xref: /freebsd/sys/kern/kern_event.c (revision 8ef24a0d4b28fe230e20637f56869cc4148cd2ca)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
4  * Copyright (c) 2009 Apple, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_ktrace.h"
33 #include "opt_kqueue.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/capsicum.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/rwlock.h>
42 #include <sys/proc.h>
43 #include <sys/malloc.h>
44 #include <sys/unistd.h>
45 #include <sys/file.h>
46 #include <sys/filedesc.h>
47 #include <sys/filio.h>
48 #include <sys/fcntl.h>
49 #include <sys/kthread.h>
50 #include <sys/selinfo.h>
51 #include <sys/stdatomic.h>
52 #include <sys/queue.h>
53 #include <sys/event.h>
54 #include <sys/eventvar.h>
55 #include <sys/poll.h>
56 #include <sys/protosw.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sigio.h>
59 #include <sys/signalvar.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/stat.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysproto.h>
65 #include <sys/syscallsubr.h>
66 #include <sys/taskqueue.h>
67 #include <sys/uio.h>
68 #include <sys/user.h>
69 #ifdef KTRACE
70 #include <sys/ktrace.h>
71 #endif
72 
73 #include <vm/uma.h>
74 
75 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
76 
77 /*
78  * This lock is used if multiple kq locks are required.  This possibly
79  * should be made into a per proc lock.
80  */
81 static struct mtx	kq_global;
82 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
83 #define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
84 	if (!haslck)				\
85 		mtx_lock(lck);			\
86 	haslck = 1;				\
87 } while (0)
88 #define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
89 	if (haslck)				\
90 		mtx_unlock(lck);			\
91 	haslck = 0;				\
92 } while (0)
93 
94 TASKQUEUE_DEFINE_THREAD(kqueue);
95 
96 static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
97 static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
98 static int	kqueue_register(struct kqueue *kq, struct kevent *kev,
99 		    struct thread *td, int waitok);
100 static int	kqueue_acquire(struct file *fp, struct kqueue **kqp);
101 static void	kqueue_release(struct kqueue *kq, int locked);
102 static void	kqueue_destroy(struct kqueue *kq);
103 static void	kqueue_drain(struct kqueue *kq, struct thread *td);
104 static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
105 		    uintptr_t ident, int waitok);
106 static void	kqueue_task(void *arg, int pending);
107 static int	kqueue_scan(struct kqueue *kq, int maxevents,
108 		    struct kevent_copyops *k_ops,
109 		    const struct timespec *timeout,
110 		    struct kevent *keva, struct thread *td);
111 static void 	kqueue_wakeup(struct kqueue *kq);
112 static struct filterops *kqueue_fo_find(int filt);
113 static void	kqueue_fo_release(int filt);
114 
115 static fo_ioctl_t	kqueue_ioctl;
116 static fo_poll_t	kqueue_poll;
117 static fo_kqfilter_t	kqueue_kqfilter;
118 static fo_stat_t	kqueue_stat;
119 static fo_close_t	kqueue_close;
120 static fo_fill_kinfo_t	kqueue_fill_kinfo;
121 
122 static struct fileops kqueueops = {
123 	.fo_read = invfo_rdwr,
124 	.fo_write = invfo_rdwr,
125 	.fo_truncate = invfo_truncate,
126 	.fo_ioctl = kqueue_ioctl,
127 	.fo_poll = kqueue_poll,
128 	.fo_kqfilter = kqueue_kqfilter,
129 	.fo_stat = kqueue_stat,
130 	.fo_close = kqueue_close,
131 	.fo_chmod = invfo_chmod,
132 	.fo_chown = invfo_chown,
133 	.fo_sendfile = invfo_sendfile,
134 	.fo_fill_kinfo = kqueue_fill_kinfo,
135 };
136 
137 static int 	knote_attach(struct knote *kn, struct kqueue *kq);
138 static void 	knote_drop(struct knote *kn, struct thread *td);
139 static void 	knote_enqueue(struct knote *kn);
140 static void 	knote_dequeue(struct knote *kn);
141 static void 	knote_init(void);
142 static struct 	knote *knote_alloc(int waitok);
143 static void 	knote_free(struct knote *kn);
144 
145 static void	filt_kqdetach(struct knote *kn);
146 static int	filt_kqueue(struct knote *kn, long hint);
147 static int	filt_procattach(struct knote *kn);
148 static void	filt_procdetach(struct knote *kn);
149 static int	filt_proc(struct knote *kn, long hint);
150 static int	filt_fileattach(struct knote *kn);
151 static void	filt_timerexpire(void *knx);
152 static int	filt_timerattach(struct knote *kn);
153 static void	filt_timerdetach(struct knote *kn);
154 static int	filt_timer(struct knote *kn, long hint);
155 static int	filt_userattach(struct knote *kn);
156 static void	filt_userdetach(struct knote *kn);
157 static int	filt_user(struct knote *kn, long hint);
158 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
159 		    u_long type);
160 
161 static struct filterops file_filtops = {
162 	.f_isfd = 1,
163 	.f_attach = filt_fileattach,
164 };
165 static struct filterops kqread_filtops = {
166 	.f_isfd = 1,
167 	.f_detach = filt_kqdetach,
168 	.f_event = filt_kqueue,
169 };
170 /* XXX - move to kern_proc.c?  */
171 static struct filterops proc_filtops = {
172 	.f_isfd = 0,
173 	.f_attach = filt_procattach,
174 	.f_detach = filt_procdetach,
175 	.f_event = filt_proc,
176 };
177 static struct filterops timer_filtops = {
178 	.f_isfd = 0,
179 	.f_attach = filt_timerattach,
180 	.f_detach = filt_timerdetach,
181 	.f_event = filt_timer,
182 };
183 static struct filterops user_filtops = {
184 	.f_attach = filt_userattach,
185 	.f_detach = filt_userdetach,
186 	.f_event = filt_user,
187 	.f_touch = filt_usertouch,
188 };
189 
190 static uma_zone_t	knote_zone;
191 static atomic_uint	kq_ncallouts = ATOMIC_VAR_INIT(0);
192 static unsigned int 	kq_calloutmax = 4 * 1024;
193 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
194     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
195 
196 /* XXX - ensure not KN_INFLUX?? */
197 #define KNOTE_ACTIVATE(kn, islock) do { 				\
198 	if ((islock))							\
199 		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
200 	else								\
201 		KQ_LOCK((kn)->kn_kq);					\
202 	(kn)->kn_status |= KN_ACTIVE;					\
203 	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
204 		knote_enqueue((kn));					\
205 	if (!(islock))							\
206 		KQ_UNLOCK((kn)->kn_kq);					\
207 } while(0)
208 #define KQ_LOCK(kq) do {						\
209 	mtx_lock(&(kq)->kq_lock);					\
210 } while (0)
211 #define KQ_FLUX_WAKEUP(kq) do {						\
212 	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
213 		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
214 		wakeup((kq));						\
215 	}								\
216 } while (0)
217 #define KQ_UNLOCK_FLUX(kq) do {						\
218 	KQ_FLUX_WAKEUP(kq);						\
219 	mtx_unlock(&(kq)->kq_lock);					\
220 } while (0)
221 #define KQ_UNLOCK(kq) do {						\
222 	mtx_unlock(&(kq)->kq_lock);					\
223 } while (0)
224 #define KQ_OWNED(kq) do {						\
225 	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
226 } while (0)
227 #define KQ_NOTOWNED(kq) do {						\
228 	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
229 } while (0)
230 #define KN_LIST_LOCK(kn) do {						\
231 	if (kn->kn_knlist != NULL)					\
232 		kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);	\
233 } while (0)
234 #define KN_LIST_UNLOCK(kn) do {						\
235 	if (kn->kn_knlist != NULL) 					\
236 		kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);	\
237 } while (0)
238 #define	KNL_ASSERT_LOCK(knl, islocked) do {				\
239 	if (islocked)							\
240 		KNL_ASSERT_LOCKED(knl);				\
241 	else								\
242 		KNL_ASSERT_UNLOCKED(knl);				\
243 } while (0)
244 #ifdef INVARIANTS
245 #define	KNL_ASSERT_LOCKED(knl) do {					\
246 	knl->kl_assert_locked((knl)->kl_lockarg);			\
247 } while (0)
248 #define	KNL_ASSERT_UNLOCKED(knl) do {					\
249 	knl->kl_assert_unlocked((knl)->kl_lockarg);			\
250 } while (0)
251 #else /* !INVARIANTS */
252 #define	KNL_ASSERT_LOCKED(knl) do {} while(0)
253 #define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
254 #endif /* INVARIANTS */
255 
256 #ifndef	KN_HASHSIZE
257 #define	KN_HASHSIZE		64		/* XXX should be tunable */
258 #endif
259 
260 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
261 
262 static int
263 filt_nullattach(struct knote *kn)
264 {
265 
266 	return (ENXIO);
267 };
268 
269 struct filterops null_filtops = {
270 	.f_isfd = 0,
271 	.f_attach = filt_nullattach,
272 };
273 
274 /* XXX - make SYSINIT to add these, and move into respective modules. */
275 extern struct filterops sig_filtops;
276 extern struct filterops fs_filtops;
277 
278 /*
279  * Table for for all system-defined filters.
280  */
281 static struct mtx	filterops_lock;
282 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
283 	MTX_DEF);
284 static struct {
285 	struct filterops *for_fop;
286 	int for_nolock;
287 	int for_refcnt;
288 } sysfilt_ops[EVFILT_SYSCOUNT] = {
289 	{ &file_filtops, 1 },			/* EVFILT_READ */
290 	{ &file_filtops, 1 },			/* EVFILT_WRITE */
291 	{ &null_filtops },			/* EVFILT_AIO */
292 	{ &file_filtops, 1 },			/* EVFILT_VNODE */
293 	{ &proc_filtops, 1 },			/* EVFILT_PROC */
294 	{ &sig_filtops, 1 },			/* EVFILT_SIGNAL */
295 	{ &timer_filtops, 1 },			/* EVFILT_TIMER */
296 	{ &file_filtops, 1 },			/* EVFILT_PROCDESC */
297 	{ &fs_filtops, 1 },			/* EVFILT_FS */
298 	{ &null_filtops },			/* EVFILT_LIO */
299 	{ &user_filtops, 1 },			/* EVFILT_USER */
300 	{ &null_filtops },			/* EVFILT_SENDFILE */
301 };
302 
303 /*
304  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
305  * method.
