xref: /freebsd/sys/kern/kern_event.c (revision ac099daf6742ead81ea7ea86351a8ef4e783041b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
6  * Copyright (c) 2009 Apple, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_ktrace.h"
35 #include "opt_kqueue.h"
36 
37 #ifdef COMPAT_FREEBSD11
38 #define	_WANT_FREEBSD11_KEVENT
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/capsicum.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/rwlock.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/unistd.h>
52 #include <sys/file.h>
53 #include <sys/filedesc.h>
54 #include <sys/filio.h>
55 #include <sys/fcntl.h>
56 #include <sys/kthread.h>
57 #include <sys/selinfo.h>
58 #include <sys/queue.h>
59 #include <sys/event.h>
60 #include <sys/eventvar.h>
61 #include <sys/poll.h>
62 #include <sys/protosw.h>
63 #include <sys/resourcevar.h>
64 #include <sys/sigio.h>
65 #include <sys/signalvar.h>
66 #include <sys/socket.h>
67 #include <sys/socketvar.h>
68 #include <sys/stat.h>
69 #include <sys/sysctl.h>
70 #include <sys/sysproto.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/taskqueue.h>
73 #include <sys/uio.h>
74 #include <sys/user.h>
75 #ifdef KTRACE
76 #include <sys/ktrace.h>
77 #endif
78 #include <machine/atomic.h>
79 
80 #include <vm/uma.h>
81 
82 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
83 
84 /*
85  * This lock is used if multiple kq locks are required.  This possibly
86  * should be made into a per proc lock.
87  */
88 static struct mtx	kq_global;
89 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
90 #define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
91 	if (!haslck)				\
92 		mtx_lock(lck);			\
93 	haslck = 1;				\
94 } while (0)
95 #define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
96 	if (haslck)				\
97 		mtx_unlock(lck);			\
98 	haslck = 0;				\
99 } while (0)
100 
101 TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
102 
103 static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
104 static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
105 static int	kqueue_register(struct kqueue *kq, struct kevent *kev,
106 		    struct thread *td, int mflag);
107 static int	kqueue_acquire(struct file *fp, struct kqueue **kqp);
108 static void	kqueue_release(struct kqueue *kq, int locked);
109 static void	kqueue_destroy(struct kqueue *kq);
110 static void	kqueue_drain(struct kqueue *kq, struct thread *td);
111 static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
112 		    uintptr_t ident, int mflag);
113 static void	kqueue_task(void *arg, int pending);
114 static int	kqueue_scan(struct kqueue *kq, int maxevents,
115 		    struct kevent_copyops *k_ops,
116 		    const struct timespec *timeout,
117 		    struct kevent *keva, struct thread *td);
118 static void 	kqueue_wakeup(struct kqueue *kq);
119 static struct filterops *kqueue_fo_find(int filt);
120 static void	kqueue_fo_release(int filt);
121 struct g_kevent_args;
122 static int	kern_kevent_generic(struct thread *td,
123 		    struct g_kevent_args *uap,
124 		    struct kevent_copyops *k_ops, const char *struct_name);
125 
126 static fo_ioctl_t	kqueue_ioctl;
127 static fo_poll_t	kqueue_poll;
128 static fo_kqfilter_t	kqueue_kqfilter;
129 static fo_stat_t	kqueue_stat;
130 static fo_close_t	kqueue_close;
131 static fo_fill_kinfo_t	kqueue_fill_kinfo;
132 
133 static struct fileops kqueueops = {
134 	.fo_read = invfo_rdwr,
135 	.fo_write = invfo_rdwr,
136 	.fo_truncate = invfo_truncate,
137 	.fo_ioctl = kqueue_ioctl,
138 	.fo_poll = kqueue_poll,
139 	.fo_kqfilter = kqueue_kqfilter,
140 	.fo_stat = kqueue_stat,
141 	.fo_close = kqueue_close,
142 	.fo_chmod = invfo_chmod,
143 	.fo_chown = invfo_chown,
144 	.fo_sendfile = invfo_sendfile,
145 	.fo_fill_kinfo = kqueue_fill_kinfo,
146 };
147 
148 static int 	knote_attach(struct knote *kn, struct kqueue *kq);
149 static void 	knote_drop(struct knote *kn, struct thread *td);
150 static void 	knote_drop_detached(struct knote *kn, struct thread *td);
151 static void 	knote_enqueue(struct knote *kn);
152 static void 	knote_dequeue(struct knote *kn);
153 static void 	knote_init(void);
154 static struct 	knote *knote_alloc(int mflag);
155 static void 	knote_free(struct knote *kn);
156 
157 static void	filt_kqdetach(struct knote *kn);
158 static int	filt_kqueue(struct knote *kn, long hint);
159 static int	filt_procattach(struct knote *kn);
160 static void	filt_procdetach(struct knote *kn);
161 static int	filt_proc(struct knote *kn, long hint);
162 static int	filt_fileattach(struct knote *kn);
163 static void	filt_timerexpire(void *knx);
164 static void	filt_timerexpire_l(struct knote *kn, bool proc_locked);
165 static int	filt_timerattach(struct knote *kn);
166 static void	filt_timerdetach(struct knote *kn);
167 static void	filt_timerstart(struct knote *kn, sbintime_t to);
168 static void	filt_timertouch(struct knote *kn, struct kevent *kev,
169 		    u_long type);
170 static int	filt_timervalidate(struct knote *kn, sbintime_t *to);
171 static int	filt_timer(struct knote *kn, long hint);
172 static int	filt_userattach(struct knote *kn);
173 static void	filt_userdetach(struct knote *kn);
174 static int	filt_user(struct knote *kn, long hint);
175 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
176 		    u_long type);
177 
178 static struct filterops file_filtops = {
179 	.f_isfd = 1,
180 	.f_attach = filt_fileattach,
181 };
182 static struct filterops kqread_filtops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_kqdetach,
185 	.f_event = filt_kqueue,
186 };
187 /* XXX - move to kern_proc.c?  */
188 static struct filterops proc_filtops = {
189 	.f_isfd = 0,
190 	.f_attach = filt_procattach,
191 	.f_detach = filt_procdetach,
192 	.f_event = filt_proc,
193 };
194 static struct filterops timer_filtops = {
195 	.f_isfd = 0,
196 	.f_attach = filt_timerattach,
197 	.f_detach = filt_timerdetach,
198 	.f_event = filt_timer,
199 	.f_touch = filt_timertouch,
200 };
201 static struct filterops user_filtops = {
202 	.f_attach = filt_userattach,
203 	.f_detach = filt_userdetach,
204 	.f_event = filt_user,
205 	.f_touch = filt_usertouch,
206 };
207 
208 static uma_zone_t	knote_zone;
209 static unsigned int	kq_ncallouts = 0;
210 static unsigned int 	kq_calloutmax = 4 * 1024;
211 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
212     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
213 
214 /* XXX - ensure not influx ? */
215 #define KNOTE_ACTIVATE(kn, islock) do { 				\
216 	if ((islock))							\
217 		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
218 	else								\
219 		KQ_LOCK((kn)->kn_kq);					\
220 	(kn)->kn_status |= KN_ACTIVE;					\
221 	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
222 		knote_enqueue((kn));					\
223 	if (!(islock))							\
224 		KQ_UNLOCK((kn)->kn_kq);					\
225 } while (0)
226 #define KQ_LOCK(kq) do {						\
227 	mtx_lock(&(kq)->kq_lock);					\
228 } while (0)
229 #define KQ_FLUX_WAKEUP(kq) do {						\
230 	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
231 		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
232 		wakeup((kq));						\
233 	}								\
234 } while (0)
235 #define KQ_UNLOCK_FLUX(kq) do {						\
236 	KQ_FLUX_WAKEUP(kq);						\
237 	mtx_unlock(&(kq)->kq_lock);					\
238 } while (0)
239 #define KQ_UNLOCK(kq) do {						\
240 	mtx_unlock(&(kq)->kq_lock);					\
241 } while (0)
242 #define KQ_OWNED(kq) do {						\
243 	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
244 } while (0)
245 #define KQ_NOTOWNED(kq) do {						\
246 	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
247 } while (0)
248 
249 static struct knlist *
250 kn_list_lock(struct knote *kn)
251 {
252 	struct knlist *knl;
253 
254 	knl = kn->kn_knlist;
255 	if (knl != NULL)
256 		knl->kl_lock(knl->kl_lockarg);
257 	return (knl);
258 }
259 
260 static void
261 kn_list_unlock(struct knlist *knl)
262 {
263 	bool do_free;
264 
265 	if (knl == NULL)
266 		return;
267 	do_free = knl->kl_autodestroy && knlist_empty(knl);
268 	knl->kl_unlock(knl->kl_lockarg);
269 	if (do_free) {
270 		knlist_destroy(knl);
271 		free(knl, M_KQUEUE);
272 	}
273 }
274 
275 static bool
276 kn_in_flux(struct knote *kn)
277 {
278 
279 	return (kn->kn_influx > 0);
280 }
281 
282 static void
283 kn_enter_flux(struct knote *kn)
284 {
285 
286 	KQ_OWNED(kn->kn_kq);
287 	MPASS(kn->kn_influx < INT_MAX);
288 	kn->kn_influx++;
289 }
290 
291 static bool
292 kn_leave_flux(struct knote *kn)
293 {
294 
295 	KQ_OWNED(kn->kn_kq);
296 	MPASS(kn->kn_influx > 0);
297 	kn->kn_influx--;
298 	return (kn->kn_influx == 0);
299 }
300 
301 #define	KNL_ASSERT_LOCK(knl, islocked) do {				\
302 	if (islocked)							\
303 		KNL_ASSERT_LOCKED(knl);				\
304 	else								\
305 		KNL_ASSERT_UNLOCKED(knl);				\
306 } while (0)
307 #ifdef INVARIANTS
308 #define	KNL_ASSERT_LOCKED(knl) do {					\
309 	knl->kl_assert_lock((knl)->kl_lockarg, LA_LOCKED);		\
310 } while (0)
311 #define	KNL_ASSERT_UNLOCKED(knl) do {					\
312 	knl->kl_assert_lock((knl)->kl_lockarg, LA_UNLOCKED);		\
313 } while (0)
314 #else /* !INVARIANTS */
315 #define	KNL_ASSERT_LOCKED(knl) do {} while (0)
316 #define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
317 #endif /* INVARIANTS */
318 
319 #ifndef	KN_HASHSIZE
320 #define	KN_HASHSIZE		64		/* XXX should be tunable */
321 #endif
322 
323 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
324 
325 static int
326 filt_nullattach(struct knote *kn)
327 {
328 
329 	return (ENXIO);
330 };
331 
332 struct filterops null_filtops = {
333 	.f_isfd = 0,
334 	.f_attach = filt_nullattach,
335 };
336 
337 /* XXX - make SYSINIT to add these, and move into respective modules. */
338 extern struct filterops sig_filtops;
339 extern struct filterops fs_filtops;
340 
341 /*
342  * Table for for all system-defined filters.
