 	mtx_lock(&filterops_lock);
1348 	sysfilt_ops[~filt].for_refcnt++;
1349 	if (sysfilt_ops[~filt].for_fop == NULL)
1350 		sysfilt_ops[~filt].for_fop = &null_filtops;
1351 	mtx_unlock(&filterops_lock);
1352 
1353 	return sysfilt_ops[~filt].for_fop;
1354 }
1355 
1356 static void
1357 kqueue_fo_release(int filt)
1358 {
1359 
1360 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1361 		return;
1362 
1363 	if (sysfilt_ops[~filt].for_nolock)
1364 		return;
1365 
1366 	mtx_lock(&filterops_lock);
1367 	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
1368 	    ("filter object refcount not valid on release"));
1369 	sysfilt_ops[~filt].for_refcnt--;
1370 	mtx_unlock(&filterops_lock);
1371 }
1372 
1373 /*
1374  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
1375  * influence if memory allocation should wait.  Make sure it is 0 if you
1376  * hold any mutexes.
1377  */
1378 static int
1379 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
1380 {
1381 	struct filterops *fops;
1382 	struct file *fp;
1383 	struct knote *kn, *tkn;
1384 	struct knlist *knl;
1385 	int error, filt, event;
1386 	int haskqglobal, filedesc_unlock;
1387 
1388 	if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
1389 		return (EINVAL);
1390 
1391 	fp = NULL;
1392 	kn = NULL;
1393 	knl = NULL;
1394 	error = 0;
1395 	haskqglobal = 0;
1396 	filedesc_unlock = 0;
1397 
1398 	filt = kev->filter;
1399 	fops = kqueue_fo_find(filt);
1400 	if (fops == NULL)
1401 		return EINVAL;
1402 
1403 	if (kev->flags & EV_ADD) {
1404 		/*
1405 		 * Prevent waiting with locks.  Non-sleepable
1406 		 * allocation failures are handled in the loop, only
1407 		 * if the spare knote appears to be actually required.
1408 		 */
1409 		tkn = knote_alloc(waitok);
1410 	} else {
1411 		tkn = NULL;
1412 	}
1413 
1414 findkn:
1415 	if (fops->f_isfd) {
1416 		KASSERT(td != NULL, ("td is NULL"));
1417 		if (kev->ident > INT_MAX)
1418 			error = EBADF;
1419 		else
1420 			error = fget(td, kev->ident, &cap_event_rights, &fp);
1421 		if (error)
1422 			goto done;
1423 
1424 		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
1425 		    kev->ident, 0) != 0) {
1426 			/* try again */
1427 			fdrop(fp, td);
1428 			fp = NULL;
1429 			error = kqueue_expand(kq, fops, kev->ident, waitok);
1430 			if (error)
1431 				goto done;
1432 			goto findkn;
1433 		}
1434 
1435 		if (fp->f_type == DTYPE_KQUEUE) {
1436 			/*
1437 			 * If we add some intelligence about what we are doing,
1438 			 * we should be able to support events on ourselves.
1439 			 * We need to know when we are doing this to prevent
1440 			 * getting both the knlist lock and the kq lock since
1441 			 * they are the same thing.
1442 			 */
1443 			if (fp->f_data == kq) {
1444 				error = EINVAL;
1445 				goto done;
1446 			}
1447 
1448 			/*
1449 			 * Pre-lock the filedesc before the global
1450 			 * lock mutex, see the comment in
1451 			 * kqueue_close().
1452 			 */
1453 			FILEDESC_XLOCK(td->td_proc->p_fd);
1454 			filedesc_unlock = 1;
1455 			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1456 		}
1457 
1458 		KQ_LOCK(kq);
1459 		if (kev->ident < kq->kq_knlistsize) {
1460 			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
1461 				if (kev->filter == kn->kn_filter)
1462 					break;
1463 		}
1464 	} else {
1465 		if ((kev->flags & EV_ADD) == EV_ADD)
1466 			kqueue_expand(kq, fops, kev->ident, waitok);
1467 
1468 		KQ_LOCK(kq);
1469 
1470 		/*
1471 		 * If possible, find an existing knote to use for this kevent.
1472 		 */
1473 		if (kev->filter == EVFILT_PROC &&
1474 		    (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
1475 			/* This is an internal creation of a process tracking
1476 			 * note. Don't attempt to coalesce this with an
1477 			 * existing note.
1478 			 */
1479 			;
1480 		} else if (kq->kq_knhashmask != 0) {
1481 			struct klist *list;
1482 
1483 			list = &kq->kq_knhash[
1484 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1485 			SLIST_FOREACH(kn, list, kn_link)
1486 				if (kev->ident == kn->kn_id &&
1487 				    kev->filter == kn->kn_filter)
1488 					break;
1489 		}
1490 	}
1491 
1492 	/* knote is in the process of changing, wait for it to stabilize. */
1493 	if (kn != NULL && kn_in_flux(kn)) {
1494 		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1495 		if (filedesc_unlock) {
1496 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1497 			filedesc_unlock = 0;
1498 		}
1499 		kq->kq_state |= KQ_FLUXWAIT;
1500 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
1501 		if (fp != NULL) {
1502 			fdrop(fp, td);
1503 			fp = NULL;
1504 		}
1505 		goto findkn;
1506 	}
1507 
1508 	/*
1509 	 * kn now contains the matching knote, or NULL if no match
1510 	 */
1511 	if (kn == NULL) {
1512 		if (kev->flags & EV_ADD) {
1513 			kn = tkn;
1514 			tkn = NULL;
1515 			if (kn == NULL) {
1516 				KQ_UNLOCK(kq);
1517 				error = ENOMEM;
1518 				goto done;
1519 			}
1520 			kn->kn_fp = fp;
1521 			kn->kn_kq = kq;
1522 			kn->kn_fop = fops;
1523 			/*
1524 			 * apply reference counts to knote structure, and
1525 			 * do not release it at the end of this routine.