306  */
307 static int
308 filt_fileattach(struct knote *kn)
309 {
310 
311 	return (fo_kqfilter(kn->kn_fp, kn));
312 }
313 
314 /*ARGSUSED*/
315 static int
316 kqueue_kqfilter(struct file *fp, struct knote *kn)
317 {
318 	struct kqueue *kq = kn->kn_fp->f_data;
319 
320 	if (kn->kn_filter != EVFILT_READ)
321 		return (EINVAL);
322 
323 	kn->kn_status |= KN_KQUEUE;
324 	kn->kn_fop = &kqread_filtops;
325 	knlist_add(&kq->kq_sel.si_note, kn, 0);
326 
327 	return (0);
328 }
329 
330 static void
331 filt_kqdetach(struct knote *kn)
332 {
333 	struct kqueue *kq = kn->kn_fp->f_data;
334 
335 	knlist_remove(&kq->kq_sel.si_note, kn, 0);
336 }
337 
338 /*ARGSUSED*/
339 static int
340 filt_kqueue(struct knote *kn, long hint)
341 {
342 	struct kqueue *kq = kn->kn_fp->f_data;
343 
344 	kn->kn_data = kq->kq_count;
345 	return (kn->kn_data > 0);
346 }
347 
348 /* XXX - move to kern_proc.c?  */
349 static int
350 filt_procattach(struct knote *kn)
351 {
352 	struct proc *p;
353 	int immediate;
354 	int error;
355 
356 	immediate = 0;
357 	p = pfind(kn->kn_id);
358 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
359 		p = zpfind(kn->kn_id);
360 		immediate = 1;
361 	} else if (p != NULL && (p->p_flag & P_WEXIT)) {
362 		immediate = 1;
363 	}
364 
365 	if (p == NULL)
366 		return (ESRCH);
367 	if ((error = p_cansee(curthread, p))) {
368 		PROC_UNLOCK(p);
369 		return (error);
370 	}
371 
372 	kn->kn_ptr.p_proc = p;
373 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
374 
375 	/*
376 	 * Internal flag indicating registration done by kernel for the
377 	 * purposes of getting a NOTE_CHILD notification.
378 	 */
379 	if (kn->kn_flags & EV_FLAG2) {
380 		kn->kn_flags &= ~EV_FLAG2;
381 		kn->kn_data = kn->kn_sdata;		/* ppid */
382 		kn->kn_fflags = NOTE_CHILD;
383                 kn->kn_sfflags &= ~NOTE_EXIT;
384 		immediate = 1; /* Force immediate activation of child note. */
385 	}
386 	/*
387 	 * Internal flag indicating registration done by kernel (for other than
388 	 * NOTE_CHILD).
389 	 */
390 	if (kn->kn_flags & EV_FLAG1) {
391 		kn->kn_flags &= ~EV_FLAG1;
392 	}
393 
394 	if (immediate == 0)
395 		knlist_add(&p->p_klist, kn, 1);
396 
397 	/*
398 	 * Immediately activate any child notes or, in the case of a zombie
399 	 * target process, exit notes.  The latter is necessary to handle the
400 	 * case where the target process, e.g. a child, dies before the kevent
401 	 * is registered.
402 	 */
403 	if (immediate && filt_proc(kn, NOTE_EXIT))
404 		KNOTE_ACTIVATE(kn, 0);
405 
406 	PROC_UNLOCK(p);
407 
408 	return (0);
409 }
410 
411 /*
412  * The knote may be attached to a different process, which may exit,
413  * leaving nothing for the knote to be attached to.  So when the process
414  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
415  * it will be deleted when read out.  However, as part of the knote deletion,
416  * this routine is called, so a check is needed to avoid actually performing
417  * a detach, because the original process does not exist any more.
418  */
419 /* XXX - move to kern_proc.c?  */
420 static void
421 filt_procdetach(struct knote *kn)
422 {
423 	struct proc *p;
424 
425 	p = kn->kn_ptr.p_proc;
426 	knlist_remove(&p->p_klist, kn, 0);
427 	kn->kn_ptr.p_proc = NULL;
428 }
429 
430 /* XXX - move to kern_proc.c?  */
431 static int
432 filt_proc(struct knote *kn, long hint)
433 {
434 	struct proc *p;
435 	u_int event;
436 
437 	p = kn->kn_ptr.p_proc;
438 	/* Mask off extra data. */
439 	event = (u_int)hint & NOTE_PCTRLMASK;
440 
441 	/* If the user is interested in this event, record it. */
442 	if (kn->kn_sfflags & event)
443 		kn->kn_fflags |= event;
444 
445 	/* Process is gone, so flag the event as finished. */
446 	if (event == NOTE_EXIT) {
447 		if (!(kn->kn_status & KN_DETACHED))
448 			knlist_remove_inevent(&p->p_klist, kn);
449 		kn->kn_flags |= EV_EOF | EV_ONESHOT;
450 		kn->kn_ptr.p_proc = NULL;
451 		if (kn->kn_fflags & NOTE_EXIT)
452 			kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
453 		if (kn->kn_fflags == 0)
454 			kn->kn_flags |= EV_DROP;
455 		return (1);
456 	}
457 
458 	return (kn->kn_fflags != 0);
459 }
460 
461 /*
462  * Called when the process forked. It mostly does the same as the
463  * knote(), activating all knotes registered to be activated when the
464  * process forked. Additionally, for each knote attached to the
465  * parent, check whether user wants to track the new process. If so
466  * attach a new knote to it, and immediately report an event with the
467  * child's pid.
468  */
469 void
470 knote_fork(struct knlist *list, int pid)
471 {
472 	struct kqueue *kq;
473 	struct knote *kn;
474 	struct kevent kev;
475 	int error;
476 
477 	if (list == NULL)
478 		return;
479 	list->kl_lock(list->kl_lockarg);
480 
481 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
482 		/*
483 		 * XXX - Why do we skip the kn if it is _INFLUX?  Does this
484 		 * mean we will not properly wake up some notes?
485 		 */
486 		if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
487 			continue;
488 		kq = kn->kn_kq;
489 		KQ_LOCK(kq);
490 		if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
491 			KQ_UNLOCK(kq);
492 			continue;
493 		}
494 
495 		/*
496 		 * The same as knote(), activate the event.
497 		 */
498 		if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
499 			kn->kn_status |= KN_HASKQLOCK;
500 			if (kn->kn_fop->f_event(kn, NOTE_FORK))
501 				KNOTE_ACTIVATE(kn, 1);
502 			kn->kn_status &= ~KN_HASKQLOCK;
503 			KQ_UNLOCK(kq);
504 			continue;
505 		}
506 
507 		/*
508 		 * The NOTE_TRACK case. In addition to the activation
509 		 * of the event, we need to register new events to
510 		 * track the child. Drop the locks in preparation for
511 		 * the call to kqueue_register().
512 		 */
513 		kn->kn_status |= KN_INFLUX;
514 		KQ_UNLOCK(kq);
515 		list->kl_unlock(list->kl_lockarg);
516 
517 		/*
518 		 * Activate existing knote and register tracking knotes with
519 		 * new process.
520 		 *
521 		 * First register a knote to get just the child notice. This
522 		 * must be a separate note from a potential NOTE_EXIT
523 		 * notification since both NOTE_CHILD and NOTE_EXIT are defined
524 		 * to use the data field (in conflicting ways).
525 		 */
526 		kev.ident = pid;
527 		kev.filter = kn->kn_filter;
528 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT | EV_FLAG2;
529 		kev.fflags = kn->kn_sfflags;
530 		kev.data = kn->kn_id;		/* parent */
531 		kev.udata = kn->kn_kevent.udata;/* preserve udata */
532 		error = kqueue_register(kq, &kev, NULL, 0);
533 		if (error)
534 			kn->kn_fflags |= NOTE_TRACKERR;
535 
536 		/*
537 		 * Then register another knote to track other potential events
538 		 * from the new process.
539 		 */
540 		kev.ident = pid;
541 		kev.filter = kn->kn_filter;
542 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
543 		kev.fflags = kn->kn_sfflags;
544 		kev.data = kn->kn_id;		/* parent */
545 		kev.udata = kn->kn_kevent.udata;/* preserve udata */
546 		error = kqueue_register(kq, &kev, NULL, 0);
547 		if (error)
548 			kn->kn_fflags |= NOTE_TRACKERR;
549 		if (kn->kn_fop->f_event(kn, NOTE_FORK))
550 			KNOTE_ACTIVATE(kn, 0);
551 		KQ_LOCK(kq);
552 		kn->kn_status &= ~KN_INFLUX;
553 		KQ_UNLOCK_FLUX(kq);
554 		list->kl_lock(list->kl_lockarg);
555 	}
556 	list->kl_unlock(list->kl_lockarg);
557 }
558 
559 /*
560  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
561  * interval timer support code.
562  */
563 
564 #define NOTE_TIMER_PRECMASK	(NOTE_SECONDS|NOTE_MSECONDS|NOTE_USECONDS| \
565 				NOTE_NSECONDS)
566 
567 static sbintime_t
568 timer2sbintime(intptr_t data, int flags)
569 {
570 
571         /*
572          * Macros for converting to the fractional second portion of an
573          * sbintime_t using 64bit multiplication to improve precision.