343  */
344 static struct mtx	filterops_lock;
345 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
346 	MTX_DEF);
347 static struct {
348 	struct filterops *for_fop;
349 	int for_nolock;
350 	int for_refcnt;
351 } sysfilt_ops[EVFILT_SYSCOUNT] = {
352 	{ &file_filtops, 1 },			/* EVFILT_READ */
353 	{ &file_filtops, 1 },			/* EVFILT_WRITE */
354 	{ &null_filtops },			/* EVFILT_AIO */
355 	{ &file_filtops, 1 },			/* EVFILT_VNODE */
356 	{ &proc_filtops, 1 },			/* EVFILT_PROC */
357 	{ &sig_filtops, 1 },			/* EVFILT_SIGNAL */
358 	{ &timer_filtops, 1 },			/* EVFILT_TIMER */
359 	{ &file_filtops, 1 },			/* EVFILT_PROCDESC */
360 	{ &fs_filtops, 1 },			/* EVFILT_FS */
361 	{ &null_filtops },			/* EVFILT_LIO */
362 	{ &user_filtops, 1 },			/* EVFILT_USER */
363 	{ &null_filtops },			/* EVFILT_SENDFILE */
364 	{ &file_filtops, 1 },                   /* EVFILT_EMPTY */
365 };
366 
367 /*
368  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
369  * method.
370  */
371 static int
372 filt_fileattach(struct knote *kn)
373 {
374 
375 	return (fo_kqfilter(kn->kn_fp, kn));
376 }
377 
378 /*ARGSUSED*/
379 static int
380 kqueue_kqfilter(struct file *fp, struct knote *kn)
381 {
382 	struct kqueue *kq = kn->kn_fp->f_data;
383 
384 	if (kn->kn_filter != EVFILT_READ)
385 		return (EINVAL);
386 
387 	kn->kn_status |= KN_KQUEUE;
388 	kn->kn_fop = &kqread_filtops;
389 	knlist_add(&kq->kq_sel.si_note, kn, 0);
390 
391 	return (0);
392 }
393 
394 static void
395 filt_kqdetach(struct knote *kn)
396 {
397 	struct kqueue *kq = kn->kn_fp->f_data;
398 
399 	knlist_remove(&kq->kq_sel.si_note, kn, 0);
400 }
401 
402 /*ARGSUSED*/
403 static int
404 filt_kqueue(struct knote *kn, long hint)
405 {
406 	struct kqueue *kq = kn->kn_fp->f_data;
407 
408 	kn->kn_data = kq->kq_count;
409 	return (kn->kn_data > 0);
410 }
411 
412 /* XXX - move to kern_proc.c?  */
413 static int
414 filt_procattach(struct knote *kn)
415 {
416 	struct proc *p;
417 	int error;
418 	bool exiting, immediate;
419 
420 	exiting = immediate = false;
421 	if (kn->kn_sfflags & NOTE_EXIT)
422 		p = pfind_any(kn->kn_id);
423 	else
424 		p = pfind(kn->kn_id);
425 	if (p == NULL)
426 		return (ESRCH);
427 	if (p->p_flag & P_WEXIT)
428 		exiting = true;
429 
430 	if ((error = p_cansee(curthread, p))) {
431 		PROC_UNLOCK(p);
432 		return (error);
433 	}
434 
435 	kn->kn_ptr.p_proc = p;
436 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
437 
438 	/*
439 	 * Internal flag indicating registration done by kernel for the
440 	 * purposes of getting a NOTE_CHILD notification.
441 	 */
442 	if (kn->kn_flags & EV_FLAG2) {
443 		kn->kn_flags &= ~EV_FLAG2;
444 		kn->kn_data = kn->kn_sdata;		/* ppid */
445 		kn->kn_fflags = NOTE_CHILD;
446 		kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
447 		immediate = true; /* Force immediate activation of child note. */
448 	}
449 	/*
450 	 * Internal flag indicating registration done by kernel (for other than
451 	 * NOTE_CHILD).
452 	 */
453 	if (kn->kn_flags & EV_FLAG1) {
454 		kn->kn_flags &= ~EV_FLAG1;
455 	}
456 
457 	knlist_add(p->p_klist, kn, 1);
458 
459 	/*
460 	 * Immediately activate any child notes or, in the case of a zombie
461 	 * target process, exit notes.  The latter is necessary to handle the
462 	 * case where the target process, e.g. a child, dies before the kevent
463 	 * is registered.
464 	 */
465 	if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
466 		KNOTE_ACTIVATE(kn, 0);
467 
468 	PROC_UNLOCK(p);
469 
470 	return (0);
471 }
472 
473 /*
474  * The knote may be attached to a different process, which may exit,
475  * leaving nothing for the knote to be attached to.  So when the process
476  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
477  * it will be deleted when read out.  However, as part of the knote deletion,
478  * this routine is called, so a check is needed to avoid actually performing
479  * a detach, because the original process does not exist any more.
480  */
481 /* XXX - move to kern_proc.c?  */
482 static void
483 filt_procdetach(struct knote *kn)
484 {
485 
486 	knlist_remove(kn->kn_knlist, kn, 0);
487 	kn->kn_ptr.p_proc = NULL;
488 }
489 
490 /* XXX - move to kern_proc.c?  */
491 static int
492 filt_proc(struct knote *kn, long hint)
493 {
494 	struct proc *p;
495 	u_int event;
496 
497 	p = kn->kn_ptr.p_proc;
498 	if (p == NULL) /* already activated, from attach filter */
499 		return (0);
500 
501 	/* Mask off extra data. */
502 	event = (u_int)hint & NOTE_PCTRLMASK;
503 
504 	/* If the user is interested in this event, record it. */
505 	if (kn->kn_sfflags & event)
506 		kn->kn_fflags |= event;
507 
508 	/* Process is gone, so flag the event as finished. */
509 	if (event == NOTE_EXIT) {
510 		kn->kn_flags |= EV_EOF | EV_ONESHOT;
511 		kn->kn_ptr.p_proc = NULL;
512 		if (kn->kn_fflags & NOTE_EXIT)
513 			kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
514 		if (kn->kn_fflags == 0)
515 			kn->kn_flags |= EV_DROP;
516 		return (1);
517 	}
518 
519 	return (kn->kn_fflags != 0);
520 }
521 
522 /*
523  * Called when the process forked. It mostly does the same as the
524  * knote(), activating all knotes registered to be activated when the
525  * process forked. Additionally, for each knote attached to the
526  * parent, check whether user wants to track the new process. If so
527  * attach a new knote to it, and immediately report an event with the
528  * child's pid.
529  */
530 void
531 knote_fork(struct knlist *list, int pid)
532 {
533 	struct kqueue *kq;
534 	struct knote *kn;
535 	struct kevent kev;
536 	int error;
537 
538 	MPASS(list != NULL);
539 	KNL_ASSERT_LOCKED(list);
540 	if (SLIST_EMPTY(&list->kl_list))
541 		return;
542 
543 	memset(&kev, 0, sizeof(kev));
544 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
545 		kq = kn->kn_kq;
546 		KQ_LOCK(kq);
547 		if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
548 			KQ_UNLOCK(kq);
549 			continue;
550 		}
551 
552 		/*
553 		 * The same as knote(), activate the event.
554 		 */
555 		if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
556 			if (kn->kn_fop->f_event(kn, NOTE_FORK))
557 				KNOTE_ACTIVATE(kn, 1);
558 			KQ_UNLOCK(kq);
559 			continue;
560 		}
561 
562 		/*
563 		 * The NOTE_TRACK case. In addition to the activation
564 		 * of the event, we need to register new events to
565 		 * track the child. Drop the locks in preparation for
566 		 * the call to kqueue_register().
567 		 */
568 		kn_enter_flux(kn);
569 		KQ_UNLOCK(kq);
570 		list->kl_unlock(list->kl_lockarg);
571 
572 		/*
573 		 * Activate existing knote and register tracking knotes with
574 		 * new process.
575 		 *
576 		 * First register a knote to get just the child notice. This
577 		 * must be a separate note from a potential NOTE_EXIT
578 		 * notification since both NOTE_CHILD and NOTE_EXIT are defined
579 		 * to use the data field (in conflicting ways).
580 		 */
581 		kev.ident = pid;
582 		kev.filter = kn->kn_filter;
583 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
584 		    EV_FLAG2;
585 		kev.fflags = kn->kn_sfflags;
586 		kev.data = kn->kn_id;		/* parent */
587 		kev.udata = kn->kn_kevent.udata;/* preserve udata */
588 		error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
589 		if (error)
590 			kn->kn_fflags |= NOTE_TRACKERR;
591 
592 		/*
593 		 * Then register another knote to track other potential events
594 		 * from the new process.
595 		 */
596 		kev.ident = pid;
597 		kev.filter = kn->kn_filter;
598 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
599 		kev.fflags = kn->kn_sfflags;
600 		kev.data = kn->kn_id;		/* parent */
601 		kev.udata = kn->kn_kevent.udata;/* preserve udata */
602 		error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
603 		if (error)
604 			kn->kn_fflags |= NOTE_TRACKERR;
605 		if (kn->kn_fop->f_event(kn, NOTE_FORK))
606 			KNOTE_ACTIVATE(kn, 0);
607 		list->kl_lock(list->kl_lockarg);
608 		KQ_LOCK(kq);
609 		kn_leave_flux(kn);
610 		KQ_UNLOCK_FLUX(kq);
611 	}
612 }
613 
614 /*
615  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
616  * interval timer support code.
617  */
618 
619 #define NOTE_TIMER_PRECMASK						\
620     (NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
621 
622 static sbintime_t
623 timer2sbintime(int64_t data, int flags)
624 {
625 	int64_t secs;
626 
627         /*
628          * Macros for converting to the fractional second portion of an
629          * sbintime_t using 64bit multiplication to improve precision.
630          */
631 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
632 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
633 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
634 	switch (flags & NOTE_TIMER_PRECMASK) {
635 	case NOTE_SECONDS:
636 #ifdef __LP64__
637 		if (data > (SBT_MAX / SBT_1S))
638 			return (SBT_MAX);
639 #endif
640 		return ((sbintime_t)data << 32);
641 	case NOTE_MSECONDS: /* FALLTHROUGH */
642 	case 0:
643 		if (data >= 1000) {
644 			secs = data / 1000;
645 #ifdef __LP64__
646 			if (secs > (SBT_MAX / SBT_1S))
647 				return (SBT_MAX);
648 #endif
649 			return (secs << 32 | MS_TO_SBT(data % 1000));
650 		}
651 		return (MS_TO_SBT(data));
652 	case NOTE_USECONDS:
653 		if (data >= 1000000) {
654 			secs = data / 1000000;
655 #ifdef __LP64__
656 			if (secs > (SBT_MAX / SBT_1S))
657 				return (SBT_MAX);
658 #endif
659 			return (secs << 32 | US_TO_SBT(data % 1000000));
660 		}
661 		return (US_TO_SBT(data));
662 	case NOTE_NSECONDS:
663 		if (data >= 1000000000) {
664 			secs = data / 1000000000;
665 #ifdef __LP64__
666 			if (secs > (SBT_MAX / SBT_1S))
667 				return (SBT_MAX);
668 #endif
669 			return (secs << 32 | NS_TO_SBT(data % 1000000000));
670 		}
671 		return (NS_TO_SBT(data));
672 	default:
673 		break;
674 	}
675 	return (-1);
676 }
677 
678 struct kq_timer_cb_data {
679 	struct callout c;
680 	struct proc *p;
681 	struct knote *kn;
682 	int cpuid;
683 	TAILQ_ENTRY(kq_timer_cb_data) link;
684 	sbintime_t next;	/* next timer event fires at */
685 	sbintime_t to;		/* precalculated timer period, 0 for abs */
686 };
687 
688 static void
689 kqtimer_sched_callout(struct kq_timer_cb_data *kc)
690 {
691 	callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kc->kn,
692 	    kc->cpuid, C_ABSOLUTE);
693 }
694 
695 void
696 kqtimer_proc_continue(struct proc *p)
697 {
698 	struct kq_timer_cb_data *kc, *kc1;
699 	struct bintime bt;
700 	sbintime_t now;
701 
702 	PROC_LOCK_ASSERT(p, MA_OWNED);
703 
704 	getboottimebin(&bt);
705 	now = bttosbt(bt);
706 
707 	TAILQ_FOREACH_SAFE(kc, &p->p_kqtim_stop, link, kc1) {
708 		TAILQ_REMOVE(&p->p_kqtim_stop, kc, link);
709 		if (kc->next <= now)
710 			filt_timerexpire_l(kc->kn, true);
711 		else
712 			kqtimer_sched_callout(kc);
713 	}
714 }
715 
716 static void
717 filt_timerexpire_l(struct knote *kn, bool proc_locked)
718 {
719 	struct kq_timer_cb_data *kc;
720 	struct proc *p;
721 	sbintime_t now;
722 
723 	kc = kn->kn_ptr.p_v;
724 
725 	if ((kn->kn_flags & EV_ONESHOT) != 0 || kc->to == 0) {
726 		kn->kn_data++;
727 		KNOTE_ACTIVATE(kn, 0);
728 		return;
729 	}
730 
731 	for (now = sbinuptime(); kc->next <= now; kc->next += kc->to)
732 		kn->kn_data++;
733 	KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
734 
735 	/*
736 	 * Initial check for stopped kc->p is racy.  It is fine to
737 	 * miss the set of the stop flags, at worst we would schedule
738 	 * one more callout.  On the other hand, it is not fine to not
739 	 * schedule when we we missed clearing of the flags, we
740 	 * recheck them under the lock and observe consistent state.