1526 			 */
1527 			fops = NULL;
1528 			fp = NULL;
1529 
1530 			kn->kn_sfflags = kev->fflags;
1531 			kn->kn_sdata = kev->data;
1532 			kev->fflags = 0;
1533 			kev->data = 0;
1534 			kn->kn_kevent = *kev;
1535 			kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
1536 			    EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
1537 			kn->kn_status = KN_DETACHED;
1538 			kn_enter_flux(kn);
1539 
1540 			error = knote_attach(kn, kq);
1541 			KQ_UNLOCK(kq);
1542 			if (error != 0) {
1543 				tkn = kn;
1544 				goto done;
1545 			}
1546 
1547 			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
1548 				knote_drop_detached(kn, td);
1549 				goto done;
1550 			}
1551 			knl = kn_list_lock(kn);
1552 			goto done_ev_add;
1553 		} else {
1554 			/* No matching knote and the EV_ADD flag is not set. */
1555 			KQ_UNLOCK(kq);
1556 			error = ENOENT;
1557 			goto done;
1558 		}
1559 	}
1560 
1561 	if (kev->flags & EV_DELETE) {
1562 		kn_enter_flux(kn);
1563 		KQ_UNLOCK(kq);
1564 		knote_drop(kn, td);
1565 		goto done;
1566 	}
1567 
1568 	if (kev->flags & EV_FORCEONESHOT) {
1569 		kn->kn_flags |= EV_ONESHOT;
1570 		KNOTE_ACTIVATE(kn, 1);
1571 	}
1572 
1573 	/*
1574 	 * The user may change some filter values after the initial EV_ADD,
1575 	 * but doing so will not reset any filter which has already been
1576 	 * triggered.
1577 	 */
1578 	kn->kn_status |= KN_SCAN;
1579 	kn_enter_flux(kn);
1580 	KQ_UNLOCK(kq);
1581 	knl = kn_list_lock(kn);
1582 	kn->kn_kevent.udata = kev->udata;
1583 	if (!fops->f_isfd && fops->f_touch != NULL) {
1584 		fops->f_touch(kn, kev, EVENT_REGISTER);
1585 	} else {
1586 		kn->kn_sfflags = kev->fflags;
1587 		kn->kn_sdata = kev->data;
1588 	}
1589 
1590 	/*
1591 	 * We can get here with kn->kn_knlist == NULL.  This can happen when
1592 	 * the initial attach event decides that the event is "completed"
1593 	 * already.  i.e. filt_procattach is called on a zombie process.  It
1594 	 * will call filt_proc which will remove it from the list, and NULL
1595 	 * kn_knlist.
1596 	 */
1597 done_ev_add:
1598 	if ((kev->flags & EV_ENABLE) != 0)
1599 		kn->kn_status &= ~KN_DISABLED;
1600 	else if ((kev->flags & EV_DISABLE) != 0)
1601 		kn->kn_status |= KN_DISABLED;
1602 
1603 	if ((kn->kn_status & KN_DISABLED) == 0)
1604 		event = kn->kn_fop->f_event(kn, 0);
1605 	else
1606 		event = 0;
1607 
1608 	KQ_LOCK(kq);
1609 	if (event)
1610 		kn->kn_status |= KN_ACTIVE;
1611 	if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
1612 	    KN_ACTIVE)
1613 		knote_enqueue(kn);
1614 	kn->kn_status &= ~KN_SCAN;
1615 	kn_leave_flux(kn);
1616 	kn_list_unlock(knl);
1617 	KQ_UNLOCK_FLUX(kq);
1618 
1619 done:
1620 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1621 	if (filedesc_unlock)
1622 		FILEDESC_XUNLOCK(td->td_proc->p_fd);
1623 	if (fp != NULL)
1624 		fdrop(fp, td);
1625 	knote_free(tkn);
1626 	if (fops != NULL)
1627 		kqueue_fo_release(filt);
1628 	return (error);
1629 }
1630 
1631 static int
1632 kqueue_acquire(struct file *fp, struct kqueue **kqp)
1633 {
1634 	int error;
1635 	struct kqueue *kq;
1636 
1637 	error = 0;
1638 
1639 	kq = fp->f_data;
1640 	if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1641 		return (EBADF);
1642 	*kqp = kq;
1643 	KQ_LOCK(kq);
1644 	if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1645 		KQ_UNLOCK(kq);
1646 		return (EBADF);
1647 	}
1648 	kq->kq_refcnt++;
1649 	KQ_UNLOCK(kq);
1650 
1651 	return error;
1652 }
1653 
1654 static void
1655 kqueue_release(struct kqueue *kq, int locked)
1656 {
1657 	if (locked)
1658 		KQ_OWNED(kq);
1659 	else
1660 		KQ_LOCK(kq);
1661 	kq->kq_refcnt--;
1662 	if (kq->kq_refcnt == 1)
1663 		wakeup(&kq->kq_refcnt);
1664 	if (!locked)
1665 		KQ_UNLOCK(kq);
1666 }
1667 
1668 static void
1669 kqueue_schedtask(struct kqueue *kq)
1670 {
1671 
1672 	KQ_OWNED(kq);
1673 	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1674 	    ("scheduling kqueue task while draining"));
1675 
1676 	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1677 		taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
1678 		kq->kq_state |= KQ_TASKSCHED;
1679 	}
1680 }
1681 
1682 /*
1683  * Expand the kq to make sure we have storage for fops/ident pair.
1684  *
1685  * Return 0 on success (or no work necessary), return errno on failure.
1686  *
1687  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
1688  * If kqueue_register is called from a non-fd context, there usually/should
1689  * be no locks held.