574          */
575 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
576 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
577 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
578 	switch (flags & NOTE_TIMER_PRECMASK) {
579 	case NOTE_SECONDS:
580 #ifdef __LP64__
581 		if (data > (SBT_MAX / SBT_1S))
582 			return SBT_MAX;
583 #endif
584 		return ((sbintime_t)data << 32);
585 	case NOTE_MSECONDS: /* FALLTHROUGH */
586 	case 0:
587 		if (data >= 1000) {
588 			int64_t secs = data / 1000;
589 #ifdef __LP64__
590 			if (secs > (SBT_MAX / SBT_1S))
591 				return SBT_MAX;
592 #endif
593 			return (secs << 32 | MS_TO_SBT(data % 1000));
594 		}
595 		return MS_TO_SBT(data);
596 	case NOTE_USECONDS:
597 		if (data >= 1000000) {
598 			int64_t secs = data / 1000000;
599 #ifdef __LP64__
600 			if (secs > (SBT_MAX / SBT_1S))
601 				return SBT_MAX;
602 #endif
603 			return (secs << 32 | US_TO_SBT(data % 1000000));
604 		}
605 		return US_TO_SBT(data);
606 	case NOTE_NSECONDS:
607 		if (data >= 1000000000) {
608 			int64_t secs = data / 1000000000;
609 #ifdef __LP64__
610 			if (secs > (SBT_MAX / SBT_1S))
611 				return SBT_MAX;
612 #endif
613 			return (secs << 32 | US_TO_SBT(data % 1000000000));
614 		}
615 		return NS_TO_SBT(data);
616 	default:
617 		break;
618 	}
619 	return (-1);
620 }
621 
622 static void
623 filt_timerexpire(void *knx)
624 {
625 	struct callout *calloutp;
626 	struct knote *kn;
627 
628 	kn = knx;
629 	kn->kn_data++;
630 	KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
631 
632 	if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
633 		calloutp = (struct callout *)kn->kn_hook;
634 		*kn->kn_ptr.p_nexttime += timer2sbintime(kn->kn_sdata,
635 		    kn->kn_sfflags);
636 		callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0,
637 		    filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE);
638 	}
639 }
640 
641 /*
642  * data contains amount of time to sleep
643  */
644 static int
645 filt_timerattach(struct knote *kn)
646 {
647 	struct callout *calloutp;
648 	sbintime_t to;
649 	unsigned int ncallouts;
650 
651 	if ((intptr_t)kn->kn_sdata < 0)
652 		return (EINVAL);
653 	if ((intptr_t)kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
654 		kn->kn_sdata = 1;
655 	/* Only precision unit are supported in flags so far */
656 	if (kn->kn_sfflags & ~NOTE_TIMER_PRECMASK)
657 		return (EINVAL);
658 
659 	to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
660 	if (to < 0)
661 		return (EINVAL);
662 
663 	ncallouts = atomic_load_explicit(&kq_ncallouts, memory_order_relaxed);
664 	do {
665 		if (ncallouts >= kq_calloutmax)
666 			return (ENOMEM);
667 	} while (!atomic_compare_exchange_weak_explicit(&kq_ncallouts,
668 	    &ncallouts, ncallouts + 1, memory_order_relaxed,
669 	    memory_order_relaxed));
670 
671 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
672 	kn->kn_status &= ~KN_DETACHED;		/* knlist_add clears it */
673 	kn->kn_ptr.p_nexttime = malloc(sizeof(sbintime_t), M_KQUEUE, M_WAITOK);
674 	calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
675 	callout_init(calloutp, 1);
676 	kn->kn_hook = calloutp;
677 	*kn->kn_ptr.p_nexttime = to + sbinuptime();
678 	callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0,
679 	    filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE);
680 
681 	return (0);
682 }
683 
684 static void
685 filt_timerdetach(struct knote *kn)
686 {
687 	struct callout *calloutp;
688 	unsigned int old;
689 
690 	calloutp = (struct callout *)kn->kn_hook;
691 	callout_drain(calloutp);
692 	free(calloutp, M_KQUEUE);
693 	free(kn->kn_ptr.p_nexttime, M_KQUEUE);
694 	old = atomic_fetch_sub_explicit(&kq_ncallouts, 1, memory_order_relaxed);
695 	KASSERT(old > 0, ("Number of callouts cannot become negative"));
696 	kn->kn_status |= KN_DETACHED;	/* knlist_remove sets it */
697 }
698 
699 static int
700 filt_timer(struct knote *kn, long hint)
701 {
702 
703 	return (kn->kn_data != 0);
704 }
705 
706 static int
707 filt_userattach(struct knote *kn)
708 {
709 
710 	/*
711 	 * EVFILT_USER knotes are not attached to anything in the kernel.
712 	 */
713 	kn->kn_hook = NULL;
714 	if (kn->kn_fflags & NOTE_TRIGGER)
715 		kn->kn_hookid = 1;
716 	else
717 		kn->kn_hookid = 0;
718 	return (0);
719 }
720 
721 static void
722 filt_userdetach(__unused struct knote *kn)
723 {
724 
725 	/*
726 	 * EVFILT_USER knotes are not attached to anything in the kernel.
727 	 */
728 }
729 
730 static int
731 filt_user(struct knote *kn, __unused long hint)
732 {
733 
734 	return (kn->kn_hookid);
735 }
736 
737 static void
738 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
739 {
740 	u_int ffctrl;
741 
742 	switch (type) {
743 	case EVENT_REGISTER:
744 		if (kev->fflags & NOTE_TRIGGER)
745 			kn->kn_hookid = 1;
746 
747 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
748 		kev->fflags &= NOTE_FFLAGSMASK;
749 		switch (ffctrl) {
750 		case NOTE_FFNOP:
751 			break;
752 
753 		case NOTE_FFAND:
754 			kn->kn_sfflags &= kev->fflags;
755 			break;
756 
757 		case NOTE_FFOR:
758 			kn->kn_sfflags |= kev->fflags;
759 			break;
760 
761 		case NOTE_FFCOPY:
762 			kn->kn_sfflags = kev->fflags;
763 			break;
764 
765 		default:
766 			/* XXX Return error? */
767 			break;
768 		}
769 		kn->kn_sdata = kev->data;
770 		if (kev->flags & EV_CLEAR) {
771 			kn->kn_hookid = 0;
772 			kn->kn_data = 0;
773 			kn->kn_fflags = 0;
774 		}
775 		break;
776 
777         case EVENT_PROCESS:
778 		*kev = kn->kn_kevent;
779 		kev->fflags = kn->kn_sfflags;
780 		kev->data = kn->kn_sdata;
781 		if (kn->kn_flags & EV_CLEAR) {
782 			kn->kn_hookid = 0;
783 			kn->kn_data = 0;
784 			kn->kn_fflags = 0;
785 		}
786 		break;
787 
788 	default:
789 		panic("filt_usertouch() - invalid type (%ld)", type);
790 		break;
791 	}
792 }
793 
794 int
795 sys_kqueue(struct thread *td, struct kqueue_args *uap)
796 {
797 
798 	return (kern_kqueue(td, 0, NULL));
799 }
800 
801 static void
802 kqueue_init(struct kqueue *kq)
803 {
804 
805 	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
806 	TAILQ_INIT(&kq->kq_head);
807 	knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
808 	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
809 }
810 
811 int
812 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
813 {
814 	struct filedesc *fdp;
815 	struct kqueue *kq;
816 	struct file *fp;
817 	struct ucred *cred;
818 	int fd, error;
819 
820 	fdp = td->td_proc->p_fd;
821 	cred = td->td_ucred;
822 	if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
823 		return (ENOMEM);
824 
825 	error = falloc_caps(td, &fp, &fd, flags, fcaps);
826 	if (error != 0) {
827 		chgkqcnt(cred->cr_ruidinfo, -1, 0);
828 		return (error);
829 	}
830 
831 	/* An extra reference on `fp' has been held for us by falloc(). */
832 	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
833 	kqueue_init(kq);
834 	kq->kq_fdp = fdp;
835 	kq->kq_cred = crhold(cred);
836 
837 	FILEDESC_XLOCK(fdp);
838 	TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
839 	FILEDESC_XUNLOCK(fdp);
840 
841 	finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
842 	fdrop(fp, td);
843 
844 	td->td_retval[0] = fd;
845 	return (0);
846 }
847 
848 #ifndef _SYS_SYSPROTO_H_
849 struct kevent_args {
850 	int	fd;
851 	const struct kevent *changelist;
852 	int	nchanges;
853 	struct	kevent *eventlist;
854 	int	nevents;
855 	const struct timespec *timeout;
856 };
857 #endif
858 int
859 sys_kevent(struct thread *td, struct kevent_args *uap)
860 {
861 	struct timespec ts, *tsp;
862 	struct kevent_copyops k_ops = { uap,
863 					kevent_copyout,
864 					kevent_copyin};
865 	int error;
866 #ifdef KTRACE
867 	struct uio ktruio;
868 	struct iovec ktriov;
869 	struct uio *ktruioin = NULL;
870 	struct uio *ktruioout = NULL;
871 #endif
872 
873 	if (uap->timeout != NULL) {
874 		error = copyin(uap->timeout, &ts, sizeof(ts));
875 		if (error)
876 			return (error);
877 		tsp = &ts;
878 	} else
879 		tsp = NULL;
880 
881 #ifdef KTRACE
882 	if (KTRPOINT(td, KTR_GENIO)) {
883 		ktriov.iov_base = uap->changelist;
884 		ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
885 		ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
886 		    .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
887 		    .uio_td = td };
888 		ktruioin = cloneuio(&ktruio);
889 		ktriov.iov_base = uap->eventlist;
890 		ktriov.iov_len = uap->nevents * sizeof(struct kevent);
891 		ktruioout = cloneuio(&ktruio);
892 	}
893 #endif
894 
895 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
896 	    &k_ops, tsp);
897 
898 #ifdef KTRACE
899 	if (ktruioin != NULL) {
900 		ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
901 		ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
902 		ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
903 		ktrgenio(uap->fd, UIO_READ, ktruioout, error);
904 	}
905 #endif
906 
907 	return (error);
908 }
909 
910 /*
911  * Copy 'count' items into the destination list pointed to by uap->eventlist.
912  */
913 static int
914 kevent_copyout(void *arg, struct kevent *kevp, int count)
915 {
916 	struct kevent_args *uap;
917 	int error;
918 
919 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
920 	uap = (struct kevent_args *)arg;
921 
922 	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
923 	if (error == 0)
924 		uap->eventlist += count;
925 	return (error);
926 }
927 
928 /*
929  * Copy 'count' items from the list pointed to by uap->changelist.