741 	 */
742 	p = kc->p;
743 	if (P_SHOULDSTOP(p) || P_KILLED(p)) {
744 		if (!proc_locked)
745 			PROC_LOCK(p);
746 		if (P_SHOULDSTOP(p) || P_KILLED(p)) {
747 			TAILQ_INSERT_TAIL(&p->p_kqtim_stop, kc, link);
748 			if (!proc_locked)
749 				PROC_UNLOCK(p);
750 			return;
751 		}
752 		if (!proc_locked)
753 			PROC_UNLOCK(p);
754 	}
755 	kqtimer_sched_callout(kc);
756 }
757 
758 static void
759 filt_timerexpire(void *knx)
760 {
761 	filt_timerexpire_l(knx, false);
762 }
763 
764 /*
765  * data contains amount of time to sleep
766  */
767 static int
768 filt_timervalidate(struct knote *kn, sbintime_t *to)
769 {
770 	struct bintime bt;
771 	sbintime_t sbt;
772 
773 	if (kn->kn_sdata < 0)
774 		return (EINVAL);
775 	if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
776 		kn->kn_sdata = 1;
777 	/*
778 	 * The only fflags values supported are the timer unit
779 	 * (precision) and the absolute time indicator.
780 	 */
781 	if ((kn->kn_sfflags & ~(NOTE_TIMER_PRECMASK | NOTE_ABSTIME)) != 0)
782 		return (EINVAL);
783 
784 	*to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
785 	if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
786 		getboottimebin(&bt);
787 		sbt = bttosbt(bt);
788 		*to -= sbt;
789 	}
790 	if (*to < 0)
791 		return (EINVAL);
792 	return (0);
793 }
794 
795 static int
796 filt_timerattach(struct knote *kn)
797 {
798 	struct kq_timer_cb_data *kc;
799 	sbintime_t to;
800 	unsigned int ncallouts;
801 	int error;
802 
803 	error = filt_timervalidate(kn, &to);
804 	if (error != 0)
805 		return (error);
806 
807 	do {
808 		ncallouts = kq_ncallouts;
809 		if (ncallouts >= kq_calloutmax)
810 			return (ENOMEM);
811 	} while (!atomic_cmpset_int(&kq_ncallouts, ncallouts, ncallouts + 1));
812 
813 	if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
814 		kn->kn_flags |= EV_CLEAR;	/* automatically set */
815 	kn->kn_status &= ~KN_DETACHED;		/* knlist_add clears it */
816 	kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
817 	kc->kn = kn;
818 	kc->p = curproc;
819 	kc->cpuid = PCPU_GET(cpuid);
820 	callout_init(&kc->c, 1);
821 	filt_timerstart(kn, to);
822 
823 	return (0);
824 }
825 
826 static void
827 filt_timerstart(struct knote *kn, sbintime_t to)
828 {
829 	struct kq_timer_cb_data *kc;
830 
831 	kc = kn->kn_ptr.p_v;
832 	if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
833 		kc->next = to;
834 		kc->to = 0;
835 	} else {
836 		kc->next = to + sbinuptime();
837 		kc->to = to;
838 	}
839 	kqtimer_sched_callout(kc);
840 }
841 
842 static void
843 filt_timerdetach(struct knote *kn)
844 {
845 	struct kq_timer_cb_data *kc;
846 	unsigned int old __unused;
847 
848 	kc = kn->kn_ptr.p_v;
849 	callout_drain(&kc->c);
850 	free(kc, M_KQUEUE);
851 	old = atomic_fetchadd_int(&kq_ncallouts, -1);
852 	KASSERT(old > 0, ("Number of callouts cannot become negative"));
853 	kn->kn_status |= KN_DETACHED;	/* knlist_remove sets it */
854 }
855 
856 static void
857 filt_timertouch(struct knote *kn, struct kevent *kev, u_long type)
858 {
859 	struct kq_timer_cb_data *kc;
860 	struct kqueue *kq;
861 	sbintime_t to;
862 	int error;
863 
864 	switch (type) {
865 	case EVENT_REGISTER:
866 		/* Handle re-added timers that update data/fflags */
867 		if (kev->flags & EV_ADD) {
868 			kc = kn->kn_ptr.p_v;
869 
870 			/* Drain any existing callout. */
871 			callout_drain(&kc->c);
872 
873 			/* Throw away any existing undelivered record
874 			 * of the timer expiration. This is done under
875 			 * the presumption that if a process is
876 			 * re-adding this timer with new parameters,
877 			 * it is no longer interested in what may have
878 			 * happened under the old parameters. If it is
879 			 * interested, it can wait for the expiration,
880 			 * delete the old timer definition, and then
881 			 * add the new one.
882 			 *
883 			 * This has to be done while the kq is locked:
884 			 *   - if enqueued, dequeue
885 			 *   - make it no longer active
886 			 *   - clear the count of expiration events
887 			 */
888 			kq = kn->kn_kq;
889 			KQ_LOCK(kq);
890 			if (kn->kn_status & KN_QUEUED)
891 				knote_dequeue(kn);
892 
893 			kn->kn_status &= ~KN_ACTIVE;
894 			kn->kn_data = 0;
895 			KQ_UNLOCK(kq);
896 
897 			/* Reschedule timer based on new data/fflags */
898 			kn->kn_sfflags = kev->fflags;
899 			kn->kn_sdata = kev->data;
900 			error = filt_timervalidate(kn, &to);
901 			if (error != 0) {
902 			  	kn->kn_flags |= EV_ERROR;
903 				kn->kn_data = error;
904 			} else
905 			  	filt_timerstart(kn, to);
906 		}
907 		break;
908 
909         case EVENT_PROCESS:
910 		*kev = kn->kn_kevent;
911 		if (kn->kn_flags & EV_CLEAR) {
912 			kn->kn_data = 0;
913 			kn->kn_fflags = 0;
914 		}
915 		break;
916 
917 	default:
918 		panic("filt_timertouch() - invalid type (%ld)", type);
919 		break;
920 	}
921 }
922 
923 static int
924 filt_timer(struct knote *kn, long hint)
925 {
926 
927 	return (kn->kn_data != 0);
928 }
929 
930 static int
931 filt_userattach(struct knote *kn)
932 {
933 
934 	/*
935 	 * EVFILT_USER knotes are not attached to anything in the kernel.
936 	 */
937 	kn->kn_hook = NULL;
938 	if (kn->kn_fflags & NOTE_TRIGGER)
939 		kn->kn_hookid = 1;
940 	else
941 		kn->kn_hookid = 0;
942 	return (0);
943 }
944 
945 static void
946 filt_userdetach(__unused struct knote *kn)
947 {
948 
949 	/*
950 	 * EVFILT_USER knotes are not attached to anything in the kernel.
951 	 */
952 }
953 
954 static int
955 filt_user(struct knote *kn, __unused long hint)
956 {
957 
958 	return (kn->kn_hookid);
959 }
960 
961 static void
962 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
963 {
964 	u_int ffctrl;
965 
966 	switch (type) {
967 	case EVENT_REGISTER:
968 		if (kev->fflags & NOTE_TRIGGER)
969 			kn->kn_hookid = 1;
970 
971 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
972 		kev->fflags &= NOTE_FFLAGSMASK;
973 		switch (ffctrl) {
974 		case NOTE_FFNOP:
975 			break;
976 
977 		case NOTE_FFAND:
978 			kn->kn_sfflags &= kev->fflags;
979 			break;
980 
981 		case NOTE_FFOR:
982 			kn->kn_sfflags |= kev->fflags;
983 			break;
984 
985 		case NOTE_FFCOPY:
986 			kn->kn_sfflags = kev->fflags;
987 			break;
988 
989 		default:
990 			/* XXX Return error? */
991 			break;
992 		}
993 		kn->kn_sdata = kev->data;
994 		if (kev->flags & EV_CLEAR) {
995 			kn->kn_hookid = 0;
996 			kn->kn_data = 0;
997 			kn->kn_fflags = 0;
998 		}
999 		break;
1000 
1001         case EVENT_PROCESS:
1002 		*kev = kn->kn_kevent;
1003 		kev->fflags = kn->kn_sfflags;
1004 		kev->data = kn->kn_sdata;
1005 		if (kn->kn_flags & EV_CLEAR) {
1006 			kn->kn_hookid = 0;
1007 			kn->kn_data = 0;
1008 			kn->kn_fflags = 0;
1009 		}
1010 		break;
1011 
1012 	default:
1013 		panic("filt_usertouch() - invalid type (%ld)", type);
1014 		break;
1015 	}
1016 }
1017 
1018 int
1019 sys_kqueue(struct thread *td, struct kqueue_args *uap)
1020 {
1021 
1022 	return (kern_kqueue(td, 0, NULL));
1023 }
1024 
1025 static void
1026 kqueue_init(struct kqueue *kq)
1027 {
1028 
1029 	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
1030 	TAILQ_INIT(&kq->kq_head);
1031 	knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
1032 	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
1033 }
1034 
1035 int
1036 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
1037 {
1038 	struct filedesc *fdp;
1039 	struct kqueue *kq;
1040 	struct file *fp;
1041 	struct ucred *cred;
1042 	int fd, error;
1043 
1044 	fdp = td->td_proc->p_fd;
1045 	cred = td->td_ucred;
1046 	if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
1047 		return (ENOMEM);
1048 
1049 	error = falloc_caps(td, &fp, &fd, flags, fcaps);
1050 	if (error != 0) {
1051 		chgkqcnt(cred->cr_ruidinfo, -1, 0);
1052 		return (error);
1053 	}
1054 
1055 	/* An extra reference on `fp' has been held for us by falloc(). */
1056 	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
1057 	kqueue_init(kq);
1058 	kq->kq_fdp = fdp;
1059 	kq->kq_cred = crhold(cred);
1060 
1061 	FILEDESC_XLOCK(fdp);
1062 	TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
1063 	FILEDESC_XUNLOCK(fdp);
1064 
1065 	finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
1066 	fdrop(fp, td);
1067 
1068 	td->td_retval[0] = fd;
1069 	return (0);
1070 }
1071 
1072 struct g_kevent_args {
1073 	int	fd;
1074 	void	*changelist;
1075 	int	nchanges;
1076 	void	*eventlist;
1077 	int	nevents;
1078 	const struct timespec *timeout;
1079 };
1080 
1081 int
1082 sys_kevent(struct thread *td, struct kevent_args *uap)
1083 {
1084 	struct kevent_copyops k_ops = {
1085 		.arg = uap,
1086 		.k_copyout = kevent_copyout,
1087 		.k_copyin = kevent_copyin,
1088 		.kevent_size = sizeof(struct kevent),
1089 	};
1090 	struct g_kevent_args gk_args = {
1091 		.fd = uap->fd,
1092 		.changelist = uap->changelist,
1093 		.nchanges = uap->nchanges,
1094 		.eventlist = uap->eventlist,
1095 		.nevents = uap->nevents,
1096 		.timeout = uap->timeout,
1097 	};
1098 
1099 	return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent"));
1100 }
1101 
1102 static int
1103 kern_kevent_generic(struct thread *td, struct g_kevent_args *uap,
1104     struct kevent_copyops *k_ops, const char *struct_name)
1105 {
1106 	struct timespec ts, *tsp;
1107 #ifdef KTRACE
1108 	struct kevent *eventlist = uap->eventlist;
1109 #endif
1110 	int error;
1111 
1112 	if (uap->timeout != NULL) {
1113 		error = copyin(uap->timeout, &ts, sizeof(ts));
1114 		if (error)
1115 			return (error);
1116 		tsp = &ts;
1117 	} else
1118 		tsp = NULL;
1119 
1120 #ifdef KTRACE
1121 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
1122 		ktrstructarray(struct_name, UIO_USERSPACE, uap->changelist,
1123 		    uap->nchanges, k_ops->kevent_size);
1124 #endif
1125 
1126 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
1127 	    k_ops, tsp);
1128 
1129 #ifdef KTRACE
1130 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
1131 		ktrstructarray(struct_name, UIO_USERSPACE, eventlist,
1132 		    td->td_retval[0], k_ops->kevent_size);
1133 #endif
1134 
1135 	return (error);
1136 }
1137 
1138 /*
1139  * Copy 'count' items into the destination list pointed to by uap->eventlist.