1690  */
1691 static int
1692 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1693 	int waitok)
1694 {
1695 	struct klist *list, *tmp_knhash, *to_free;
1696 	u_long tmp_knhashmask;
1697 	int size;
1698 	int fd;
1699 	int mflag = waitok ? M_WAITOK : M_NOWAIT;
1700 
1701 	KQ_NOTOWNED(kq);
1702 
1703 	to_free = NULL;
1704 	if (fops->f_isfd) {
1705 		fd = ident;
1706 		if (kq->kq_knlistsize <= fd) {
1707 			size = kq->kq_knlistsize;
1708 			while (size <= fd)
1709 				size += KQEXTENT;
1710 			list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
1711 			if (list == NULL)
1712 				return ENOMEM;
1713 			KQ_LOCK(kq);
1714 			if (kq->kq_knlistsize > fd) {
1715 				to_free = list;
1716 				list = NULL;
1717 			} else {
1718 				if (kq->kq_knlist != NULL) {
1719 					bcopy(kq->kq_knlist, list,
1720 					    kq->kq_knlistsize * sizeof(*list));
1721 					to_free = kq->kq_knlist;
1722 					kq->kq_knlist = NULL;
1723 				}
1724 				bzero((caddr_t)list +
1725 				    kq->kq_knlistsize * sizeof(*list),
1726 				    (size - kq->kq_knlistsize) * sizeof(*list));
1727 				kq->kq_knlistsize = size;
1728 				kq->kq_knlist = list;
1729 			}
1730 			KQ_UNLOCK(kq);
1731 		}
1732 	} else {
1733 		if (kq->kq_knhashmask == 0) {
1734 			tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1735 			    &tmp_knhashmask);
1736 			if (tmp_knhash == NULL)
1737 				return ENOMEM;
1738 			KQ_LOCK(kq);
1739 			if (kq->kq_knhashmask == 0) {
1740 				kq->kq_knhash = tmp_knhash;
1741 				kq->kq_knhashmask = tmp_knhashmask;
1742 			} else {
1743 				to_free = tmp_knhash;
1744 			}
1745 			KQ_UNLOCK(kq);
1746 		}
1747 	}
1748 	free(to_free, M_KQUEUE);
1749 
1750 	KQ_NOTOWNED(kq);
1751 	return 0;
1752 }
1753 
1754 static void
1755 kqueue_task(void *arg, int pending)
1756 {
1757 	struct kqueue *kq;
1758 	int haskqglobal;
1759 
1760 	haskqglobal = 0;
1761 	kq = arg;
1762 
1763 	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1764 	KQ_LOCK(kq);
1765 
1766 	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1767 
1768 	kq->kq_state &= ~KQ_TASKSCHED;
1769 	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1770 		wakeup(&kq->kq_state);
1771 	}
1772 	KQ_UNLOCK(kq);
1773 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1774 }
1775 
1776 /*
1777  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1778  * We treat KN_MARKER knotes as if they are in flux.
1779  */
1780 static int
1781 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1782     const struct timespec *tsp, struct kevent *keva, struct thread *td)
1783 {
1784 	struct kevent *kevp;
1785 	struct knote *kn, *marker;
1786 	struct knlist *knl;
1787 	sbintime_t asbt, rsbt;
1788 	int count, error, haskqglobal, influx, nkev, touch;
1789 
1790 	count = maxevents;
1791 	nkev = 0;
1792 	error = 0;
1793 	haskqglobal = 0;
1794 
1795 	if (maxevents == 0)
1796 		goto done_nl;
1797 
1798 	rsbt = 0;
1799 	if (tsp != NULL) {
1800 		if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
1801 		    tsp->tv_nsec >= 1000000000) {
1802 			error = EINVAL;
1803 			goto done_nl;
1804 		}
1805 		if (timespecisset(tsp)) {
1806 			if (tsp->tv_sec <= INT32_MAX) {
1807 				rsbt = tstosbt(*tsp);
1808 				if (TIMESEL(&asbt, rsbt))
1809 					asbt += tc_tick_sbt;
1810 				if (asbt <= SBT_MAX - rsbt)
1811 					asbt += rsbt;
1812 				else
1813 					asbt = 0;
1814 				rsbt >>= tc_precexp;
1815 			} else
1816 				asbt = 0;
1817 		} else
1818 			asbt = -1;
1819 	} else
1820 		asbt = 0;
1821 	marker = knote_alloc(1);
1822 	marker->kn_status = KN_MARKER;
1823 	KQ_LOCK(kq);
1824 
1825 retry:
1826 	kevp = keva;
1827 	if (kq->kq_count == 0) {
1828 		if (asbt == -1) {
1829 			error = EWOULDBLOCK;
1830 		} else {
1831 			kq->kq_state |= KQ_SLEEP;
1832 			error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
1833 			    "kqread", asbt, rsbt, C_ABSOLUTE);
1834 		}
1835 		if (error == 0)
1836 			goto retry;
1837 		/* don't restart after signals... */
1838 		if (error == ERESTART)
1839 			error = EINTR;
1840 		else if (error == EWOULDBLOCK)
1841 			error = 0;
1842 		goto done;
1843 	}
1844 
1845 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1846 	influx = 0;
1847 	while (count) {
1848 		KQ_OWNED(kq);
1849 		kn = TAILQ_FIRST(&kq->kq_head);
1850 
1851 		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1852 		    kn_in_flux(kn)) {
1853 			if (influx) {
1854 				influx = 0;
1855 				KQ_FLUX_WAKEUP(kq);
1856 			}
1857 			kq->kq_state |= KQ_FLUXWAIT;
1858 			error = msleep(kq, &kq->kq_lock, PSOCK,
1859 			    "kqflxwt", 0);
1860 			continue;
1861 		}
1862 
1863 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1864 		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1865 			kn->kn_status &= ~KN_QUEUED;
1866 			kq->kq_count--;
1867 			continue;
1868 		}
1869 		if (kn == marker) {
1870 			KQ_FLUX_WAKEUP(kq);
1871 			if (count == maxevents)
1872 				goto retry;
1873 			goto done;
1874 		}
1875 		KASSERT(!kn_in_flux(kn),
1876 		    ("knote %p is unexpectedly in flux", kn));
1877 
1878 		if ((kn->kn_flags & EV_DROP) == EV_DROP) {
1879 			kn->kn_status &= ~KN_QUEUED;
1880 			kn_enter_flux(kn);
1881 			kq->kq_count--;
1882 			KQ_UNLOCK(kq);
1883 			/*
1884 			 * We don't need to lock the list since we've
1885 			 * marked it as in flux.