930  */
931 static int
932 kevent_copyin(void *arg, struct kevent *kevp, int count)
933 {
934 	struct kevent_args *uap;
935 	int error;
936 
937 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
938 	uap = (struct kevent_args *)arg;
939 
940 	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
941 	if (error == 0)
942 		uap->changelist += count;
943 	return (error);
944 }
945 
946 int
947 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
948     struct kevent_copyops *k_ops, const struct timespec *timeout)
949 {
950 	cap_rights_t rights;
951 	struct file *fp;
952 	int error;
953 
954 	cap_rights_init(&rights);
955 	if (nchanges > 0)
956 		cap_rights_set(&rights, CAP_KQUEUE_CHANGE);
957 	if (nevents > 0)
958 		cap_rights_set(&rights, CAP_KQUEUE_EVENT);
959 	error = fget(td, fd, &rights, &fp);
960 	if (error != 0)
961 		return (error);
962 
963 	error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
964 	fdrop(fp, td);
965 
966 	return (error);
967 }
968 
969 static int
970 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
971     struct kevent_copyops *k_ops, const struct timespec *timeout)
972 {
973 	struct kevent keva[KQ_NEVENTS];
974 	struct kevent *kevp, *changes;
975 	int i, n, nerrors, error;
976 
977 	nerrors = 0;
978 	while (nchanges > 0) {
979 		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
980 		error = k_ops->k_copyin(k_ops->arg, keva, n);
981 		if (error)
982 			return (error);
983 		changes = keva;
984 		for (i = 0; i < n; i++) {
985 			kevp = &changes[i];
986 			if (!kevp->filter)
987 				continue;
988 			kevp->flags &= ~EV_SYSFLAGS;
989 			error = kqueue_register(kq, kevp, td, 1);
990 			if (error || (kevp->flags & EV_RECEIPT)) {
991 				if (nevents == 0)
992 					return (error);
993 				kevp->flags = EV_ERROR;
994 				kevp->data = error;
995 				(void)k_ops->k_copyout(k_ops->arg, kevp, 1);
996 				nevents--;
997 				nerrors++;
998 			}
999 		}
1000 		nchanges -= n;
1001 	}
1002 	if (nerrors) {
1003 		td->td_retval[0] = nerrors;
1004 		return (0);
1005 	}
1006 
1007 	return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
1008 }
1009 
1010 int
1011 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
1012     struct kevent_copyops *k_ops, const struct timespec *timeout)
1013 {
1014 	struct kqueue *kq;
1015 	int error;
1016 
1017 	error = kqueue_acquire(fp, &kq);
1018 	if (error != 0)
1019 		return (error);
1020 	error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
1021 	kqueue_release(kq, 0);
1022 	return (error);
1023 }
1024 
1025 /*
1026  * Performs a kevent() call on a temporarily created kqueue. This can be
1027  * used to perform one-shot polling, similar to poll() and select().
1028  */
1029 int
1030 kern_kevent_anonymous(struct thread *td, int nevents,
1031     struct kevent_copyops *k_ops)
1032 {
1033 	struct kqueue kq = {};
1034 	int error;
1035 
1036 	kqueue_init(&kq);
1037 	kq.kq_refcnt = 1;
1038 	error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
1039 	kqueue_drain(&kq, td);
1040 	kqueue_destroy(&kq);
1041 	return (error);
1042 }
1043 
1044 int
1045 kqueue_add_filteropts(int filt, struct filterops *filtops)
1046 {
1047 	int error;
1048 
1049 	error = 0;
1050 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
1051 		printf(
1052 "trying to add a filterop that is out of range: %d is beyond %d\n",
1053 		    ~filt, EVFILT_SYSCOUNT);
1054 		return EINVAL;
1055 	}
1056 	mtx_lock(&filterops_lock);
1057 	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
1058 	    sysfilt_ops[~filt].for_fop != NULL)
1059 		error = EEXIST;
1060 	else {
1061 		sysfilt_ops[~filt].for_fop = filtops;
1062 		sysfilt_ops[~filt].for_refcnt = 0;
1063 	}
1064 	mtx_unlock(&filterops_lock);
1065 
1066 	return (error);
1067 }
1068 
1069 int
1070 kqueue_del_filteropts(int filt)
1071 {
1072 	int error;
1073 
1074 	error = 0;
1075 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1076 		return EINVAL;
1077 
1078 	mtx_lock(&filterops_lock);
1079 	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
1080 	    sysfilt_ops[~filt].for_fop == NULL)
1081 		error = EINVAL;
1082 	else if (sysfilt_ops[~filt].for_refcnt != 0)
1083 		error = EBUSY;
1084 	else {
1085 		sysfilt_ops[~filt].for_fop = &null_filtops;
1086 		sysfilt_ops[~filt].for_refcnt = 0;
1087 	}
1088 	mtx_unlock(&filterops_lock);
1089 
1090 	return error;
1091 }
1092 
1093 static struct filterops *
1094 kqueue_fo_find(int filt)
1095 {
1096 
1097 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1098 		return NULL;
1099 
1100 	if (sysfilt_ops[~filt].for_nolock)
1101 		return sysfilt_ops[~filt].for_fop;
1102 
1103 	mtx_lock(&filterops_lock);
1104 	sysfilt_ops[~filt].for_refcnt++;
1105 	if (sysfilt_ops[~filt].for_fop == NULL)
1106 		sysfilt_ops[~filt].for_fop = &null_filtops;
1107 	mtx_unlock(&filterops_lock);
1108 
1109 	return sysfilt_ops[~filt].for_fop;
1110 }
1111 
1112 static void
1113 kqueue_fo_release(int filt)
1114 {
1115 
1116 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1117 		return;
1118 
1119 	if (sysfilt_ops[~filt].for_nolock)
1120 		return;
1121 
1122 	mtx_lock(&filterops_lock);
1123 	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
1124 	    ("filter object refcount not valid on release"));
1125 	sysfilt_ops[~filt].for_refcnt--;
1126 	mtx_unlock(&filterops_lock);
1127 }
1128 
1129 /*
1130  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
1131  * influence if memory allocation should wait.  Make sure it is 0 if you
1132  * hold any mutexes.
1133  */
1134 static int
1135 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
1136 {
1137 	struct filterops *fops;
1138 	struct file *fp;
1139 	struct knote *kn, *tkn;
1140 	cap_rights_t rights;
1141 	int error, filt, event;
1142 	int haskqglobal, filedesc_unlock;
1143 
1144 	if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
1145 		return (EINVAL);
1146 
1147 	fp = NULL;
1148 	kn = NULL;
1149 	error = 0;
1150 	haskqglobal = 0;
1151 	filedesc_unlock = 0;
1152 
1153 	filt = kev->filter;
1154 	fops = kqueue_fo_find(filt);
1155 	if (fops == NULL)
1156 		return EINVAL;
1157 
1158 	if (kev->flags & EV_ADD) {
1159 		/*
1160 		 * Prevent waiting with locks.  Non-sleepable
1161 		 * allocation failures are handled in the loop, only
1162 		 * if the spare knote appears to be actually required.
1163 		 */
1164 		tkn = knote_alloc(waitok);
1165 	} else {
1166 		tkn = NULL;
1167 	}
1168 
1169 findkn:
1170 	if (fops->f_isfd) {
1171 		KASSERT(td != NULL, ("td is NULL"));
1172 		error = fget(td, kev->ident,
1173 		    cap_rights_init(&rights, CAP_EVENT), &fp);
1174 		if (error)
1175 			goto done;
1176 
1177 		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
1178 		    kev->ident, 0) != 0) {
1179 			/* try again */
1180 			fdrop(fp, td);
1181 			fp = NULL;
1182 			error = kqueue_expand(kq, fops, kev->ident, waitok);
1183 			if (error)
1184 				goto done;
1185 			goto findkn;
1186 		}
1187 
1188 		if (fp->f_type == DTYPE_KQUEUE) {
1189 			/*
1190 			 * If we add some intelligence about what we are doing,
1191 			 * we should be able to support events on ourselves.
1192 			 * We need to know when we are doing this to prevent
1193 			 * getting both the knlist lock and the kq lock since
1194 			 * they are the same thing.
1195 			 */
1196 			if (fp->f_data == kq) {
1197 				error = EINVAL;
1198 				goto done;
1199 			}
1200 
1201 			/*
1202 			 * Pre-lock the filedesc before the global
1203 			 * lock mutex, see the comment in
1204 			 * kqueue_close().
1205 			 */
1206 			FILEDESC_XLOCK(td->td_proc->p_fd);
1207 			filedesc_unlock = 1;
1208 			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1209 		}
1210 
1211 		KQ_LOCK(kq);
1212 		if (kev->ident < kq->kq_knlistsize) {
1213 			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
1214 				if (kev->filter == kn->kn_filter)
1215 					break;
1216 		}
1217 	} else {
1218 		if ((kev->flags & EV_ADD) == EV_ADD)
1219 			kqueue_expand(kq, fops, kev->ident, waitok);
1220 
1221 		KQ_LOCK(kq);
1222 
1223 		/*
1224 		 * If possible, find an existing knote to use for this kevent.
1225 		 */
1226 		if (kev->filter == EVFILT_PROC &&
1227 		    (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
1228 			/* This is an internal creation of a process tracking
1229 			 * note. Don't attempt to coalesce this with an
1230 			 * existing note.
1231 			 */
1232 			;
1233 		} else if (kq->kq_knhashmask != 0) {
1234 			struct klist *list;
1235 
1236 			list = &kq->kq_knhash[
1237 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1238 			SLIST_FOREACH(kn, list, kn_link)
1239 				if (kev->ident == kn->kn_id &&
1240 				    kev->filter == kn->kn_filter)
1241 					break;
1242 		}
1243 	}
1244 
1245 	/* knote is in the process of changing, wait for it to stabilize. */
1246 	if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1247 		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1248 		if (filedesc_unlock) {
1249 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1250 			filedesc_unlock = 0;
1251 		}
1252 		kq->kq_state |= KQ_FLUXWAIT;
1253 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
1254 		if (fp != NULL) {
1255 			fdrop(fp, td);
1256 			fp = NULL;
1257 		}
1258 		goto findkn;
1259 	}
1260 
1261 	/*
1262 	 * kn now contains the matching knote, or NULL if no match
1263 	 */
1264 	if (kn == NULL) {
1265 		if (kev->flags & EV_ADD) {
1266 			kn = tkn;
1267 			tkn = NULL;
1268 			if (kn == NULL) {
1269 				KQ_UNLOCK(kq);
1270 				error = ENOMEM;
1271 				goto done;
1272 			}
1273 			kn->kn_fp = fp;
1274 			kn->kn_kq = kq;
1275 			kn->kn_fop = fops;
1276 			/*
1277 			 * apply reference counts to knote structure, and
1278 			 * do not release it at the end of this routine.