1140  */
1141 static int
1142 kevent_copyout(void *arg, struct kevent *kevp, int count)
1143 {
1144 	struct kevent_args *uap;
1145 	int error;
1146 
1147 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1148 	uap = (struct kevent_args *)arg;
1149 
1150 	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
1151 	if (error == 0)
1152 		uap->eventlist += count;
1153 	return (error);
1154 }
1155 
1156 /*
1157  * Copy 'count' items from the list pointed to by uap->changelist.
1158  */
1159 static int
1160 kevent_copyin(void *arg, struct kevent *kevp, int count)
1161 {
1162 	struct kevent_args *uap;
1163 	int error;
1164 
1165 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1166 	uap = (struct kevent_args *)arg;
1167 
1168 	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
1169 	if (error == 0)
1170 		uap->changelist += count;
1171 	return (error);
1172 }
1173 
1174 #ifdef COMPAT_FREEBSD11
1175 static int
1176 kevent11_copyout(void *arg, struct kevent *kevp, int count)
1177 {
1178 	struct freebsd11_kevent_args *uap;
1179 	struct kevent_freebsd11 kev11;
1180 	int error, i;
1181 
1182 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1183 	uap = (struct freebsd11_kevent_args *)arg;
1184 
1185 	for (i = 0; i < count; i++) {
1186 		kev11.ident = kevp->ident;
1187 		kev11.filter = kevp->filter;
1188 		kev11.flags = kevp->flags;
1189 		kev11.fflags = kevp->fflags;
1190 		kev11.data = kevp->data;
1191 		kev11.udata = kevp->udata;
1192 		error = copyout(&kev11, uap->eventlist, sizeof(kev11));
1193 		if (error != 0)
1194 			break;
1195 		uap->eventlist++;
1196 		kevp++;
1197 	}
1198 	return (error);
1199 }
1200 
1201 /*
1202  * Copy 'count' items from the list pointed to by uap->changelist.
1203  */
1204 static int
1205 kevent11_copyin(void *arg, struct kevent *kevp, int count)
1206 {
1207 	struct freebsd11_kevent_args *uap;
1208 	struct kevent_freebsd11 kev11;
1209 	int error, i;
1210 
1211 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1212 	uap = (struct freebsd11_kevent_args *)arg;
1213 
1214 	for (i = 0; i < count; i++) {
1215 		error = copyin(uap->changelist, &kev11, sizeof(kev11));
1216 		if (error != 0)
1217 			break;
1218 		kevp->ident = kev11.ident;
1219 		kevp->filter = kev11.filter;
1220 		kevp->flags = kev11.flags;
1221 		kevp->fflags = kev11.fflags;
1222 		kevp->data = (uintptr_t)kev11.data;
1223 		kevp->udata = kev11.udata;
1224 		bzero(&kevp->ext, sizeof(kevp->ext));
1225 		uap->changelist++;
1226 		kevp++;
1227 	}
1228 	return (error);
1229 }
1230 
1231 int
1232 freebsd11_kevent(struct thread *td, struct freebsd11_kevent_args *uap)
1233 {
1234 	struct kevent_copyops k_ops = {
1235 		.arg = uap,
1236 		.k_copyout = kevent11_copyout,
1237 		.k_copyin = kevent11_copyin,
1238 		.kevent_size = sizeof(struct kevent_freebsd11),
1239 	};
1240 	struct g_kevent_args gk_args = {
1241 		.fd = uap->fd,
1242 		.changelist = uap->changelist,
1243 		.nchanges = uap->nchanges,
1244 		.eventlist = uap->eventlist,
1245 		.nevents = uap->nevents,
1246 		.timeout = uap->timeout,
1247 	};
1248 
1249 	return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent_freebsd11"));
1250 }
1251 #endif
1252 
1253 int
1254 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
1255     struct kevent_copyops *k_ops, const struct timespec *timeout)
1256 {
1257 	cap_rights_t rights;
1258 	struct file *fp;
1259 	int error;
1260 
1261 	cap_rights_init_zero(&rights);
1262 	if (nchanges > 0)
1263 		cap_rights_set_one(&rights, CAP_KQUEUE_CHANGE);
1264 	if (nevents > 0)
1265 		cap_rights_set_one(&rights, CAP_KQUEUE_EVENT);
1266 	error = fget(td, fd, &rights, &fp);
1267 	if (error != 0)
1268 		return (error);
1269 
1270 	error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
1271 	fdrop(fp, td);
1272 
1273 	return (error);
1274 }
1275 
1276 static int
1277 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
1278     struct kevent_copyops *k_ops, const struct timespec *timeout)
1279 {
1280 	struct kevent keva[KQ_NEVENTS];
1281 	struct kevent *kevp, *changes;
1282 	int i, n, nerrors, error;
1283 
1284 	nerrors = 0;
1285 	while (nchanges > 0) {
1286 		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
1287 		error = k_ops->k_copyin(k_ops->arg, keva, n);
1288 		if (error)
1289 			return (error);
1290 		changes = keva;
1291 		for (i = 0; i < n; i++) {
1292 			kevp = &changes[i];
1293 			if (!kevp->filter)
1294 				continue;
1295 			kevp->flags &= ~EV_SYSFLAGS;
1296 			error = kqueue_register(kq, kevp, td, M_WAITOK);
1297 			if (error || (kevp->flags & EV_RECEIPT)) {
1298 				if (nevents == 0)
1299 					return (error);
1300 				kevp->flags = EV_ERROR;
1301 				kevp->data = error;
1302 				(void)k_ops->k_copyout(k_ops->arg, kevp, 1);
1303 				nevents--;
1304 				nerrors++;
1305 			}
1306 		}
1307 		nchanges -= n;
1308 	}
1309 	if (nerrors) {
1310 		td->td_retval[0] = nerrors;
1311 		return (0);
1312 	}
1313 
1314 	return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
1315 }
1316 
1317 int
1318 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
1319     struct kevent_copyops *k_ops, const struct timespec *timeout)
1320 {
1321 	struct kqueue *kq;
1322 	int error;
1323 
1324 	error = kqueue_acquire(fp, &kq);
1325 	if (error != 0)
1326 		return (error);
1327 	error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
1328 	kqueue_release(kq, 0);
1329 	return (error);
1330 }
1331 
1332 /*
1333  * Performs a kevent() call on a temporarily created kqueue. This can be
1334  * used to perform one-shot polling, similar to poll() and select().
1335  */
1336 int
1337 kern_kevent_anonymous(struct thread *td, int nevents,
1338     struct kevent_copyops *k_ops)
1339 {
1340 	struct kqueue kq = {};
1341 	int error;
1342 
1343 	kqueue_init(&kq);
1344 	kq.kq_refcnt = 1;
1345 	error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
1346 	kqueue_drain(&kq, td);
1347 	kqueue_destroy(&kq);
1348 	return (error);
1349 }
1350 
1351 int
1352 kqueue_add_filteropts(int filt, struct filterops *filtops)
1353 {
1354 	int error;
1355 
1356 	error = 0;
1357 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
1358 		printf(
1359 "trying to add a filterop that is out of range: %d is beyond %d\n",
1360 		    ~filt, EVFILT_SYSCOUNT);
1361 		return EINVAL;
1362 	}
1363 	mtx_lock(&filterops_lock);
1364 	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
1365 	    sysfilt_ops[~filt].for_fop != NULL)
1366 		error = EEXIST;
1367 	else {
1368 		sysfilt_ops[~filt].for_fop = filtops;
1369 		sysfilt_ops[~filt].for_refcnt = 0;
1370 	}
1371 	mtx_unlock(&filterops_lock);
1372 
1373 	return (error);
1374 }
1375 
1376 int
1377 kqueue_del_filteropts(int filt)
1378 {
1379 	int error;
1380 
1381 	error = 0;
1382 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1383 		return EINVAL;
1384 
1385 	mtx_lock(&filterops_lock);
1386 	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
1387 	    sysfilt_ops[~filt].for_fop == NULL)
1388 		error = EINVAL;
1389 	else if (sysfilt_ops[~filt].for_refcnt != 0)
1390 		error = EBUSY;
1391 	else {
1392 		sysfilt_ops[~filt].for_fop = &null_filtops;
1393 		sysfilt_ops[~filt].for_refcnt = 0;
1394 	}
1395 	mtx_unlock(&filterops_lock);
1396 
1397 	return error;
1398 }
1399 
1400 static struct filterops *
1401 kqueue_fo_find(int filt)
1402 {
1403 
1404 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1405 		return NULL;
1406 
1407 	if (sysfilt_ops[~filt].for_nolock)
1408 		return sysfilt_ops[~filt].for_fop;
1409 
1410 	mtx_lock(&filterops_lock);
1411 	sysfilt_ops[~filt].for_refcnt++;
1412 	if (sysfilt_ops[~filt].for_fop == NULL)
1413 		sysfilt_ops[~filt].for_fop = &null_filtops;
1414 	mtx_unlock(&filterops_lock);
1415 
1416 	return sysfilt_ops[~filt].for_fop;
1417 }
1418 
1419 static void
1420 kqueue_fo_release(int filt)
1421 {
1422 
1423 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1424 		return;
1425 
1426 	if (sysfilt_ops[~filt].for_nolock)
1427 		return;
1428 
1429 	mtx_lock(&filterops_lock);
1430 	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
1431 	    ("filter object refcount not valid on release"));
1432 	sysfilt_ops[~filt].for_refcnt--;
1433 	mtx_unlock(&filterops_lock);
1434 }
1435 
1436 /*
1437  * A ref to kq (obtained via kqueue_acquire) must be held.