1886 			 */
1887 			knote_drop(kn, td);
1888 			KQ_LOCK(kq);
1889 			continue;
1890 		} else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1891 			kn->kn_status &= ~KN_QUEUED;
1892 			kn_enter_flux(kn);
1893 			kq->kq_count--;
1894 			KQ_UNLOCK(kq);
1895 			/*
1896 			 * We don't need to lock the list since we've
1897 			 * marked the knote as being in flux.
1898 			 */
1899 			*kevp = kn->kn_kevent;
1900 			knote_drop(kn, td);
1901 			KQ_LOCK(kq);
1902 			kn = NULL;
1903 		} else {
1904 			kn->kn_status |= KN_SCAN;
1905 			kn_enter_flux(kn);
1906 			KQ_UNLOCK(kq);
1907 			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1908 				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1909 			knl = kn_list_lock(kn);
1910 			if (kn->kn_fop->f_event(kn, 0) == 0) {
1911 				KQ_LOCK(kq);
1912 				KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1913 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE |
1914 				    KN_SCAN);
1915 				kn_leave_flux(kn);
1916 				kq->kq_count--;
1917 				kn_list_unlock(knl);
1918 				influx = 1;
1919 				continue;
1920 			}
1921 			touch = (!kn->kn_fop->f_isfd &&
1922 			    kn->kn_fop->f_touch != NULL);
1923 			if (touch)
1924 				kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
1925 			else
1926 				*kevp = kn->kn_kevent;
1927 			KQ_LOCK(kq);
1928 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1929 			if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
1930 				/*
1931 				 * Manually clear knotes who weren't
1932 				 * 'touch'ed.
1933 				 */
1934 				if (touch == 0 && kn->kn_flags & EV_CLEAR) {
1935 					kn->kn_data = 0;
1936 					kn->kn_fflags = 0;
1937 				}
1938 				if (kn->kn_flags & EV_DISPATCH)
1939 					kn->kn_status |= KN_DISABLED;
1940 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1941 				kq->kq_count--;
1942 			} else
1943 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1944 
1945 			kn->kn_status &= ~KN_SCAN;
1946 			kn_leave_flux(kn);
1947 			kn_list_unlock(knl);
1948 			influx = 1;
1949 		}
1950 
1951 		/* we are returning a copy to the user */
1952 		kevp++;
1953 		nkev++;
1954 		count--;
1955 
1956 		if (nkev == KQ_NEVENTS) {
1957 			influx = 0;
1958 			KQ_UNLOCK_FLUX(kq);
1959 			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1960 			nkev = 0;
1961 			kevp = keva;
1962 			KQ_LOCK(kq);
1963 			if (error)
1964 				break;
1965 		}
1966 	}
1967 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1968 done:
1969 	KQ_OWNED(kq);
1970 	KQ_UNLOCK_FLUX(kq);
1971 	knote_free(marker);
1972 done_nl:
1973 	KQ_NOTOWNED(kq);
1974 	if (nkev != 0)
1975 		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1976 	td->td_retval[0] = maxevents - count;
1977 	return (error);
1978 }
1979 
1980 /*ARGSUSED*/
1981 static int
1982 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
1983 	struct ucred *active_cred, struct thread *td)
1984 {
1985 	/*
1986 	 * Enabling sigio causes two major problems:
1987 	 * 1) infinite recursion:
1988 	 * Synopsys: kevent is being used to track signals and have FIOASYNC
1989 	 * set.  On receipt of a signal this will cause a kqueue to recurse
1990 	 * into itself over and over.  Sending the sigio causes the kqueue
1991 	 * to become ready, which in turn posts sigio again, forever.
1992 	 * Solution: this can be solved by setting a flag in the kqueue that
1993 	 * we have a SIGIO in progress.
1994 	 * 2) locking problems:
1995 	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
1996 	 * us above the proc and pgrp locks.
1997 	 * Solution: Post a signal using an async mechanism, being sure to
1998 	 * record a generation count in the delivery so that we do not deliver
1999 	 * a signal to the wrong process.
2000 	 *
2001 	 * Note, these two mechanisms are somewhat mutually exclusive!
2002 	 */
2003 #if 0
2004 	struct kqueue *kq;
2005 
2006 	kq = fp->f_data;
2007 	switch (cmd) {
2008 	case FIOASYNC:
2009 		if (*(int *)data) {
2010 			kq->kq_state |= KQ_ASYNC;
2011 		} else {
2012 			kq->kq_state &= ~KQ_ASYNC;
2013 		}
2014 		return (0);
2015 
2016 	case FIOSETOWN:
2017 		return (fsetown(*(int *)data, &kq->kq_sigio));
2018 
2019 	case FIOGETOWN:
2020 		*(int *)data = fgetown(&kq->kq_sigio);
2021 		return (0);
2022 	}
2023 #endif
2024 
2025 	return (ENOTTY);
2026 }
2027 
2028 /*ARGSUSED*/
2029 static int
2030 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
2031 	struct thread *td)
2032 {
2033 	struct kqueue *kq;
2034 	int revents = 0;
2035 	int error;
2036 
2037 	if ((error = kqueue_acquire(fp, &kq)))
2038 		return POLLERR;
2039 
2040 	KQ_LOCK(kq);
2041 	if (events & (POLLIN | POLLRDNORM)) {
2042 		if (kq->kq_count) {
2043 			revents |= events & (POLLIN | POLLRDNORM);
2044 		} else {
2045 			selrecord(td, &kq->kq_sel);
2046 			if (SEL_WAITING(&kq->kq_sel))
2047 				kq->kq_state |= KQ_SEL;
2048 		}
2049 	}
2050 	kqueue_release(kq, 1);
2051 	KQ_UNLOCK(kq);
2052 	return (revents);
2053 }
2054 
2055 /*ARGSUSED*/
2056 static int
2057 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
2058 	struct thread *td)
2059 {
2060 
2061 	bzero((void *)st, sizeof *st);
2062 	/*
2063 	 * We no longer return kq_count because the unlocked value is useless.