1279 			 */
1280 			fops = NULL;
1281 			fp = NULL;
1282 
1283 			kn->kn_sfflags = kev->fflags;
1284 			kn->kn_sdata = kev->data;
1285 			kev->fflags = 0;
1286 			kev->data = 0;
1287 			kn->kn_kevent = *kev;
1288 			kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
1289 			    EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
1290 			kn->kn_status = KN_INFLUX|KN_DETACHED;
1291 
1292 			error = knote_attach(kn, kq);
1293 			KQ_UNLOCK(kq);
1294 			if (error != 0) {
1295 				tkn = kn;
1296 				goto done;
1297 			}
1298 
1299 			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
1300 				knote_drop(kn, td);
1301 				goto done;
1302 			}
1303 			KN_LIST_LOCK(kn);
1304 			goto done_ev_add;
1305 		} else {
1306 			/* No matching knote and the EV_ADD flag is not set. */
1307 			KQ_UNLOCK(kq);
1308 			error = ENOENT;
1309 			goto done;
1310 		}
1311 	}
1312 
1313 	if (kev->flags & EV_DELETE) {
1314 		kn->kn_status |= KN_INFLUX;
1315 		KQ_UNLOCK(kq);
1316 		if (!(kn->kn_status & KN_DETACHED))
1317 			kn->kn_fop->f_detach(kn);
1318 		knote_drop(kn, td);
1319 		goto done;
1320 	}
1321 
1322 	if (kev->flags & EV_FORCEONESHOT) {
1323 		kn->kn_flags |= EV_ONESHOT;
1324 		KNOTE_ACTIVATE(kn, 1);
1325 	}
1326 
1327 	/*
1328 	 * The user may change some filter values after the initial EV_ADD,
1329 	 * but doing so will not reset any filter which has already been
1330 	 * triggered.
1331 	 */
1332 	kn->kn_status |= KN_INFLUX | KN_SCAN;
1333 	KQ_UNLOCK(kq);
1334 	KN_LIST_LOCK(kn);
1335 	kn->kn_kevent.udata = kev->udata;
1336 	if (!fops->f_isfd && fops->f_touch != NULL) {
1337 		fops->f_touch(kn, kev, EVENT_REGISTER);
1338 	} else {
1339 		kn->kn_sfflags = kev->fflags;
1340 		kn->kn_sdata = kev->data;
1341 	}
1342 
1343 	/*
1344 	 * We can get here with kn->kn_knlist == NULL.  This can happen when
1345 	 * the initial attach event decides that the event is "completed"
1346 	 * already.  i.e. filt_procattach is called on a zombie process.  It
1347 	 * will call filt_proc which will remove it from the list, and NULL
1348 	 * kn_knlist.
1349 	 */
1350 done_ev_add:
1351 	if ((kev->flags & EV_ENABLE) != 0)
1352 		kn->kn_status &= ~KN_DISABLED;
1353 	else if ((kev->flags & EV_DISABLE) != 0)
1354 		kn->kn_status |= KN_DISABLED;
1355 
1356 	if ((kn->kn_status & KN_DISABLED) == 0)
1357 		event = kn->kn_fop->f_event(kn, 0);
1358 	else
1359 		event = 0;
1360 
1361 	KQ_LOCK(kq);
1362 	if (event)
1363 		kn->kn_status |= KN_ACTIVE;
1364 	if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
1365 	    KN_ACTIVE)
1366 		knote_enqueue(kn);
1367 	kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
1368 	KN_LIST_UNLOCK(kn);
1369 	KQ_UNLOCK_FLUX(kq);
1370 
1371 done:
1372 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1373 	if (filedesc_unlock)
1374 		FILEDESC_XUNLOCK(td->td_proc->p_fd);
1375 	if (fp != NULL)
1376 		fdrop(fp, td);
1377 	knote_free(tkn);
1378 	if (fops != NULL)
1379 		kqueue_fo_release(filt);
1380 	return (error);
1381 }
1382 
1383 static int
1384 kqueue_acquire(struct file *fp, struct kqueue **kqp)
1385 {
1386 	int error;
1387 	struct kqueue *kq;
1388 
1389 	error = 0;
1390 
1391 	kq = fp->f_data;
1392 	if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1393 		return (EBADF);
1394 	*kqp = kq;
1395 	KQ_LOCK(kq);
1396 	if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1397 		KQ_UNLOCK(kq);
1398 		return (EBADF);
1399 	}
1400 	kq->kq_refcnt++;
1401 	KQ_UNLOCK(kq);
1402 
1403 	return error;
1404 }
1405 
1406 static void
1407 kqueue_release(struct kqueue *kq, int locked)
1408 {
1409 	if (locked)
1410 		KQ_OWNED(kq);
1411 	else
1412 		KQ_LOCK(kq);
1413 	kq->kq_refcnt--;
1414 	if (kq->kq_refcnt == 1)
1415 		wakeup(&kq->kq_refcnt);
1416 	if (!locked)
1417 		KQ_UNLOCK(kq);
1418 }
1419 
1420 static void
1421 kqueue_schedtask(struct kqueue *kq)
1422 {
1423 
1424 	KQ_OWNED(kq);
1425 	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1426 	    ("scheduling kqueue task while draining"));
1427 
1428 	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1429 		taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
1430 		kq->kq_state |= KQ_TASKSCHED;
1431 	}
1432 }
1433 
1434 /*
1435  * Expand the kq to make sure we have storage for fops/ident pair.
1436  *
1437  * Return 0 on success (or no work necessary), return errno on failure.
1438  *
1439  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
1440  * If kqueue_register is called from a non-fd context, there usually/should
1441  * be no locks held.
1442  */
1443 static int
1444 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1445 	int waitok)
1446 {
1447 	struct klist *list, *tmp_knhash, *to_free;
1448 	u_long tmp_knhashmask;
1449 	int size;
1450 	int fd;
1451 	int mflag = waitok ? M_WAITOK : M_NOWAIT;
1452 
1453 	KQ_NOTOWNED(kq);
1454 
1455 	to_free = NULL;
1456 	if (fops->f_isfd) {
1457 		fd = ident;
1458 		if (kq->kq_knlistsize <= fd) {
1459 			size = kq->kq_knlistsize;
1460 			while (size <= fd)
1461 				size += KQEXTENT;
1462 			list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
1463 			if (list == NULL)
1464 				return ENOMEM;
1465 			KQ_LOCK(kq);
1466 			if (kq->kq_knlistsize > fd) {
1467 				to_free = list;
1468 				list = NULL;
1469 			} else {
1470 				if (kq->kq_knlist != NULL) {
1471 					bcopy(kq->kq_knlist, list,
1472 					    kq->kq_knlistsize * sizeof(*list));
1473 					to_free = kq->kq_knlist;
1474 					kq->kq_knlist = NULL;
1475 				}
1476 				bzero((caddr_t)list +
1477 				    kq->kq_knlistsize * sizeof(*list),
1478 				    (size - kq->kq_knlistsize) * sizeof(*list));
1479 				kq->kq_knlistsize = size;
1480 				kq->kq_knlist = list;
1481 			}
1482 			KQ_UNLOCK(kq);
1483 		}
1484 	} else {
1485 		if (kq->kq_knhashmask == 0) {
1486 			tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1487 			    &tmp_knhashmask);
1488 			if (tmp_knhash == NULL)
1489 				return ENOMEM;
1490 			KQ_LOCK(kq);
1491 			if (kq->kq_knhashmask == 0) {
1492 				kq->kq_knhash = tmp_knhash;
1493 				kq->kq_knhashmask = tmp_knhashmask;
1494 			} else {
1495 				to_free = tmp_knhash;
1496 			}
1497 			KQ_UNLOCK(kq);
1498 		}
1499 	}
1500 	free(to_free, M_KQUEUE);
1501 
1502 	KQ_NOTOWNED(kq);
1503 	return 0;
1504 }
1505 
1506 static void
1507 kqueue_task(void *arg, int pending)
1508 {
1509 	struct kqueue *kq;
1510 	int haskqglobal;
1511 
1512 	haskqglobal = 0;
1513 	kq = arg;
1514 
1515 	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1516 	KQ_LOCK(kq);
1517 
1518 	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1519 
1520 	kq->kq_state &= ~KQ_TASKSCHED;
1521 	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1522 		wakeup(&kq->kq_state);
1523 	}
1524 	KQ_UNLOCK(kq);
1525 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1526 }
1527 
1528 /*
1529  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1530  * We treat KN_MARKER knotes as if they are INFLUX.