1438  */
1439 static int
1440 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td,
1441     int mflag)
1442 {
1443 	struct filterops *fops;
1444 	struct file *fp;
1445 	struct knote *kn, *tkn;
1446 	struct knlist *knl;
1447 	int error, filt, event;
1448 	int haskqglobal, filedesc_unlock;
1449 
1450 	if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
1451 		return (EINVAL);
1452 
1453 	fp = NULL;
1454 	kn = NULL;
1455 	knl = NULL;
1456 	error = 0;
1457 	haskqglobal = 0;
1458 	filedesc_unlock = 0;
1459 
1460 	filt = kev->filter;
1461 	fops = kqueue_fo_find(filt);
1462 	if (fops == NULL)
1463 		return EINVAL;
1464 
1465 	if (kev->flags & EV_ADD) {
1466 		/*
1467 		 * Prevent waiting with locks.  Non-sleepable
1468 		 * allocation failures are handled in the loop, only
1469 		 * if the spare knote appears to be actually required.
1470 		 */
1471 		tkn = knote_alloc(mflag);
1472 	} else {
1473 		tkn = NULL;
1474 	}
1475 
1476 findkn:
1477 	if (fops->f_isfd) {
1478 		KASSERT(td != NULL, ("td is NULL"));
1479 		if (kev->ident > INT_MAX)
1480 			error = EBADF;
1481 		else
1482 			error = fget(td, kev->ident, &cap_event_rights, &fp);
1483 		if (error)
1484 			goto done;
1485 
1486 		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
1487 		    kev->ident, M_NOWAIT) != 0) {
1488 			/* try again */
1489 			fdrop(fp, td);
1490 			fp = NULL;
1491 			error = kqueue_expand(kq, fops, kev->ident, mflag);
1492 			if (error)
1493 				goto done;
1494 			goto findkn;
1495 		}
1496 
1497 		if (fp->f_type == DTYPE_KQUEUE) {
1498 			/*
1499 			 * If we add some intelligence about what we are doing,
1500 			 * we should be able to support events on ourselves.
1501 			 * We need to know when we are doing this to prevent
1502 			 * getting both the knlist lock and the kq lock since
1503 			 * they are the same thing.
1504 			 */
1505 			if (fp->f_data == kq) {
1506 				error = EINVAL;
1507 				goto done;
1508 			}
1509 
1510 			/*
1511 			 * Pre-lock the filedesc before the global
1512 			 * lock mutex, see the comment in
1513 			 * kqueue_close().
1514 			 */
1515 			FILEDESC_XLOCK(td->td_proc->p_fd);
1516 			filedesc_unlock = 1;
1517 			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1518 		}
1519 
1520 		KQ_LOCK(kq);
1521 		if (kev->ident < kq->kq_knlistsize) {
1522 			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
1523 				if (kev->filter == kn->kn_filter)
1524 					break;
1525 		}
1526 	} else {
1527 		if ((kev->flags & EV_ADD) == EV_ADD) {
1528 			error = kqueue_expand(kq, fops, kev->ident, mflag);
1529 			if (error != 0)
1530 				goto done;
1531 		}
1532 
1533 		KQ_LOCK(kq);
1534 
1535 		/*
1536 		 * If possible, find an existing knote to use for this kevent.
1537 		 */
1538 		if (kev->filter == EVFILT_PROC &&
1539 		    (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
1540 			/* This is an internal creation of a process tracking
1541 			 * note. Don't attempt to coalesce this with an
1542 			 * existing note.
1543 			 */
1544 			;
1545 		} else if (kq->kq_knhashmask != 0) {
1546 			struct klist *list;
1547 
1548 			list = &kq->kq_knhash[
1549 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1550 			SLIST_FOREACH(kn, list, kn_link)
1551 				if (kev->ident == kn->kn_id &&
1552 				    kev->filter == kn->kn_filter)
1553 					break;
1554 		}
1555 	}
1556 
1557 	/* knote is in the process of changing, wait for it to stabilize. */
1558 	if (kn != NULL && kn_in_flux(kn)) {
1559 		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1560 		if (filedesc_unlock) {
1561 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1562 			filedesc_unlock = 0;
1563 		}
1564 		kq->kq_state |= KQ_FLUXWAIT;
1565 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
1566 		if (fp != NULL) {
1567 			fdrop(fp, td);
1568 			fp = NULL;
1569 		}
1570 		goto findkn;
1571 	}
1572 
1573 	/*
1574 	 * kn now contains the matching knote, or NULL if no match
1575 	 */
1576 	if (kn == NULL) {
1577 		if (kev->flags & EV_ADD) {
1578 			kn = tkn;
1579 			tkn = NULL;
1580 			if (kn == NULL) {
1581 				KQ_UNLOCK(kq);
1582 				error = ENOMEM;
1583 				goto done;
1584 			}
1585 			kn->kn_fp = fp;
1586 			kn->kn_kq = kq;
1587 			kn->kn_fop = fops;
1588 			/*
1589 			 * apply reference counts to knote structure, and
1590 			 * do not release it at the end of this routine.
1591 			 */
1592 			fops = NULL;
1593 			fp = NULL;
1594 
1595 			kn->kn_sfflags = kev->fflags;
1596 			kn->kn_sdata = kev->data;
1597 			kev->fflags = 0;
1598 			kev->data = 0;
1599 			kn->kn_kevent = *kev;
1600 			kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
1601 			    EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
1602 			kn->kn_status = KN_DETACHED;
1603 			if ((kev->flags & EV_DISABLE) != 0)
1604 				kn->kn_status |= KN_DISABLED;
1605 			kn_enter_flux(kn);
1606 
1607 			error = knote_attach(kn, kq);
1608 			KQ_UNLOCK(kq);
1609 			if (error != 0) {
1610 				tkn = kn;
1611 				goto done;
1612 			}
1613 
1614 			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
1615 				knote_drop_detached(kn, td);
1616 				goto done;
1617 			}
1618 			knl = kn_list_lock(kn);
1619 			goto done_ev_add;
1620 		} else {
1621 			/* No matching knote and the EV_ADD flag is not set. */
1622 			KQ_UNLOCK(kq);
1623 			error = ENOENT;
1624 			goto done;
1625 		}
1626 	}
1627 
1628 	if (kev->flags & EV_DELETE) {
1629 		kn_enter_flux(kn);
1630 		KQ_UNLOCK(kq);
1631 		knote_drop(kn, td);
1632 		goto done;
1633 	}
1634 
1635 	if (kev->flags & EV_FORCEONESHOT) {
1636 		kn->kn_flags |= EV_ONESHOT;
1637 		KNOTE_ACTIVATE(kn, 1);
1638 	}
1639 
1640 	if ((kev->flags & EV_ENABLE) != 0)
1641 		kn->kn_status &= ~KN_DISABLED;
1642 	else if ((kev->flags & EV_DISABLE) != 0)
1643 		kn->kn_status |= KN_DISABLED;
1644 
1645 	/*
1646 	 * The user may change some filter values after the initial EV_ADD,
1647 	 * but doing so will not reset any filter which has already been
1648 	 * triggered.
1649 	 */
1650 	kn->kn_status |= KN_SCAN;
1651 	kn_enter_flux(kn);
1652 	KQ_UNLOCK(kq);
1653 	knl = kn_list_lock(kn);
1654 	kn->kn_kevent.udata = kev->udata;
1655 	if (!fops->f_isfd && fops->f_touch != NULL) {
1656 		fops->f_touch(kn, kev, EVENT_REGISTER);
1657 	} else {
1658 		kn->kn_sfflags = kev->fflags;
1659 		kn->kn_sdata = kev->data;
1660 	}
1661 
1662 done_ev_add:
1663 	/*
1664 	 * We can get here with kn->kn_knlist == NULL.  This can happen when
1665 	 * the initial attach event decides that the event is "completed"
1666 	 * already, e.g., filt_procattach() is called on a zombie process.  It
1667 	 * will call filt_proc() which will remove it from the list, and NULL
1668 	 * kn_knlist.
1669 	 *
1670 	 * KN_DISABLED will be stable while the knote is in flux, so the
1671 	 * unlocked read will not race with an update.
1672 	 */
1673 	if ((kn->kn_status & KN_DISABLED) == 0)
1674 		event = kn->kn_fop->f_event(kn, 0);
1675 	else
1676 		event = 0;
1677 
1678 	KQ_LOCK(kq);
1679 	if (event)
1680 		kn->kn_status |= KN_ACTIVE;
1681 	if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
1682 	    KN_ACTIVE)
1683 		knote_enqueue(kn);
1684 	kn->kn_status &= ~KN_SCAN;
1685 	kn_leave_flux(kn);
1686 	kn_list_unlock(knl);
1687 	KQ_UNLOCK_FLUX(kq);
1688 
1689 done:
1690 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1691 	if (filedesc_unlock)
1692 		FILEDESC_XUNLOCK(td->td_proc->p_fd);
1693 	if (fp != NULL)
1694 		fdrop(fp, td);
1695 	knote_free(tkn);
1696 	if (fops != NULL)
1697 		kqueue_fo_release(filt);
1698 	return (error);
1699 }
1700 
1701 static int
1702 kqueue_acquire(struct file *fp, struct kqueue **kqp)
1703 {
1704 	int error;
1705 	struct kqueue *kq;
1706 
1707 	error = 0;
1708 
1709 	kq = fp->f_data;
1710 	if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1711 		return (EBADF);
1712 	*kqp = kq;
1713 	KQ_LOCK(kq);
1714 	if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1715 		KQ_UNLOCK(kq);
1716 		return (EBADF);
1717 	}
1718 	kq->kq_refcnt++;
1719 	KQ_UNLOCK(kq);
1720 
1721 	return error;
1722 }
1723 
1724 static void
1725 kqueue_release(struct kqueue *kq, int locked)
1726 {
1727 	if (locked)
1728 		KQ_OWNED(kq);
1729 	else
1730 		KQ_LOCK(kq);
1731 	kq->kq_refcnt--;
1732 	if (kq->kq_refcnt == 1)
1733 		wakeup(&kq->kq_refcnt);
1734 	if (!locked)
1735 		KQ_UNLOCK(kq);
1736 }
1737 
1738 static void
1739 kqueue_schedtask(struct kqueue *kq)
1740 {
1741 
1742 	KQ_OWNED(kq);
1743 	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1744 	    ("scheduling kqueue task while draining"));
1745 
1746 	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1747 		taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
1748 		kq->kq_state |= KQ_TASKSCHED;
1749 	}
1750 }
1751 
1752 /*
1753  * Expand the kq to make sure we have storage for fops/ident pair.
1754  *
1755  * Return 0 on success (or no work necessary), return errno on failure.