2064 	 * If you spent all this time getting the count, why not spend your
2065 	 * syscall better by calling kevent?
2066 	 *
2067 	 * XXX - This is needed for libc_r.
2068 	 */
2069 	st->st_mode = S_IFIFO;
2070 	return (0);
2071 }
2072 
2073 static void
2074 kqueue_drain(struct kqueue *kq, struct thread *td)
2075 {
2076 	struct knote *kn;
2077 	int i;
2078 
2079 	KQ_LOCK(kq);
2080 
2081 	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
2082 	    ("kqueue already closing"));
2083 	kq->kq_state |= KQ_CLOSING;
2084 	if (kq->kq_refcnt > 1)
2085 		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
2086 
2087 	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
2088 
2089 	KASSERT(knlist_empty(&kq->kq_sel.si_note),
2090 	    ("kqueue's knlist not empty"));
2091 
2092 	for (i = 0; i < kq->kq_knlistsize; i++) {
2093 		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
2094 			if (kn_in_flux(kn)) {
2095 				kq->kq_state |= KQ_FLUXWAIT;
2096 				msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
2097 				continue;
2098 			}
2099 			kn_enter_flux(kn);
2100 			KQ_UNLOCK(kq);
2101 			knote_drop(kn, td);
2102 			KQ_LOCK(kq);
2103 		}
2104 	}
2105 	if (kq->kq_knhashmask != 0) {
2106 		for (i = 0; i <= kq->kq_knhashmask; i++) {
2107 			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
2108 				if (kn_in_flux(kn)) {
2109 					kq->kq_state |= KQ_FLUXWAIT;
2110 					msleep(kq, &kq->kq_lock, PSOCK,
2111 					       "kqclo2", 0);
2112 					continue;
2113 				}
2114 				kn_enter_flux(kn);
2115 				KQ_UNLOCK(kq);
2116 				knote_drop(kn, td);
2117 				KQ_LOCK(kq);
2118 			}
2119 		}
2120 	}
2121 
2122 	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
2123 		kq->kq_state |= KQ_TASKDRAIN;
2124 		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
2125 	}
2126 
2127 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
2128 		selwakeuppri(&kq->kq_sel, PSOCK);
2129 		if (!SEL_WAITING(&kq->kq_sel))
2130 			kq->kq_state &= ~KQ_SEL;
2131 	}
2132 
2133 	KQ_UNLOCK(kq);
2134 }
2135 
2136 static void
2137 kqueue_destroy(struct kqueue *kq)
2138 {
2139 
2140 	KASSERT(kq->kq_fdp == NULL,
2141 	    ("kqueue still attached to a file descriptor"));
2142 	seldrain(&kq->kq_sel);
2143 	knlist_destroy(&kq->kq_sel.si_note);
2144 	mtx_destroy(&kq->kq_lock);
2145 
2146 	if (kq->kq_knhash != NULL)
2147 		free(kq->kq_knhash, M_KQUEUE);
2148 	if (kq->kq_knlist != NULL)
2149 		free(kq->kq_knlist, M_KQUEUE);
2150 
2151 	funsetown(&kq->kq_sigio);
2152 }
2153 
2154 /*ARGSUSED*/
2155 static int
2156 kqueue_close(struct file *fp, struct thread *td)
2157 {
2158 	struct kqueue *kq = fp->f_data;
2159 	struct filedesc *fdp;
2160 	int error;
2161 	int filedesc_unlock;
2162 
2163 	if ((error = kqueue_acquire(fp, &kq)))
2164 		return error;
2165 	kqueue_drain(kq, td);
2166 
2167 	/*
2168 	 * We could be called due to the knote_drop() doing fdrop(),
2169 	 * called from kqueue_register().  In this case the global
2170 	 * lock is owned, and filedesc sx is locked before, to not
2171 	 * take the sleepable lock after non-sleepable.
2172 	 */
2173 	fdp = kq->kq_fdp;
2174 	kq->kq_fdp = NULL;
2175 	if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
2176 		FILEDESC_XLOCK(fdp);
2177 		filedesc_unlock = 1;
2178 	} else
2179 		filedesc_unlock = 0;
2180 	TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
2181 	if (filedesc_unlock)
2182 		FILEDESC_XUNLOCK(fdp);
2183 
2184 	kqueue_destroy(kq);
2185 	chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
2186 	crfree(kq->kq_cred);
2187 	free(kq, M_KQUEUE);
2188 	fp->f_data = NULL;
2189 
2190 	return (0);
2191 }
2192 
2193 static int
2194 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2195 {
2196 
2197 	kif->kf_type = KF_TYPE_KQUEUE;
2198 	return (0);
2199 }
2200 
2201 static void
2202 kqueue_wakeup(struct kqueue *kq)
2203 {
2204 	KQ_OWNED(kq);
2205 
2206 	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
2207 		kq->kq_state &= ~KQ_SLEEP;
2208 		wakeup(kq);
2209 	}
2210 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
2211 		selwakeuppri(&kq->kq_sel, PSOCK);
2212 		if (!SEL_WAITING(&kq->kq_sel))
2213 			kq->kq_state &= ~KQ_SEL;
2214 	}
2215 	if (!knlist_empty(&kq->kq_sel.si_note))
2216 		kqueue_schedtask(kq);
2217 	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
2218 		pgsigio(&kq->kq_sigio, SIGIO, 0);
2219 	}
2220 }
2221 
2222 /*
2223  * Walk down a list of knotes, activating them if their event has triggered.