1531  */
1532 static int
1533 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1534     const struct timespec *tsp, struct kevent *keva, struct thread *td)
1535 {
1536 	struct kevent *kevp;
1537 	struct knote *kn, *marker;
1538 	sbintime_t asbt, rsbt;
1539 	int count, error, haskqglobal, influx, nkev, touch;
1540 
1541 	count = maxevents;
1542 	nkev = 0;
1543 	error = 0;
1544 	haskqglobal = 0;
1545 
1546 	if (maxevents == 0)
1547 		goto done_nl;
1548 
1549 	rsbt = 0;
1550 	if (tsp != NULL) {
1551 		if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
1552 		    tsp->tv_nsec >= 1000000000) {
1553 			error = EINVAL;
1554 			goto done_nl;
1555 		}
1556 		if (timespecisset(tsp)) {
1557 			if (tsp->tv_sec <= INT32_MAX) {
1558 				rsbt = tstosbt(*tsp);
1559 				if (TIMESEL(&asbt, rsbt))
1560 					asbt += tc_tick_sbt;
1561 				if (asbt <= SBT_MAX - rsbt)
1562 					asbt += rsbt;
1563 				else
1564 					asbt = 0;
1565 				rsbt >>= tc_precexp;
1566 			} else
1567 				asbt = 0;
1568 		} else
1569 			asbt = -1;
1570 	} else
1571 		asbt = 0;
1572 	marker = knote_alloc(1);
1573 	marker->kn_status = KN_MARKER;
1574 	KQ_LOCK(kq);
1575 
1576 retry:
1577 	kevp = keva;
1578 	if (kq->kq_count == 0) {
1579 		if (asbt == -1) {
1580 			error = EWOULDBLOCK;
1581 		} else {
1582 			kq->kq_state |= KQ_SLEEP;
1583 			error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
1584 			    "kqread", asbt, rsbt, C_ABSOLUTE);
1585 		}
1586 		if (error == 0)
1587 			goto retry;
1588 		/* don't restart after signals... */
1589 		if (error == ERESTART)
1590 			error = EINTR;
1591 		else if (error == EWOULDBLOCK)
1592 			error = 0;
1593 		goto done;
1594 	}
1595 
1596 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1597 	influx = 0;
1598 	while (count) {
1599 		KQ_OWNED(kq);
1600 		kn = TAILQ_FIRST(&kq->kq_head);
1601 
1602 		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1603 		    (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1604 			if (influx) {
1605 				influx = 0;
1606 				KQ_FLUX_WAKEUP(kq);
1607 			}
1608 			kq->kq_state |= KQ_FLUXWAIT;
1609 			error = msleep(kq, &kq->kq_lock, PSOCK,
1610 			    "kqflxwt", 0);
1611 			continue;
1612 		}
1613 
1614 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1615 		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1616 			kn->kn_status &= ~KN_QUEUED;
1617 			kq->kq_count--;
1618 			continue;
1619 		}
1620 		if (kn == marker) {
1621 			KQ_FLUX_WAKEUP(kq);
1622 			if (count == maxevents)
1623 				goto retry;
1624 			goto done;
1625 		}
1626 		KASSERT((kn->kn_status & KN_INFLUX) == 0,
1627 		    ("KN_INFLUX set when not suppose to be"));
1628 
1629 		if ((kn->kn_flags & EV_DROP) == EV_DROP) {
1630 			kn->kn_status &= ~KN_QUEUED;
1631 			kn->kn_status |= KN_INFLUX;
1632 			kq->kq_count--;
1633 			KQ_UNLOCK(kq);
1634 			/*
1635 			 * We don't need to lock the list since we've marked
1636 			 * it _INFLUX.
1637 			 */
1638 			if (!(kn->kn_status & KN_DETACHED))
1639 				kn->kn_fop->f_detach(kn);
1640 			knote_drop(kn, td);
1641 			KQ_LOCK(kq);
1642 			continue;
1643 		} else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1644 			kn->kn_status &= ~KN_QUEUED;
1645 			kn->kn_status |= KN_INFLUX;
1646 			kq->kq_count--;
1647 			KQ_UNLOCK(kq);
1648 			/*
1649 			 * We don't need to lock the list since we've marked
1650 			 * it _INFLUX.
1651 			 */
1652 			*kevp = kn->kn_kevent;
1653 			if (!(kn->kn_status & KN_DETACHED))
1654 				kn->kn_fop->f_detach(kn);
1655 			knote_drop(kn, td);
1656 			KQ_LOCK(kq);
1657 			kn = NULL;
1658 		} else {
1659 			kn->kn_status |= KN_INFLUX | KN_SCAN;
1660 			KQ_UNLOCK(kq);
1661 			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1662 				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1663 			KN_LIST_LOCK(kn);
1664 			if (kn->kn_fop->f_event(kn, 0) == 0) {
1665 				KQ_LOCK(kq);
1666 				KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1667 				kn->kn_status &=
1668 				    ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX |
1669 				    KN_SCAN);
1670 				kq->kq_count--;
1671 				KN_LIST_UNLOCK(kn);
1672 				influx = 1;
1673 				continue;
1674 			}
1675 			touch = (!kn->kn_fop->f_isfd &&
1676 			    kn->kn_fop->f_touch != NULL);
1677 			if (touch)
1678 				kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
1679 			else
1680 				*kevp = kn->kn_kevent;
1681 			KQ_LOCK(kq);
1682 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1683 			if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
1684 				/*
1685 				 * Manually clear knotes who weren't
1686 				 * 'touch'ed.
1687 				 */
1688 				if (touch == 0 && kn->kn_flags & EV_CLEAR) {
1689 					kn->kn_data = 0;
1690 					kn->kn_fflags = 0;
1691 				}
1692 				if (kn->kn_flags & EV_DISPATCH)
1693 					kn->kn_status |= KN_DISABLED;
1694 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1695 				kq->kq_count--;
1696 			} else
1697 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1698 
1699 			kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
1700 			KN_LIST_UNLOCK(kn);
1701 			influx = 1;
1702 		}
1703 
1704 		/* we are returning a copy to the user */
1705 		kevp++;
1706 		nkev++;
1707 		count--;
1708 
1709 		if (nkev == KQ_NEVENTS) {
1710 			influx = 0;
1711 			KQ_UNLOCK_FLUX(kq);
1712 			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1713 			nkev = 0;
1714 			kevp = keva;
1715 			KQ_LOCK(kq);
1716 			if (error)
1717 				break;
1718 		}
1719 	}
1720 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1721 done:
1722 	KQ_OWNED(kq);
1723 	KQ_UNLOCK_FLUX(kq);
1724 	knote_free(marker);
1725 done_nl:
1726 	KQ_NOTOWNED(kq);
1727 	if (nkev != 0)
1728 		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1729 	td->td_retval[0] = maxevents - count;
1730 	return (error);
1731 }
1732 
1733 /*ARGSUSED*/
1734 static int
1735 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
1736 	struct ucred *active_cred, struct thread *td)
1737 {
1738 	/*
1739 	 * Enabling sigio causes two major problems:
1740 	 * 1) infinite recursion:
1741 	 * Synopsys: kevent is being used to track signals and have FIOASYNC
1742 	 * set.  On receipt of a signal this will cause a kqueue to recurse
1743 	 * into itself over and over.  Sending the sigio causes the kqueue
1744 	 * to become ready, which in turn posts sigio again, forever.
1745 	 * Solution: this can be solved by setting a flag in the kqueue that
1746 	 * we have a SIGIO in progress.
1747 	 * 2) locking problems:
1748 	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
1749 	 * us above the proc and pgrp locks.
1750 	 * Solution: Post a signal using an async mechanism, being sure to
1751 	 * record a generation count in the delivery so that we do not deliver
1752 	 * a signal to the wrong process.
1753 	 *
1754 	 * Note, these two mechanisms are somewhat mutually exclusive!
1755 	 */
1756 #if 0
1757 	struct kqueue *kq;
1758 
1759 	kq = fp->f_data;
1760 	switch (cmd) {
1761 	case FIOASYNC:
1762 		if (*(int *)data) {
1763 			kq->kq_state |= KQ_ASYNC;
1764 		} else {
1765 			kq->kq_state &= ~KQ_ASYNC;
1766 		}
1767 		return (0);
1768 
1769 	case FIOSETOWN:
1770 		return (fsetown(*(int *)data, &kq->kq_sigio));
1771 
1772 	case FIOGETOWN:
1773 		*(int *)data = fgetown(&kq->kq_sigio);
1774 		return (0);
1775 	}
1776 #endif
1777 
1778 	return (ENOTTY);
1779 }
1780 
1781 /*ARGSUSED*/
1782 static int
1783 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
1784 	struct thread *td)
1785 {
1786 	struct kqueue *kq;
1787 	int revents = 0;
1788 	int error;
1789 
1790 	if ((error = kqueue_acquire(fp, &kq)))
1791 		return POLLERR;
1792 
1793 	KQ_LOCK(kq);
1794 	if (events & (POLLIN | POLLRDNORM)) {
1795 		if (kq->kq_count) {
1796 			revents |= events & (POLLIN | POLLRDNORM);
1797 		} else {
1798 			selrecord(td, &kq->kq_sel);
1799 			if (SEL_WAITING(&kq->kq_sel))
1800 				kq->kq_state |= KQ_SEL;
1801 		}
1802 	}
1803 	kqueue_release(kq, 1);
1804 	KQ_UNLOCK(kq);
1805 	return (revents);
1806 }
1807 
1808 /*ARGSUSED*/
1809 static int
1810 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1811 	struct thread *td)
1812 {
1813 
1814 	bzero((void *)st, sizeof *st);
1815 	/*
1816 	 * We no longer return kq_count because the unlocked value is useless.
1817 	 * If you spent all this time getting the count, why not spend your
1818 	 * syscall better by calling kevent?
1819 	 *
1820 	 * XXX - This is needed for libc_r.