1756  */
1757 static int
1758 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1759     int mflag)
1760 {
1761 	struct klist *list, *tmp_knhash, *to_free;
1762 	u_long tmp_knhashmask;
1763 	int error, fd, size;
1764 
1765 	KQ_NOTOWNED(kq);
1766 
1767 	error = 0;
1768 	to_free = NULL;
1769 	if (fops->f_isfd) {
1770 		fd = ident;
1771 		if (kq->kq_knlistsize <= fd) {
1772 			size = kq->kq_knlistsize;
1773 			while (size <= fd)
1774 				size += KQEXTENT;
1775 			list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
1776 			if (list == NULL)
1777 				return ENOMEM;
1778 			KQ_LOCK(kq);
1779 			if ((kq->kq_state & KQ_CLOSING) != 0) {
1780 				to_free = list;
1781 				error = EBADF;
1782 			} else if (kq->kq_knlistsize > fd) {
1783 				to_free = list;
1784 			} else {
1785 				if (kq->kq_knlist != NULL) {
1786 					bcopy(kq->kq_knlist, list,
1787 					    kq->kq_knlistsize * sizeof(*list));
1788 					to_free = kq->kq_knlist;
1789 					kq->kq_knlist = NULL;
1790 				}
1791 				bzero((caddr_t)list +
1792 				    kq->kq_knlistsize * sizeof(*list),
1793 				    (size - kq->kq_knlistsize) * sizeof(*list));
1794 				kq->kq_knlistsize = size;
1795 				kq->kq_knlist = list;
1796 			}
1797 			KQ_UNLOCK(kq);
1798 		}
1799 	} else {
1800 		if (kq->kq_knhashmask == 0) {
1801 			tmp_knhash = hashinit_flags(KN_HASHSIZE, M_KQUEUE,
1802 			    &tmp_knhashmask, (mflag & M_WAITOK) != 0 ?
1803 			    HASH_WAITOK : HASH_NOWAIT);
1804 			if (tmp_knhash == NULL)
1805 				return (ENOMEM);
1806 			KQ_LOCK(kq);
1807 			if ((kq->kq_state & KQ_CLOSING) != 0) {
1808 				to_free = tmp_knhash;
1809 				error = EBADF;
1810 			} else if (kq->kq_knhashmask == 0) {
1811 				kq->kq_knhash = tmp_knhash;
1812 				kq->kq_knhashmask = tmp_knhashmask;
1813 			} else {
1814 				to_free = tmp_knhash;
1815 			}
1816 			KQ_UNLOCK(kq);
1817 		}
1818 	}
1819 	free(to_free, M_KQUEUE);
1820 
1821 	KQ_NOTOWNED(kq);
1822 	return (error);
1823 }
1824 
1825 static void
1826 kqueue_task(void *arg, int pending)
1827 {
1828 	struct kqueue *kq;
1829 	int haskqglobal;
1830 
1831 	haskqglobal = 0;
1832 	kq = arg;
1833 
1834 	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1835 	KQ_LOCK(kq);
1836 
1837 	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1838 
1839 	kq->kq_state &= ~KQ_TASKSCHED;
1840 	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1841 		wakeup(&kq->kq_state);
1842 	}
1843 	KQ_UNLOCK(kq);
1844 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1845 }
1846 
1847 /*
1848  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1849  * We treat KN_MARKER knotes as if they are in flux.
1850  */
1851 static int
1852 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1853     const struct timespec *tsp, struct kevent *keva, struct thread *td)
1854 {
1855 	struct kevent *kevp;
1856 	struct knote *kn, *marker;
1857 	struct knlist *knl;
1858 	sbintime_t asbt, rsbt;
1859 	int count, error, haskqglobal, influx, nkev, touch;
1860 
1861 	count = maxevents;
1862 	nkev = 0;
1863 	error = 0;
1864 	haskqglobal = 0;
1865 
1866 	if (maxevents == 0)
1867 		goto done_nl;
1868 
1869 	rsbt = 0;
1870 	if (tsp != NULL) {
1871 		if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
1872 		    tsp->tv_nsec >= 1000000000) {
1873 			error = EINVAL;
1874 			goto done_nl;
1875 		}
1876 		if (timespecisset(tsp)) {
1877 			if (tsp->tv_sec <= INT32_MAX) {
1878 				rsbt = tstosbt(*tsp);
1879 				if (TIMESEL(&asbt, rsbt))
1880 					asbt += tc_tick_sbt;
1881 				if (asbt <= SBT_MAX - rsbt)
1882 					asbt += rsbt;
1883 				else
1884 					asbt = 0;
1885 				rsbt >>= tc_precexp;
1886 			} else
1887 				asbt = 0;
1888 		} else
1889 			asbt = -1;
1890 	} else
1891 		asbt = 0;
1892 	marker = knote_alloc(M_WAITOK);
1893 	marker->kn_status = KN_MARKER;
1894 	KQ_LOCK(kq);
1895 
1896 retry:
1897 	kevp = keva;
1898 	if (kq->kq_count == 0) {
1899 		if (asbt == -1) {
1900 			error = EWOULDBLOCK;
1901 		} else {
1902 			kq->kq_state |= KQ_SLEEP;
1903 			error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
1904 			    "kqread", asbt, rsbt, C_ABSOLUTE);
1905 		}
1906 		if (error == 0)
1907 			goto retry;
1908 		/* don't restart after signals... */
1909 		if (error == ERESTART)
1910 			error = EINTR;
1911 		else if (error == EWOULDBLOCK)
1912 			error = 0;
1913 		goto done;
1914 	}
1915 
1916 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1917 	influx = 0;
1918 	while (count) {
1919 		KQ_OWNED(kq);
1920 		kn = TAILQ_FIRST(&kq->kq_head);
1921 
1922 		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1923 		    kn_in_flux(kn)) {
1924 			if (influx) {
1925 				influx = 0;
1926 				KQ_FLUX_WAKEUP(kq);
1927 			}
1928 			kq->kq_state |= KQ_FLUXWAIT;
1929 			error = msleep(kq, &kq->kq_lock, PSOCK,
1930 			    "kqflxwt", 0);
1931 			continue;
1932 		}
1933 
1934 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1935 		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1936 			kn->kn_status &= ~KN_QUEUED;
1937 			kq->kq_count--;
1938 			continue;
1939 		}
1940 		if (kn == marker) {
1941 			KQ_FLUX_WAKEUP(kq);
1942 			if (count == maxevents)
1943 				goto retry;
1944 			goto done;
1945 		}
1946 		KASSERT(!kn_in_flux(kn),
1947 		    ("knote %p is unexpectedly in flux", kn));
1948 
1949 		if ((kn->kn_flags & EV_DROP) == EV_DROP) {
1950 			kn->kn_status &= ~KN_QUEUED;
1951 			kn_enter_flux(kn);
1952 			kq->kq_count--;
1953 			KQ_UNLOCK(kq);
1954 			/*
1955 			 * We don't need to lock the list since we've
1956 			 * marked it as in flux.
1957 			 */
1958 			knote_drop(kn, td);
1959 			KQ_LOCK(kq);
1960 			continue;
1961 		} else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1962 			kn->kn_status &= ~KN_QUEUED;
1963 			kn_enter_flux(kn);
1964 			kq->kq_count--;
1965 			KQ_UNLOCK(kq);
1966 			/*
1967 			 * We don't need to lock the list since we've
1968 			 * marked the knote as being in flux.
1969 			 */
1970 			*kevp = kn->kn_kevent;
1971 			knote_drop(kn, td);
1972 			KQ_LOCK(kq);
1973 			kn = NULL;
1974 		} else {
1975 			kn->kn_status |= KN_SCAN;
1976 			kn_enter_flux(kn);
1977 			KQ_UNLOCK(kq);
1978 			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1979 				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1980 			knl = kn_list_lock(kn);
1981 			if (kn->kn_fop->f_event(kn, 0) == 0) {
1982 				KQ_LOCK(kq);
1983 				KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1984 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE |
1985 				    KN_SCAN);
1986 				kn_leave_flux(kn);
1987 				kq->kq_count--;
1988 				kn_list_unlock(knl);
1989 				influx = 1;
1990 				continue;
1991 			}
1992 			touch = (!kn->kn_fop->f_isfd &&
1993 			    kn->kn_fop->f_touch != NULL);
1994 			if (touch)
1995 				kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
1996 			else
1997 				*kevp = kn->kn_kevent;
1998 			KQ_LOCK(kq);
1999 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
2000 			if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
2001 				/*
2002 				 * Manually clear knotes who weren't
2003 				 * 'touch'ed.
2004 				 */
2005 				if (touch == 0 && kn->kn_flags & EV_CLEAR) {
2006 					kn->kn_data = 0;
2007 					kn->kn_fflags = 0;
2008 				}
2009 				if (kn->kn_flags & EV_DISPATCH)
2010 					kn->kn_status |= KN_DISABLED;
2011 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
2012 				kq->kq_count--;
2013 			} else
2014 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2015 
2016 			kn->kn_status &= ~KN_SCAN;
2017 			kn_leave_flux(kn);
2018 			kn_list_unlock(knl);
2019 			influx = 1;
2020 		}
2021 
2022 		/* we are returning a copy to the user */
2023 		kevp++;
2024 		nkev++;
2025 		count--;
2026 
2027 		if (nkev == KQ_NEVENTS) {
2028 			influx = 0;
2029 			KQ_UNLOCK_FLUX(kq);
2030 			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
2031 			nkev = 0;
2032 			kevp = keva;
2033 			KQ_LOCK(kq);
2034 			if (error)
2035 				break;
2036 		}
2037 	}
2038 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2039 done:
2040 	KQ_OWNED(kq);
2041 	KQ_UNLOCK_FLUX(kq);
2042 	knote_free(marker);
2043 done_nl:
2044 	KQ_NOTOWNED(kq);
2045 	if (nkev != 0)
2046 		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
2047 	td->td_retval[0] = maxevents - count;
2048 	return (error);
2049 }
2050 
2051 /*ARGSUSED*/
2052 static int
2053 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
2054 	struct ucred *active_cred, struct thread *td)
2055 {
2056 	/*
2057 	 * Enabling sigio causes two major problems:
2058 	 * 1) infinite recursion:
2059 	 * Synopsys: kevent is being used to track signals and have FIOASYNC
2060 	 * set.  On receipt of a signal this will cause a kqueue to recurse
2061 	 * into itself over and over.  Sending the sigio causes the kqueue
2062 	 * to become ready, which in turn posts sigio again, forever.
2063 	 * Solution: this can be solved by setting a flag in the kqueue that
2064 	 * we have a SIGIO in progress.
2065 	 * 2) locking problems:
2066 	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
2067 	 * us above the proc and pgrp locks.
2068 	 * Solution: Post a signal using an async mechanism, being sure to
2069 	 * record a generation count in the delivery so that we do not deliver
2070 	 * a signal to the wrong process.
2071 	 *
2072 	 * Note, these two mechanisms are somewhat mutually exclusive!