2224  *
2225  * There is a possibility to optimize in the case of one kq watching another.
2226  * Instead of scheduling a task to wake it up, you could pass enough state
2227  * down the chain to make up the parent kqueue.  Make this code functional
2228  * first.
2229  */
2230 void
2231 knote(struct knlist *list, long hint, int lockflags)
2232 {
2233 	struct kqueue *kq;
2234 	struct knote *kn, *tkn;
2235 	int error;
2236 
2237 	if (list == NULL)
2238 		return;
2239 
2240 	KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
2241 
2242 	if ((lockflags & KNF_LISTLOCKED) == 0)
2243 		list->kl_lock(list->kl_lockarg);
2244 
2245 	/*
2246 	 * If we unlock the list lock (and enter influx), we can
2247 	 * eliminate the kqueue scheduling, but this will introduce
2248 	 * four lock/unlock's for each knote to test.  Also, marker
2249 	 * would be needed to keep iteration position, since filters
2250 	 * or other threads could remove events.
2251 	 */
2252 	SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
2253 		kq = kn->kn_kq;
2254 		KQ_LOCK(kq);
2255 		if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
2256 			/*
2257 			 * Do not process the influx notes, except for
2258 			 * the influx coming from the kq unlock in the
2259 			 * kqueue_scan().  In the later case, we do
2260 			 * not interfere with the scan, since the code
2261 			 * fragment in kqueue_scan() locks the knlist,
2262 			 * and cannot proceed until we finished.
2263 			 */
2264 			KQ_UNLOCK(kq);
2265 		} else if ((lockflags & KNF_NOKQLOCK) != 0) {
2266 			kn_enter_flux(kn);
2267 			KQ_UNLOCK(kq);
2268 			error = kn->kn_fop->f_event(kn, hint);
2269 			KQ_LOCK(kq);
2270 			kn_leave_flux(kn);
2271 			if (error)
2272 				KNOTE_ACTIVATE(kn, 1);
2273 			KQ_UNLOCK_FLUX(kq);
2274 		} else {
2275 			kn->kn_status |= KN_HASKQLOCK;
2276 			if (kn->kn_fop->f_event(kn, hint))
2277 				KNOTE_ACTIVATE(kn, 1);
2278 			kn->kn_status &= ~KN_HASKQLOCK;
2279 			KQ_UNLOCK(kq);
2280 		}
2281 	}
2282 	if ((lockflags & KNF_LISTLOCKED) == 0)
2283 		list->kl_unlock(list->kl_lockarg);
2284 }
2285 
2286 /*
2287  * add a knote to a knlist
2288  */
2289 void
2290 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
2291 {
2292 
2293 	KNL_ASSERT_LOCK(knl, islocked);
2294 	KQ_NOTOWNED(kn->kn_kq);
2295 	KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
2296 	KASSERT((kn->kn_status & KN_DETACHED) != 0,
2297 	    ("knote %p was not detached", kn));
2298 	if (!islocked)
2299 		knl->kl_lock(knl->kl_lockarg);
2300 	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
2301 	if (!islocked)
2302 		knl->kl_unlock(knl->kl_lockarg);
2303 	KQ_LOCK(kn->kn_kq);
2304 	kn->kn_knlist = knl;
2305 	kn->kn_status &= ~KN_DETACHED;
2306 	KQ_UNLOCK(kn->kn_kq);
2307 }
2308 
2309 static void
2310 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
2311     int kqislocked)
2312 {
2313 
2314 	KASSERT(!kqislocked || knlislocked, ("kq locked w/o knl locked"));
2315 	KNL_ASSERT_LOCK(knl, knlislocked);
2316 	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
2317 	KASSERT(kqislocked || kn_in_flux(kn), ("knote %p not in flux", kn));
2318 	KASSERT((kn->kn_status & KN_DETACHED) == 0,
2319 	    ("knote %p was already detached", kn));
2320 	if (!knlislocked)
2321 		knl->kl_lock(knl->kl_lockarg);
2322 	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
2323 	kn->kn_knlist = NULL;
2324 	if (!knlislocked)
2325 		kn_list_unlock(knl);
2326 	if (!kqislocked)
2327 		KQ_LOCK(kn->kn_kq);
2328 	kn->kn_status |= KN_DETACHED;
2329 	if (!kqislocked)
2330 		KQ_UNLOCK(kn->kn_kq);
2331 }
2332 
2333 /*
2334  * remove knote from the specified knlist
2335  */
2336 void
2337 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
2338 {
2339 
2340 	knlist_remove_kq(knl, kn, islocked, 0);
2341 }
2342 
2343 int
2344 knlist_empty(struct knlist *knl)
2345 {
2346 
2347 	KNL_ASSERT_LOCKED(knl);
2348 	return (SLIST_EMPTY(&knl->kl_list));
2349 }
2350 
2351 static struct mtx knlist_lock;
2352 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
2353     MTX_DEF);
2354 static void knlist_mtx_lock(void *arg);
2355 static void knlist_mtx_unlock(void *arg);
2356 
2357 static void
2358 knlist_mtx_lock(void *arg)
2359 {
2360 
2361 	mtx_lock((struct mtx *)arg);
2362 }
2363 
2364 static void
2365 knlist_mtx_unlock(void *arg)
2366 {
2367 
2368 	mtx_unlock((struct mtx *)arg);
2369 }
2370 
2371 static void
2372 knlist_mtx_assert_locked(void *arg)
2373 {
2374 