1821 	 */
1822 	st->st_mode = S_IFIFO;
1823 	return (0);
1824 }
1825 
1826 static void
1827 kqueue_drain(struct kqueue *kq, struct thread *td)
1828 {
1829 	struct knote *kn;
1830 	int i;
1831 
1832 	KQ_LOCK(kq);
1833 
1834 	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
1835 	    ("kqueue already closing"));
1836 	kq->kq_state |= KQ_CLOSING;
1837 	if (kq->kq_refcnt > 1)
1838 		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
1839 
1840 	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
1841 
1842 	KASSERT(knlist_empty(&kq->kq_sel.si_note),
1843 	    ("kqueue's knlist not empty"));
1844 
1845 	for (i = 0; i < kq->kq_knlistsize; i++) {
1846 		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
1847 			if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1848 				kq->kq_state |= KQ_FLUXWAIT;
1849 				msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
1850 				continue;
1851 			}
1852 			kn->kn_status |= KN_INFLUX;
1853 			KQ_UNLOCK(kq);
1854 			if (!(kn->kn_status & KN_DETACHED))
1855 				kn->kn_fop->f_detach(kn);
1856 			knote_drop(kn, td);
1857 			KQ_LOCK(kq);
1858 		}
1859 	}
1860 	if (kq->kq_knhashmask != 0) {
1861 		for (i = 0; i <= kq->kq_knhashmask; i++) {
1862 			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
1863 				if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1864 					kq->kq_state |= KQ_FLUXWAIT;
1865 					msleep(kq, &kq->kq_lock, PSOCK,
1866 					       "kqclo2", 0);
1867 					continue;
1868 				}
1869 				kn->kn_status |= KN_INFLUX;
1870 				KQ_UNLOCK(kq);
1871 				if (!(kn->kn_status & KN_DETACHED))
1872 					kn->kn_fop->f_detach(kn);
1873 				knote_drop(kn, td);
1874 				KQ_LOCK(kq);
1875 			}
1876 		}
1877 	}
1878 
1879 	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
1880 		kq->kq_state |= KQ_TASKDRAIN;
1881 		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
1882 	}
1883 
1884 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1885 		selwakeuppri(&kq->kq_sel, PSOCK);
1886 		if (!SEL_WAITING(&kq->kq_sel))
1887 			kq->kq_state &= ~KQ_SEL;
1888 	}
1889 
1890 	KQ_UNLOCK(kq);
1891 }
1892 
1893 static void
1894 kqueue_destroy(struct kqueue *kq)
1895 {
1896 
1897 	KASSERT(kq->kq_fdp == NULL,
1898 	    ("kqueue still attached to a file descriptor"));
1899 	seldrain(&kq->kq_sel);
1900 	knlist_destroy(&kq->kq_sel.si_note);
1901 	mtx_destroy(&kq->kq_lock);
1902 
1903 	if (kq->kq_knhash != NULL)
1904 		free(kq->kq_knhash, M_KQUEUE);
1905 	if (kq->kq_knlist != NULL)
1906 		free(kq->kq_knlist, M_KQUEUE);
1907 
1908 	funsetown(&kq->kq_sigio);
1909 }
1910 
1911 /*ARGSUSED*/
1912 static int
1913 kqueue_close(struct file *fp, struct thread *td)
1914 {
1915 	struct kqueue *kq = fp->f_data;
1916 	struct filedesc *fdp;
1917 	int error;
1918 	int filedesc_unlock;
1919 
1920 	if ((error = kqueue_acquire(fp, &kq)))
1921 		return error;
1922 	kqueue_drain(kq, td);
1923 
1924 	/*
1925 	 * We could be called due to the knote_drop() doing fdrop(),
1926 	 * called from kqueue_register().  In this case the global
1927 	 * lock is owned, and filedesc sx is locked before, to not
1928 	 * take the sleepable lock after non-sleepable.
1929 	 */
1930 	fdp = kq->kq_fdp;
1931 	kq->kq_fdp = NULL;
1932 	if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
1933 		FILEDESC_XLOCK(fdp);
1934 		filedesc_unlock = 1;
1935 	} else
1936 		filedesc_unlock = 0;
1937 	TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
1938 	if (filedesc_unlock)
1939 		FILEDESC_XUNLOCK(fdp);
1940 
1941 	kqueue_destroy(kq);
1942 	chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
1943 	crfree(kq->kq_cred);
1944 	free(kq, M_KQUEUE);
1945 	fp->f_data = NULL;
1946 
1947 	return (0);
1948 }
1949 
1950 static int
1951 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1952 {
1953 
1954 	kif->kf_type = KF_TYPE_KQUEUE;
1955 	return (0);
1956 }
1957 
1958 static void
1959 kqueue_wakeup(struct kqueue *kq)
1960 {
1961 	KQ_OWNED(kq);
1962 
1963 	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
1964 		kq->kq_state &= ~KQ_SLEEP;
1965 		wakeup(kq);
1966 	}
1967 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1968 		selwakeuppri(&kq->kq_sel, PSOCK);
1969 		if (!SEL_WAITING(&kq->kq_sel))
1970 			kq->kq_state &= ~KQ_SEL;
1971 	}
1972 	if (!knlist_empty(&kq->kq_sel.si_note))
1973 		kqueue_schedtask(kq);
1974 	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
1975 		pgsigio(&kq->kq_sigio, SIGIO, 0);
1976 	}
1977 }
1978 
1979 /*
1980  * Walk down a list of knotes, activating them if their event has triggered.
1981  *
1982  * There is a possibility to optimize in the case of one kq watching another.
1983  * Instead of scheduling a task to wake it up, you could pass enough state
1984  * down the chain to make up the parent kqueue.  Make this code functional
1985  * first.
1986  */
1987 void
1988 knote(struct knlist *list, long hint, int lockflags)
1989 {
1990 	struct kqueue *kq;
1991 	struct knote *kn, *tkn;
1992 	int error;
1993 
1994 	if (list == NULL)
1995 		return;
1996 
1997 	KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
1998 
1999 	if ((lockflags & KNF_LISTLOCKED) == 0)
2000 		list->kl_lock(list->kl_lockarg);
2001 
2002 	/*
2003 	 * If we unlock the list lock (and set KN_INFLUX), we can
2004 	 * eliminate the kqueue scheduling, but this will introduce
2005 	 * four lock/unlock's for each knote to test.  Also, marker
2006 	 * would be needed to keep iteration position, since filters
2007 	 * or other threads could remove events.
2008 	 */
2009 	SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
2010 		kq = kn->kn_kq;
2011 		KQ_LOCK(kq);
2012 		if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
2013 			/*
2014 			 * Do not process the influx notes, except for
2015 			 * the influx coming from the kq unlock in the
2016 			 * kqueue_scan().  In the later case, we do
2017 			 * not interfere with the scan, since the code
2018 			 * fragment in kqueue_scan() locks the knlist,
2019 			 * and cannot proceed until we finished.
2020 			 */
2021 			KQ_UNLOCK(kq);
2022 		} else if ((lockflags & KNF_NOKQLOCK) != 0) {
2023 			kn->kn_status |= KN_INFLUX;
2024 			KQ_UNLOCK(kq);
2025 			error = kn->kn_fop->f_event(kn, hint);
2026 			KQ_LOCK(kq);
2027 			kn->kn_status &= ~KN_INFLUX;
2028 			if (error)
2029 				KNOTE_ACTIVATE(kn, 1);
2030 			KQ_UNLOCK_FLUX(kq);
2031 		} else {
2032 			kn->kn_status |= KN_HASKQLOCK;
2033 			if (kn->kn_fop->f_event(kn, hint))
2034 				KNOTE_ACTIVATE(kn, 1);
2035 			kn->kn_status &= ~KN_HASKQLOCK;
2036 			KQ_UNLOCK(kq);
2037 		}
2038 	}
2039 	if ((lockflags & KNF_LISTLOCKED) == 0)
2040 		list->kl_unlock(list->kl_lockarg);
2041 }
2042 
2043 /*
2044  * add a knote to a knlist
2045  */
2046 void
2047 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
2048 {
2049 	KNL_ASSERT_LOCK(knl, islocked);
2050 	KQ_NOTOWNED(kn->kn_kq);
2051 	KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
2052 	    (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
2053 	if (!islocked)
2054 		knl->kl_lock(knl->kl_lockarg);
2055 	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
2056 	if (!islocked)
2057 		knl->kl_unlock(knl->kl_lockarg);
2058 	KQ_LOCK(kn->kn_kq);
2059 	kn->kn_knlist = knl;
2060 	kn->kn_status &= ~KN_DETACHED;
2061 	KQ_UNLOCK(kn->kn_kq);
2062 }
2063 
2064 static void
2065 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
2066 {
2067 	KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
2068 	KNL_ASSERT_LOCK(knl, knlislocked);
2069 	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
2070 	if (!kqislocked)
2071 		KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
2072     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
2073 	if (!knlislocked)
2074 		knl->kl_lock(knl->kl_lockarg);
2075 	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
2076 	kn->kn_knlist = NULL;
2077 	if (!knlislocked)
2078 		knl->kl_unlock(knl->kl_lockarg);
2079 	if (!kqislocked)
2080 		KQ_LOCK(kn->kn_kq);
2081 	kn->kn_status |= KN_DETACHED;
2082 	if (!kqislocked)
2083 		KQ_UNLOCK(kn->kn_kq);
2084 }
2085 
2086 /*
2087  * remove knote from the specified knlist
2088  */
2089 void
2090 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
2091 {
2092 
2093 	knlist_remove_kq(knl, kn, islocked, 0);
2094 }
2095 
2096 /*
2097  * remove knote from the specified knlist while in f_event handler.