2073 	 */
2074 #if 0
2075 	struct kqueue *kq;
2076 
2077 	kq = fp->f_data;
2078 	switch (cmd) {
2079 	case FIOASYNC:
2080 		if (*(int *)data) {
2081 			kq->kq_state |= KQ_ASYNC;
2082 		} else {
2083 			kq->kq_state &= ~KQ_ASYNC;
2084 		}
2085 		return (0);
2086 
2087 	case FIOSETOWN:
2088 		return (fsetown(*(int *)data, &kq->kq_sigio));
2089 
2090 	case FIOGETOWN:
2091 		*(int *)data = fgetown(&kq->kq_sigio);
2092 		return (0);
2093 	}
2094 #endif
2095 
2096 	return (ENOTTY);
2097 }
2098 
2099 /*ARGSUSED*/
2100 static int
2101 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
2102 	struct thread *td)
2103 {
2104 	struct kqueue *kq;
2105 	int revents = 0;
2106 	int error;
2107 
2108 	if ((error = kqueue_acquire(fp, &kq)))
2109 		return POLLERR;
2110 
2111 	KQ_LOCK(kq);
2112 	if (events & (POLLIN | POLLRDNORM)) {
2113 		if (kq->kq_count) {
2114 			revents |= events & (POLLIN | POLLRDNORM);
2115 		} else {
2116 			selrecord(td, &kq->kq_sel);
2117 			if (SEL_WAITING(&kq->kq_sel))
2118 				kq->kq_state |= KQ_SEL;
2119 		}
2120 	}
2121 	kqueue_release(kq, 1);
2122 	KQ_UNLOCK(kq);
2123 	return (revents);
2124 }
2125 
2126 /*ARGSUSED*/
2127 static int
2128 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
2129 	struct thread *td)
2130 {
2131 
2132 	bzero((void *)st, sizeof *st);
2133 	/*
2134 	 * We no longer return kq_count because the unlocked value is useless.
2135 	 * If you spent all this time getting the count, why not spend your
2136 	 * syscall better by calling kevent?
2137 	 *
2138 	 * XXX - This is needed for libc_r.
2139 	 */
2140 	st->st_mode = S_IFIFO;
2141 	return (0);
2142 }
2143 
2144 static void
2145 kqueue_drain(struct kqueue *kq, struct thread *td)
2146 {
2147 	struct knote *kn;
2148 	int i;
2149 
2150 	KQ_LOCK(kq);
2151 
2152 	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
2153 	    ("kqueue already closing"));
2154 	kq->kq_state |= KQ_CLOSING;
2155 	if (kq->kq_refcnt > 1)
2156 		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
2157 
2158 	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
2159 
2160 	KASSERT(knlist_empty(&kq->kq_sel.si_note),
2161 	    ("kqueue's knlist not empty"));
2162 
2163 	for (i = 0; i < kq->kq_knlistsize; i++) {
2164 		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
2165 			if (kn_in_flux(kn)) {
2166 				kq->kq_state |= KQ_FLUXWAIT;
2167 				msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
2168 				continue;
2169 			}
2170 			kn_enter_flux(kn);
2171 			KQ_UNLOCK(kq);
2172 			knote_drop(kn, td);
2173 			KQ_LOCK(kq);
2174 		}
2175 	}
2176 	if (kq->kq_knhashmask != 0) {
2177 		for (i = 0; i <= kq->kq_knhashmask; i++) {
2178 			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
2179 				if (kn_in_flux(kn)) {
2180 					kq->kq_state |= KQ_FLUXWAIT;
2181 					msleep(kq, &kq->kq_lock, PSOCK,
2182 					       "kqclo2", 0);
2183 					continue;
2184 				}
2185 				kn_enter_flux(kn);
2186 				KQ_UNLOCK(kq);
2187 				knote_drop(kn, td);
2188 				KQ_LOCK(kq);
2189 			}
2190 		}
2191 	}
2192 
2193 	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
2194 		kq->kq_state |= KQ_TASKDRAIN;
2195 		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
2196 	}
2197 
2198 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
2199 		selwakeuppri(&kq->kq_sel, PSOCK);
2200 		if (!SEL_WAITING(&kq->kq_sel))
2201 			kq->kq_state &= ~KQ_SEL;
2202 	}
2203 
2204 	KQ_UNLOCK(kq);
2205 }
2206 
2207 static void
2208 kqueue_destroy(struct kqueue *kq)
2209 {
2210 
2211 	KASSERT(kq->kq_fdp == NULL,
2212 	    ("kqueue still attached to a file descriptor"));
2213 	seldrain(&kq->kq_sel);
2214 	knlist_destroy(&kq->kq_sel.si_note);
2215 	mtx_destroy(&kq->kq_lock);
2216 
2217 	if (kq->kq_knhash != NULL)
2218 		free(kq->kq_knhash, M_KQUEUE);
2219 	if (kq->kq_knlist != NULL)
2220 		free(kq->kq_knlist, M_KQUEUE);
2221 
2222 	funsetown(&kq->kq_sigio);
2223 }
2224 
2225 /*ARGSUSED*/
2226 static int
2227 kqueue_close(struct file *fp, struct thread *td)
2228 {
2229 	struct kqueue *kq = fp->f_data;
2230 	struct filedesc *fdp;
2231 	int error;
2232 	int filedesc_unlock;
2233 
2234 	if ((error = kqueue_acquire(fp, &kq)))
2235 		return error;
2236 	kqueue_drain(kq, td);
2237 
2238 	/*
2239 	 * We could be called due to the knote_drop() doing fdrop(),
2240 	 * called from kqueue_register().  In this case the global
2241 	 * lock is owned, and filedesc sx is locked before, to not
2242 	 * take the sleepable lock after non-sleepable.
2243 	 */
2244 	fdp = kq->kq_fdp;
2245 	kq->kq_fdp = NULL;
2246 	if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
2247 		FILEDESC_XLOCK(fdp);
2248 		filedesc_unlock = 1;
2249 	} else
2250 		filedesc_unlock = 0;
2251 	TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
2252 	if (filedesc_unlock)
2253 		FILEDESC_XUNLOCK(fdp);
2254 
2255 	kqueue_destroy(kq);
2256 	chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
2257 	crfree(kq->kq_cred);
2258 	free(kq, M_KQUEUE);
2259 	fp->f_data = NULL;
2260 
2261 	return (0);
2262 }
2263 
2264 static int
2265 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2266 {
2267 
2268 	kif->kf_type = KF_TYPE_KQUEUE;
2269 	return (0);
2270 }
2271 
2272 static void
2273 kqueue_wakeup(struct kqueue *kq)
2274 {
2275 	KQ_OWNED(kq);
2276 
2277 	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
2278 		kq->kq_state &= ~KQ_SLEEP;
2279 		wakeup(kq);
2280 	}
2281 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
2282 		selwakeuppri(&kq->kq_sel, PSOCK);
2283 		if (!SEL_WAITING(&kq->kq_sel))
2284 			kq->kq_state &= ~KQ_SEL;
2285 	}
2286 	if (!knlist_empty(&kq->kq_sel.si_note))
2287 		kqueue_schedtask(kq);
2288 	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
2289 		pgsigio(&kq->kq_sigio, SIGIO, 0);
2290 	}
2291 }
2292 
2293 /*
2294  * Walk down a list of knotes, activating them if their event has triggered.
2295  *
2296  * There is a possibility to optimize in the case of one kq watching another.
2297  * Instead of scheduling a task to wake it up, you could pass enough state
2298  * down the chain to make up the parent kqueue.  Make this code functional
2299  * first.
2300  */
2301 void
2302 knote(struct knlist *list, long hint, int lockflags)
2303 {
2304 	struct kqueue *kq;
2305 	struct knote *kn, *tkn;
2306 	int error;
2307 
2308 	if (list == NULL)
2309 		return;
2310 
2311 	KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
2312 
2313 	if ((lockflags & KNF_LISTLOCKED) == 0)
2314 		list->kl_lock(list->kl_lockarg);
2315 
2316 	/*
2317 	 * If we unlock the list lock (and enter influx), we can
2318 	 * eliminate the kqueue scheduling, but this will introduce
2319 	 * four lock/unlock's for each knote to test.  Also, marker
2320 	 * would be needed to keep iteration position, since filters
2321 	 * or other threads could remove events.
2322 	 */
2323 	SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
2324 		kq = kn->kn_kq;
2325 		KQ_LOCK(kq);
2326 		if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
2327 			/*
2328 			 * Do not process the influx notes, except for
2329 			 * the influx coming from the kq unlock in the
2330 			 * kqueue_scan().  In the later case, we do
2331 			 * not interfere with the scan, since the code
2332 			 * fragment in kqueue_scan() locks the knlist,
2333 			 * and cannot proceed until we finished.
2334 			 */
2335 			KQ_UNLOCK(kq);
2336 		} else if ((lockflags & KNF_NOKQLOCK) != 0) {
2337 			kn_enter_flux(kn);
2338 			KQ_UNLOCK(kq);
2339 			error = kn->kn_fop->f_event(kn, hint);
2340 			KQ_LOCK(kq);
2341 			kn_leave_flux(kn);
2342 			if (error)
2343 				KNOTE_ACTIVATE(kn, 1);
2344 			KQ_UNLOCK_FLUX(kq);
2345 		} else {
2346 			if (kn->kn_fop->f_event(kn, hint))
2347 				KNOTE_ACTIVATE(kn, 1);
2348 			KQ_UNLOCK(kq);
2349 		}
2350 	}
2351 	if ((lockflags & KNF_LISTLOCKED) == 0)
2352 		list->kl_unlock(list->kl_lockarg);
2353 }
2354 
2355 /*
2356  * add a knote to a knlist
2357  */
2358 void
2359 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
2360 {
2361 
2362 	KNL_ASSERT_LOCK(knl, islocked);
2363 	KQ_NOTOWNED(kn->kn_kq);
2364 	KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
2365 	KASSERT((kn->kn_status & KN_DETACHED) != 0,
2366 	    ("knote %p was not detached", kn));
2367 	if (!islocked)
2368 		knl->kl_lock(knl->kl_lockarg);
2369 	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
2370 	if (!islocked)
2371 		knl->kl_unlock(knl->kl_lockarg);
2372 	KQ_LOCK(kn->kn_kq);
2373 	kn->kn_knlist = knl;
2374 	kn->kn_status &= ~KN_DETACHED;
2375 	KQ_UNLOCK(kn->kn_kq);
2376 }
2377 
2378 static void
2379 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
2380     int kqislocked)
2381 {
2382 
2383 	KASSERT(!kqislocked || knlislocked, ("kq locked w/o knl locked"));
2384 	KNL_ASSERT_LOCK(knl, knlislocked);
2385 	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
2386 	KASSERT(kqislocked || kn_in_flux(kn), ("knote %p not in flux", kn));
2387 	KASSERT((kn->kn_status & KN_DETACHED) == 0,
2388 	    ("knote %p was already detached", kn));
2389 	if (!knlislocked)
2390 		knl->kl_lock(knl->kl_lockarg);
2391 	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
2392 	kn->kn_knlist = NULL;
2393 	if (!knlislocked)
2394 		kn_list_unlock(knl);
2395 	if (!kqislocked)
2396 		KQ_LOCK(kn->kn_kq);
2397 	kn->kn_status |= KN_DETACHED;
2398 	if (!kqislocked)
2399 		KQ_UNLOCK(kn->kn_kq);
2400 }
2401 
2402 /*
2403  * remove knote from the specified knlist
2404  */
2405 void
2406 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
2407 {
2408 
2409 	knlist_remove_kq(knl, kn, islocked, 0);
2410 }
2411 
2412 int
2413 knlist_empty(struct knlist *knl)
2414 {
2415 
2416 	KNL_ASSERT_LOCKED(knl);
2417 	return (SLIST_EMPTY(&knl->kl_list));
2418 }
2419 
2420 static struct mtx knlist_lock;
2421 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
2422     MTX_DEF);
2423 static void knlist_mtx_lock(void *arg);
2424 static void knlist_mtx_unlock(void *arg);
2425 
2426 static void
2427 knlist_mtx_lock(void *arg)
2428 {
2429 
2430 	mtx_lock((struct mtx *)arg);
2431 }
2432 
2433 static void
2434 knlist_mtx_unlock(void *arg)
2435 {
2436 
2437 	mtx_unlock((struct mtx *)arg);
2438 }
2439 
2440 static void
2441 knlist_mtx_assert_lock(void *arg, int what)
2442 {
2443 
2444 	if (what == LA_LOCKED)
2445 		mtx_assert((struct mtx *)arg, MA_OWNED);
2446 	else
2447 		mtx_assert((struct mtx *)arg, MA_NOTOWNED);
2448 }
2449 
2450 static void
2451 knlist_rw_rlock(void *arg)
2452 {
2453 
2454 	rw_rlock((struct rwlock *)arg);
2455 }
2456 
2457 static void
2458 knlist_rw_runlock(void *arg)
2459 {
2460 
2461 	rw_runlock((struct rwlock *)arg);
2462 }
2463 
2464 static void
2465 knlist_rw_assert_lock(void *arg, int what)
2466 {
2467 
2468 	if (what == LA_LOCKED)
2469 		rw_assert((struct rwlock *)arg, RA_LOCKED);
2470 	else
2471 		rw_assert((struct rwlock *)arg, RA_UNLOCKED);
2472 }
2473 
2474 void
2475 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
2476     void (*kl_unlock)(void *),
2477     void (*kl_assert_lock)(void *, int))
2478 {
2479 
2480 	if (lock == NULL)
2481 		knl->kl_lockarg = &knlist_lock;
2482 	else
2483 		knl->kl_lockarg = lock;
2484 
2485 	if (kl_lock == NULL)
2486 		knl->kl_lock = knlist_mtx_lock;
2487 	else
2488 		knl->kl_lock = kl_lock;
2489 	if (kl_unlock == NULL)
2490 		knl->kl_unlock = knlist_mtx_unlock;
2491 	else
2492 		knl->kl_unlock = kl_unlock;
2493 	if (kl_assert_lock == NULL)
2494 		knl->kl_assert_lock = knlist_mtx_assert_lock;
2495 	else
2496 		knl->kl_assert_lock = kl_assert_lock;
2497 
2498 	knl->kl_autodestroy = 0;
2499 	SLIST_INIT(&knl->kl_list);
2500 }
2501 
2502 void
2503 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
2504 {
2505 
2506 	knlist_init(knl, lock, NULL, NULL, NULL);
2507 }
2508 
2509 struct knlist *
2510 knlist_alloc(struct mtx *lock)
2511 {
2512 	struct knlist *knl;
2513 
2514 	knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
2515 	knlist_init_mtx(knl, lock);
2516 	return (knl);
2517 }
2518 
2519 void
2520 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
2521 {
2522 
2523 	knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
2524 	    knlist_rw_assert_lock);
2525 }
2526 
2527 void
2528 knlist_destroy(struct knlist *knl)
2529 {
2530 
2531 	KASSERT(KNLIST_EMPTY(knl),
2532 	    ("destroying knlist %p with knotes on it", knl));
2533 }
2534 
2535 void
2536 knlist_detach(struct knlist *knl)
2537 {
2538 
2539 	KNL_ASSERT_LOCKED(knl);
2540 	knl->kl_autodestroy = 1;
2541 	if (knlist_empty(knl)) {
2542 		knlist_destroy(knl);
2543 		free(knl, M_KQUEUE);
2544 	}
2545 }
2546 
2547 /*
2548  * Even if we are locked, we may need to drop the lock to allow any influx
2549  * knotes time to "settle".