2375 	mtx_assert((struct mtx *)arg, MA_OWNED);
2376 }
2377 
2378 static void
2379 knlist_mtx_assert_unlocked(void *arg)
2380 {
2381 
2382 	mtx_assert((struct mtx *)arg, MA_NOTOWNED);
2383 }
2384 
2385 static void
2386 knlist_rw_rlock(void *arg)
2387 {
2388 
2389 	rw_rlock((struct rwlock *)arg);
2390 }
2391 
2392 static void
2393 knlist_rw_runlock(void *arg)
2394 {
2395 
2396 	rw_runlock((struct rwlock *)arg);
2397 }
2398 
2399 static void
2400 knlist_rw_assert_locked(void *arg)
2401 {
2402 
2403 	rw_assert((struct rwlock *)arg, RA_LOCKED);
2404 }
2405 
2406 static void
2407 knlist_rw_assert_unlocked(void *arg)
2408 {
2409 
2410 	rw_assert((struct rwlock *)arg, RA_UNLOCKED);
2411 }
2412 
2413 void
2414 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
2415     void (*kl_unlock)(void *),
2416     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
2417 {
2418 
2419 	if (lock == NULL)
2420 		knl->kl_lockarg = &knlist_lock;
2421 	else
2422 		knl->kl_lockarg = lock;
2423 
2424 	if (kl_lock == NULL)
2425 		knl->kl_lock = knlist_mtx_lock;
2426 	else
2427 		knl->kl_lock = kl_lock;
2428 	if (kl_unlock == NULL)
2429 		knl->kl_unlock = knlist_mtx_unlock;
2430 	else
2431 		knl->kl_unlock = kl_unlock;
2432 	if (kl_assert_locked == NULL)
2433 		knl->kl_assert_locked = knlist_mtx_assert_locked;
2434 	else
2435 		knl->kl_assert_locked = kl_assert_locked;
2436 	if (kl_assert_unlocked == NULL)
2437 		knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
2438 	else
2439 		knl->kl_assert_unlocked = kl_assert_unlocked;
2440 
2441 	knl->kl_autodestroy = 0;
2442 	SLIST_INIT(&knl->kl_list);
2443 }
2444 
2445 void
2446 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
2447 {
2448 
2449 	knlist_init(knl, lock, NULL, NULL, NULL, NULL);
2450 }
2451 
2452 struct knlist *
2453 knlist_alloc(struct mtx *lock)
2454 {
2455 	struct knlist *knl;
2456 
2457 	knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
2458 	knlist_init_mtx(knl, lock);
2459 	return (knl);
2460 }
2461 
2462 void
2463 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
2464 {
2465 
2466 	knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
2467 	    knlist_rw_assert_locked, knlist_rw_assert_unlocked);
2468 }
2469 
2470 void
2471 knlist_destroy(struct knlist *knl)
2472 {
2473 
2474 	KASSERT(KNLIST_EMPTY(knl),
2475 	    ("destroying knlist %p with knotes on it", knl));
2476 }
2477 
2478 void
2479 knlist_detach(struct knlist *knl)
2480 {
2481 
2482 	KNL_ASSERT_LOCKED(knl);
2483 	knl->kl_autodestroy = 1;
2484 	if (knlist_empty(knl)) {
2485 		knlist_destroy(knl);
2486 		free(knl, M_KQUEUE);
2487 	}
2488 }
2489 
2490 /*
2491  * Even if we are locked, we may need to drop the lock to allow any influx
2492  * knotes time to "settle".
2493  */
2494 void
2495 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
2496 {
2497 	struct knote *kn, *kn2;
2498 	struct kqueue *kq;
2499 
2500 	KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
2501 	if (islocked)
2502 		KNL_ASSERT_LOCKED(knl);
2503 	else {
2504 		KNL_ASSERT_UNLOCKED(knl);
2505 again:		/* need to reacquire lock since we have dropped it */
2506 		knl->kl_lock(knl->kl_lockarg);
2507 	}
2508 
2509 	SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
2510 		kq = kn->kn_kq;
2511 		KQ_LOCK(kq);
2512 		if (kn_in_flux(kn)) {
2513 			KQ_UNLOCK(kq);
2514 			continue;
2515 		}
2516 		knlist_remove_kq(knl, kn, 1, 1);
2517 		if (killkn) {
2518 			kn_enter_flux(kn);
2519 			KQ_UNLOCK(kq);
2520 			knote_drop_detached(kn, td);
2521 		} else {
2522 			/* Make sure cleared knotes disappear soon */
2523 			kn->kn_flags |= EV_EOF | EV_ONESHOT;
2524 			KQ_UNLOCK(kq);
2525 		}
2526 		kq = NULL;
2527 	}
2528 
2529 	if (!SLIST_EMPTY(&knl->kl_list)) {
2530 		/* there are still in flux knotes remaining */
2531 		kn = SLIST_FIRST(&knl->kl_list);
2532 		kq = kn->kn_kq;
2533 		KQ_LOCK(kq);
2534 		KASSERT(kn_in_flux(kn), ("knote removed w/o list lock"));
2535 		knl->kl_unlock(knl->kl_lockarg);
2536 		kq->kq_state |= KQ_FLUXWAIT;
2537 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
2538 		kq = NULL;
2539 		goto again;
2540 	}
2541 
2542 	if (islocked)
2543 		KNL_ASSERT_LOCKED(knl);
2544 	else {
2545 		knl->kl_unlock(knl->kl_lockarg);
2546 		KNL_ASSERT_UNLOCKED(knl);
2547 	}
2548 }
2549 
2550 /*
2551  * Remove all knotes referencing a specified fd must be called with FILEDESC
2552  * lock.  This prevents a race where a new fd comes along and occupies the
2553  * entry and we attach a knote to the fd.