2098  */
2099 void
2100 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
2101 {
2102 
2103 	knlist_remove_kq(knl, kn, 1,
2104 	    (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
2105 }
2106 
2107 int
2108 knlist_empty(struct knlist *knl)
2109 {
2110 
2111 	KNL_ASSERT_LOCKED(knl);
2112 	return SLIST_EMPTY(&knl->kl_list);
2113 }
2114 
2115 static struct mtx	knlist_lock;
2116 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
2117 	MTX_DEF);
2118 static void knlist_mtx_lock(void *arg);
2119 static void knlist_mtx_unlock(void *arg);
2120 
2121 static void
2122 knlist_mtx_lock(void *arg)
2123 {
2124 
2125 	mtx_lock((struct mtx *)arg);
2126 }
2127 
2128 static void
2129 knlist_mtx_unlock(void *arg)
2130 {
2131 
2132 	mtx_unlock((struct mtx *)arg);
2133 }
2134 
2135 static void
2136 knlist_mtx_assert_locked(void *arg)
2137 {
2138 
2139 	mtx_assert((struct mtx *)arg, MA_OWNED);
2140 }
2141 
2142 static void
2143 knlist_mtx_assert_unlocked(void *arg)
2144 {
2145 
2146 	mtx_assert((struct mtx *)arg, MA_NOTOWNED);
2147 }
2148 
2149 static void
2150 knlist_rw_rlock(void *arg)
2151 {
2152 
2153 	rw_rlock((struct rwlock *)arg);
2154 }
2155 
2156 static void
2157 knlist_rw_runlock(void *arg)
2158 {
2159 
2160 	rw_runlock((struct rwlock *)arg);
2161 }
2162 
2163 static void
2164 knlist_rw_assert_locked(void *arg)
2165 {
2166 
2167 	rw_assert((struct rwlock *)arg, RA_LOCKED);
2168 }
2169 
2170 static void
2171 knlist_rw_assert_unlocked(void *arg)
2172 {
2173 
2174 	rw_assert((struct rwlock *)arg, RA_UNLOCKED);
2175 }
2176 
2177 void
2178 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
2179     void (*kl_unlock)(void *),
2180     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
2181 {
2182 
2183 	if (lock == NULL)
2184 		knl->kl_lockarg = &knlist_lock;
2185 	else
2186 		knl->kl_lockarg = lock;
2187 
2188 	if (kl_lock == NULL)
2189 		knl->kl_lock = knlist_mtx_lock;
2190 	else
2191 		knl->kl_lock = kl_lock;
2192 	if (kl_unlock == NULL)
2193 		knl->kl_unlock = knlist_mtx_unlock;
2194 	else
2195 		knl->kl_unlock = kl_unlock;
2196 	if (kl_assert_locked == NULL)
2197 		knl->kl_assert_locked = knlist_mtx_assert_locked;
2198 	else
2199 		knl->kl_assert_locked = kl_assert_locked;
2200 	if (kl_assert_unlocked == NULL)
2201 		knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
2202 	else
2203 		knl->kl_assert_unlocked = kl_assert_unlocked;
2204 
2205 	SLIST_INIT(&knl->kl_list);
2206 }
2207 
2208 void
2209 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
2210 {
2211 
2212 	knlist_init(knl, lock, NULL, NULL, NULL, NULL);
2213 }
2214 
2215 void
2216 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
2217 {
2218 
2219 	knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
2220 	    knlist_rw_assert_locked, knlist_rw_assert_unlocked);
2221 }
2222 
2223 void
2224 knlist_destroy(struct knlist *knl)
2225 {
2226 
2227 #ifdef INVARIANTS
2228 	/*
2229 	 * if we run across this error, we need to find the offending
2230 	 * driver and have it call knlist_clear or knlist_delete.
2231 	 */
2232 	if (!SLIST_EMPTY(&knl->kl_list))
2233 		printf("WARNING: destroying knlist w/ knotes on it!\n");
2234 #endif
2235 
2236 	knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
2237 	SLIST_INIT(&knl->kl_list);
2238 }
2239 
2240 /*
2241  * Even if we are locked, we may need to drop the lock to allow any influx
2242  * knotes time to "settle".
2243  */
2244 void
2245 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
2246 {
2247 	struct knote *kn, *kn2;
2248 	struct kqueue *kq;
2249 
2250 	if (islocked)
2251 		KNL_ASSERT_LOCKED(knl);
2252 	else {
2253 		KNL_ASSERT_UNLOCKED(knl);
2254 again:		/* need to reacquire lock since we have dropped it */
2255 		knl->kl_lock(knl->kl_lockarg);
2256 	}
2257 
2258 	SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
2259 		kq = kn->kn_kq;
2260 		KQ_LOCK(kq);
2261 		if ((kn->kn_status & KN_INFLUX)) {
2262 			KQ_UNLOCK(kq);
2263 			continue;
2264 		}
2265 		knlist_remove_kq(knl, kn, 1, 1);
2266 		if (killkn) {
2267 			kn->kn_status |= KN_INFLUX | KN_DETACHED;
2268 			KQ_UNLOCK(kq);
2269 			knote_drop(kn, td);
2270 		} else {
2271 			/* Make sure cleared knotes disappear soon */
2272 			kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2273 			KQ_UNLOCK(kq);
2274 		}
2275 		kq = NULL;
2276 	}
2277 
2278 	if (!SLIST_EMPTY(&knl->kl_list)) {
2279 		/* there are still KN_INFLUX remaining */
2280 		kn = SLIST_FIRST(&knl->kl_list);
2281 		kq = kn->kn_kq;
2282 		KQ_LOCK(kq);
2283 		KASSERT(kn->kn_status & KN_INFLUX,
2284 		    ("knote removed w/o list lock"));
2285 		knl->kl_unlock(knl->kl_lockarg);
2286 		kq->kq_state |= KQ_FLUXWAIT;
2287 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
2288 		kq = NULL;
2289 		goto again;
2290 	}
2291 
2292 	if (islocked)
2293 		KNL_ASSERT_LOCKED(knl);
2294 	else {
2295 		knl->kl_unlock(knl->kl_lockarg);
2296 		KNL_ASSERT_UNLOCKED(knl);
2297 	}
2298 }
2299 
2300 /*
2301  * Remove all knotes referencing a specified fd must be called with FILEDESC
2302  * lock.  This prevents a race where a new fd comes along and occupies the
2303  * entry and we attach a knote to the fd.
2304  */
2305 void
2306 knote_fdclose(struct thread *td, int fd)
2307 {
2308 	struct filedesc *fdp = td->td_proc->p_fd;
2309 	struct kqueue *kq;
2310 	struct knote *kn;
2311 	int influx;
2312 
2313 	FILEDESC_XLOCK_ASSERT(fdp);
2314 
2315 	/*
2316 	 * We shouldn't have to worry about new kevents appearing on fd
2317 	 * since filedesc is locked.
2318 	 */
2319 	TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
2320 		KQ_LOCK(kq);
2321 
2322 again:
2323 		influx = 0;
2324 		while (kq->kq_knlistsize > fd &&
2325 		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
2326 			if (kn->kn_status & KN_INFLUX) {
2327 				/* someone else might be waiting on our knote */
2328 				if (influx)
2329 					wakeup(kq);
2330 				kq->kq_state |= KQ_FLUXWAIT;
2331 				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2332 				goto again;
2333 			}
2334 			kn->kn_status |= KN_INFLUX;
2335 			KQ_UNLOCK(kq);
2336 			if (!(kn->kn_status & KN_DETACHED))
2337 				kn->kn_fop->f_detach(kn);
2338 			knote_drop(kn, td);
2339 			influx = 1;
2340 			KQ_LOCK(kq);
2341 		}
2342 		KQ_UNLOCK_FLUX(kq);
2343 	}
2344 }
2345 
2346 static int
2347 knote_attach(struct knote *kn, struct kqueue *kq)
2348 {
2349 	struct klist *list;
2350 
2351 	KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
2352 	KQ_OWNED(kq);
2353 
2354 	if (kn->kn_fop->f_isfd) {
2355 		if (kn->kn_id >= kq->kq_knlistsize)
2356 			return ENOMEM;
2357 		list = &kq->kq_knlist[kn->kn_id];
2358 	} else {
2359 		if (kq->kq_knhash == NULL)
2360 			return ENOMEM;
2361 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2362 	}
2363 
2364 	SLIST_INSERT_HEAD(list, kn, kn_link);
2365 
2366 	return 0;
2367 }
2368 
2369 /*
2370  * knote must already have been detached using the f_detach method.
2371  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
2372  * to prevent other removal.
2373  */
2374 static void
2375 knote_drop(struct knote *kn, struct thread *td)
2376 {
2377 	struct kqueue *kq;
2378 	struct klist *list;
2379 
2380 	kq = kn->kn_kq;
2381 
2382 	KQ_NOTOWNED(kq);
2383 	KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
2384 	    ("knote_drop called without KN_INFLUX set in kn_status"));
2385 
2386 	KQ_LOCK(kq);
2387 	if (kn->kn_fop->f_isfd)
2388 		list = &kq->kq_knlist[kn->kn_id];
2389 	else
2390 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2391 
2392 	if (!SLIST_EMPTY(list))
2393 		SLIST_REMOVE(list, kn, knote, kn_link);
2394 	if (kn->kn_status & KN_QUEUED)
2395 		knote_dequeue(kn);
2396 	KQ_UNLOCK_FLUX(kq);
2397 
2398 	if (kn->kn_fop->f_isfd) {
2399 		fdrop(kn->kn_fp, td);
2400 		kn->kn_fp = NULL;
2401 	}
2402 	kqueue_fo_release(kn->kn_kevent.filter);
2403 	kn->kn_fop = NULL;
2404 	knote_free(kn);
2405 }
2406 
2407 static void
2408 knote_enqueue(struct knote *kn)
2409 {
2410 	struct kqueue *kq = kn->kn_kq;
2411 
2412 	KQ_OWNED(kn->kn_kq);
2413 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2414 
2415 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2416 	kn->kn_status |= KN_QUEUED;
2417 	kq->kq_count++;
2418 	kqueue_wakeup(kq);
2419 }
2420 
2421 static void
2422 knote_dequeue(struct knote *kn)
2423 {
2424 	struct kqueue *kq = kn->kn_kq;
2425 
2426 	KQ_OWNED(kn->kn_kq);
2427 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2428 
2429 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2430 	kn->kn_status &= ~KN_QUEUED;
2431 	kq->kq_count--;
2432 }
2433 
2434 static void
2435 knote_init(void)
2436 {
2437 
2438 	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
2439 	    NULL, NULL, UMA_ALIGN_PTR, 0);
2440 }
2441 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
2442 
2443 static struct knote *
2444 knote_alloc(int waitok)
2445 {
2446 
2447 	return (uma_zalloc(knote_zone, (waitok ? M_WAITOK : M_NOWAIT) |
2448 	    M_ZERO));
2449 }
2450 
2451 static void
2452 knote_free(struct knote *kn)
2453 {
2454 
2455 	uma_zfree(knote_zone, kn);
2456 }
2457 
2458 /*
2459  * Register the kev w/ the kq specified by fd.
2460  */
2461 int
2462 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
2463 {
2464 	struct kqueue *kq;
2465 	struct file *fp;
2466 	cap_rights_t rights;
2467 	int error;
2468 
2469 	error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp);
2470 	if (error != 0)
2471 		return (error);
2472 	if ((error = kqueue_acquire(fp, &kq)) != 0)
2473 		goto noacquire;
2474 
2475 	error = kqueue_register(kq, kev, td, waitok);
2476 
2477 	kqueue_release(kq, 0);
2478 
2479 noacquire:
2480 	fdrop(fp, td);
2481 
2482 	return error;
2483 }
2484