2550  */
2551 void
2552 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
2553 {
2554 	struct knote *kn, *kn2;
2555 	struct kqueue *kq;
2556 
2557 	KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
2558 	if (islocked)
2559 		KNL_ASSERT_LOCKED(knl);
2560 	else {
2561 		KNL_ASSERT_UNLOCKED(knl);
2562 again:		/* need to reacquire lock since we have dropped it */
2563 		knl->kl_lock(knl->kl_lockarg);
2564 	}
2565 
2566 	SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
2567 		kq = kn->kn_kq;
2568 		KQ_LOCK(kq);
2569 		if (kn_in_flux(kn)) {
2570 			KQ_UNLOCK(kq);
2571 			continue;
2572 		}
2573 		knlist_remove_kq(knl, kn, 1, 1);
2574 		if (killkn) {
2575 			kn_enter_flux(kn);
2576 			KQ_UNLOCK(kq);
2577 			knote_drop_detached(kn, td);
2578 		} else {
2579 			/* Make sure cleared knotes disappear soon */
2580 			kn->kn_flags |= EV_EOF | EV_ONESHOT;
2581 			KQ_UNLOCK(kq);
2582 		}
2583 		kq = NULL;
2584 	}
2585 
2586 	if (!SLIST_EMPTY(&knl->kl_list)) {
2587 		/* there are still in flux knotes remaining */
2588 		kn = SLIST_FIRST(&knl->kl_list);
2589 		kq = kn->kn_kq;
2590 		KQ_LOCK(kq);
2591 		KASSERT(kn_in_flux(kn), ("knote removed w/o list lock"));
2592 		knl->kl_unlock(knl->kl_lockarg);
2593 		kq->kq_state |= KQ_FLUXWAIT;
2594 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
2595 		kq = NULL;
2596 		goto again;
2597 	}
2598 
2599 	if (islocked)
2600 		KNL_ASSERT_LOCKED(knl);
2601 	else {
2602 		knl->kl_unlock(knl->kl_lockarg);
2603 		KNL_ASSERT_UNLOCKED(knl);
2604 	}
2605 }
2606 
2607 /*
2608  * Remove all knotes referencing a specified fd must be called with FILEDESC
2609  * lock.  This prevents a race where a new fd comes along and occupies the
2610  * entry and we attach a knote to the fd.
2611  */
2612 void
2613 knote_fdclose(struct thread *td, int fd)
2614 {
2615 	struct filedesc *fdp = td->td_proc->p_fd;
2616 	struct kqueue *kq;
2617 	struct knote *kn;
2618 	int influx;
2619 
2620 	FILEDESC_XLOCK_ASSERT(fdp);
2621 
2622 	/*
2623 	 * We shouldn't have to worry about new kevents appearing on fd
2624 	 * since filedesc is locked.
2625 	 */
2626 	TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
2627 		KQ_LOCK(kq);
2628 
2629 again:
2630 		influx = 0;
2631 		while (kq->kq_knlistsize > fd &&
2632 		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
2633 			if (kn_in_flux(kn)) {
2634 				/* someone else might be waiting on our knote */
2635 				if (influx)
2636 					wakeup(kq);
2637 				kq->kq_state |= KQ_FLUXWAIT;
2638 				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2639 				goto again;
2640 			}
2641 			kn_enter_flux(kn);
2642 			KQ_UNLOCK(kq);
2643 			influx = 1;
2644 			knote_drop(kn, td);
2645 			KQ_LOCK(kq);
2646 		}
2647 		KQ_UNLOCK_FLUX(kq);
2648 	}
2649 }
2650 
2651 static int
2652 knote_attach(struct knote *kn, struct kqueue *kq)
2653 {
2654 	struct klist *list;
2655 
2656 	KASSERT(kn_in_flux(kn), ("knote %p not marked influx", kn));
2657 	KQ_OWNED(kq);
2658 
2659 	if ((kq->kq_state & KQ_CLOSING) != 0)
2660 		return (EBADF);
2661 	if (kn->kn_fop->f_isfd) {
2662 		if (kn->kn_id >= kq->kq_knlistsize)
2663 			return (ENOMEM);
2664 		list = &kq->kq_knlist[kn->kn_id];
2665 	} else {
2666 		if (kq->kq_knhash == NULL)
2667 			return (ENOMEM);
2668 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2669 	}
2670 	SLIST_INSERT_HEAD(list, kn, kn_link);
2671 	return (0);
2672 }
2673 
2674 static void
2675 knote_drop(struct knote *kn, struct thread *td)
2676 {
2677 
2678 	if ((kn->kn_status & KN_DETACHED) == 0)
2679 		kn->kn_fop->f_detach(kn);
2680 	knote_drop_detached(kn, td);
2681 }
2682 
2683 static void
2684 knote_drop_detached(struct knote *kn, struct thread *td)
2685 {
2686 	struct kqueue *kq;
2687 	struct klist *list;
2688 
2689 	kq = kn->kn_kq;
2690 
2691 	KASSERT((kn->kn_status & KN_DETACHED) != 0,
2692 	    ("knote %p still attached", kn));
2693 	KQ_NOTOWNED(kq);
2694 
2695 	KQ_LOCK(kq);
2696 	KASSERT(kn->kn_influx == 1,
2697 	    ("knote_drop called on %p with influx %d", kn, kn->kn_influx));
2698 
2699 	if (kn->kn_fop->f_isfd)
2700 		list = &kq->kq_knlist[kn->kn_id];
2701 	else
2702 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2703 
2704 	if (!SLIST_EMPTY(list))
2705 		SLIST_REMOVE(list, kn, knote, kn_link);
2706 	if (kn->kn_status & KN_QUEUED)
2707 		knote_dequeue(kn);
2708 	KQ_UNLOCK_FLUX(kq);
2709 
2710 	if (kn->kn_fop->f_isfd) {
2711 		fdrop(kn->kn_fp, td);
2712 		kn->kn_fp = NULL;
2713 	}
2714 	kqueue_fo_release(kn->kn_kevent.filter);
2715 	kn->kn_fop = NULL;
2716 	knote_free(kn);
2717 }
2718 
2719 static void
2720 knote_enqueue(struct knote *kn)
2721 {
2722 	struct kqueue *kq = kn->kn_kq;
2723 
2724 	KQ_OWNED(kn->kn_kq);
2725 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2726 
2727 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2728 	kn->kn_status |= KN_QUEUED;
2729 	kq->kq_count++;
2730 	kqueue_wakeup(kq);
2731 }
2732 
2733 static void
2734 knote_dequeue(struct knote *kn)
2735 {
2736 	struct kqueue *kq = kn->kn_kq;
2737 
2738 	KQ_OWNED(kn->kn_kq);
2739 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2740 
2741 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2742 	kn->kn_status &= ~KN_QUEUED;
2743 	kq->kq_count--;
2744 }
2745 
2746 static void
2747 knote_init(void)
2748 {
2749 
2750 	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
2751 	    NULL, NULL, UMA_ALIGN_PTR, 0);
2752 }
2753 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
2754 
2755 static struct knote *
2756 knote_alloc(int mflag)
2757 {
2758 
2759 	return (uma_zalloc(knote_zone, mflag | M_ZERO));
2760 }
2761 
2762 static void
2763 knote_free(struct knote *kn)
2764 {
2765 
2766 	uma_zfree(knote_zone, kn);
2767 }
2768 
2769 /*
2770  * Register the kev w/ the kq specified by fd.
2771  */
2772 int
2773 kqfd_register(int fd, struct kevent *kev, struct thread *td, int mflag)
2774 {
2775 	struct kqueue *kq;
2776 	struct file *fp;
2777 	cap_rights_t rights;
2778 	int error;
2779 
2780 	error = fget(td, fd, cap_rights_init_one(&rights, CAP_KQUEUE_CHANGE),
2781 	    &fp);
2782 	if (error != 0)
2783 		return (error);
2784 	if ((error = kqueue_acquire(fp, &kq)) != 0)
2785 		goto noacquire;
2786 
2787 	error = kqueue_register(kq, kev, td, mflag);
2788 	kqueue_release(kq, 0);
2789 
2790 noacquire:
2791 	fdrop(fp, td);
2792 	return (error);
2793 }
2794