2554  */
2555 void
2556 knote_fdclose(struct thread *td, int fd)
2557 {
2558 	struct filedesc *fdp = td->td_proc->p_fd;
2559 	struct kqueue *kq;
2560 	struct knote *kn;
2561 	int influx;
2562 
2563 	FILEDESC_XLOCK_ASSERT(fdp);
2564 
2565 	/*
2566 	 * We shouldn't have to worry about new kevents appearing on fd
2567 	 * since filedesc is locked.
2568 	 */
2569 	TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
2570 		KQ_LOCK(kq);
2571 
2572 again:
2573 		influx = 0;
2574 		while (kq->kq_knlistsize > fd &&
2575 		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
2576 			if (kn_in_flux(kn)) {
2577 				/* someone else might be waiting on our knote */
2578 				if (influx)
2579 					wakeup(kq);
2580 				kq->kq_state |= KQ_FLUXWAIT;
2581 				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2582 				goto again;
2583 			}
2584 			kn_enter_flux(kn);
2585 			KQ_UNLOCK(kq);
2586 			influx = 1;
2587 			knote_drop(kn, td);
2588 			KQ_LOCK(kq);
2589 		}
2590 		KQ_UNLOCK_FLUX(kq);
2591 	}
2592 }
2593 
2594 static int
2595 knote_attach(struct knote *kn, struct kqueue *kq)
2596 {
2597 	struct klist *list;
2598 
2599 	KASSERT(kn_in_flux(kn), ("knote %p not marked influx", kn));
2600 	KQ_OWNED(kq);
2601 
2602 	if (kn->kn_fop->f_isfd) {
2603 		if (kn->kn_id >= kq->kq_knlistsize)
2604 			return (ENOMEM);
2605 		list = &kq->kq_knlist[kn->kn_id];
2606 	} else {
2607 		if (kq->kq_knhash == NULL)
2608 			return (ENOMEM);
2609 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2610 	}
2611 	SLIST_INSERT_HEAD(list, kn, kn_link);
2612 	return (0);
2613 }
2614 
2615 static void
2616 knote_drop(struct knote *kn, struct thread *td)
2617 {
2618 
2619 	if ((kn->kn_status & KN_DETACHED) == 0)
2620 		kn->kn_fop->f_detach(kn);
2621 	knote_drop_detached(kn, td);
2622 }
2623 
2624 static void
2625 knote_drop_detached(struct knote *kn, struct thread *td)
2626 {
2627 	struct kqueue *kq;
2628 	struct klist *list;
2629 
2630 	kq = kn->kn_kq;
2631 
2632 	KASSERT((kn->kn_status & KN_DETACHED) != 0,
2633 	    ("knote %p still attached", kn));
2634 	KQ_NOTOWNED(kq);
2635 
2636 	KQ_LOCK(kq);
2637 	KASSERT(kn->kn_influx == 1,
2638 	    ("knote_drop called on %p with influx %d", kn, kn->kn_influx));
2639 
2640 	if (kn->kn_fop->f_isfd)
2641 		list = &kq->kq_knlist[kn->kn_id];
2642 	else
2643 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2644 
2645 	if (!SLIST_EMPTY(list))
2646 		SLIST_REMOVE(list, kn, knote, kn_link);
2647 	if (kn->kn_status & KN_QUEUED)
2648 		knote_dequeue(kn);
2649 	KQ_UNLOCK_FLUX(kq);
2650 
2651 	if (kn->kn_fop->f_isfd) {
2652 		fdrop(kn->kn_fp, td);
2653 		kn->kn_fp = NULL;
2654 	}
2655 	kqueue_fo_release(kn->kn_kevent.filter);
2656 	kn->kn_fop = NULL;
2657 	knote_free(kn);
2658 }
2659 
2660 static void
2661 knote_enqueue(struct knote *kn)
2662 {
2663 	struct kqueue *kq = kn->kn_kq;
2664 
2665 	KQ_OWNED(kn->kn_kq);
2666 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2667 
2668 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2669 	kn->kn_status |= KN_QUEUED;
2670 	kq->kq_count++;
2671 	kqueue_wakeup(kq);
2672 }
2673 
2674 static void
2675 knote_dequeue(struct knote *kn)
2676 {
2677 	struct kqueue *kq = kn->kn_kq;
2678 
2679 	KQ_OWNED(kn->kn_kq);
2680 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2681 
2682 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2683 	kn->kn_status &= ~KN_QUEUED;
2684 	kq->kq_count--;
2685 }
2686 
2687 static void
2688 knote_init(void)
2689 {
2690 
2691 	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
2692 	    NULL, NULL, UMA_ALIGN_PTR, 0);
2693 }
2694 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
2695 
2696 static struct knote *
2697 knote_alloc(int waitok)
2698 {
2699 
2700 	return (uma_zalloc(knote_zone, (waitok ? M_WAITOK : M_NOWAIT) |
2701 	    M_ZERO));
2702 }
2703 
2704 static void
2705 knote_free(struct knote *kn)
2706 {
2707 
2708 	uma_zfree(knote_zone, kn);
2709 }
2710 
2711 /*
2712  * Register the kev w/ the kq specified by fd.
2713  */
2714 int
2715 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
2716 {
2717 	struct kqueue *kq;
2718 	struct file *fp;
2719 	cap_rights_t rights;
2720 	int error;
2721 
2722 	error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp);
2723 	if (error != 0)
2724 		return (error);
2725 	if ((error = kqueue_acquire(fp, &kq)) != 0)
2726 		goto noacquire;
2727 
2728 	error = kqueue_register(kq, kev, td, waitok);
2729 	kqueue_release(kq, 0);
2730 
2731 noacquire:
2732 	fdrop(fp, td);
2733 	return (error);
2734 }
2735