xref: /freebsd/sys/kern/kern_event.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
4  * Copyright (c) 2009 Apple, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_ktrace.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/capability.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/rwlock.h>
41 #include <sys/proc.h>
42 #include <sys/malloc.h>
43 #include <sys/unistd.h>
44 #include <sys/file.h>
45 #include <sys/filedesc.h>
46 #include <sys/filio.h>
47 #include <sys/fcntl.h>
48 #include <sys/kthread.h>
49 #include <sys/selinfo.h>
50 #include <sys/queue.h>
51 #include <sys/event.h>
52 #include <sys/eventvar.h>
53 #include <sys/poll.h>
54 #include <sys/protosw.h>
55 #include <sys/sigio.h>
56 #include <sys/signalvar.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysproto.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/taskqueue.h>
64 #include <sys/uio.h>
65 #ifdef KTRACE
66 #include <sys/ktrace.h>
67 #endif
68 
69 #include <vm/uma.h>
70 
71 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
72 
73 /*
74  * This lock is used if multiple kq locks are required.  This possibly
75  * should be made into a per proc lock.
76  */
77 static struct mtx	kq_global;
78 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
79 #define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
80 	if (!haslck)				\
81 		mtx_lock(lck);			\
82 	haslck = 1;				\
83 } while (0)
84 #define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
85 	if (haslck)				\
86 		mtx_unlock(lck);			\
87 	haslck = 0;				\
88 } while (0)
89 
90 TASKQUEUE_DEFINE_THREAD(kqueue);
91 
92 static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
93 static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
94 static int	kqueue_register(struct kqueue *kq, struct kevent *kev,
95 		    struct thread *td, int waitok);
96 static int	kqueue_acquire(struct file *fp, struct kqueue **kqp);
97 static void	kqueue_release(struct kqueue *kq, int locked);
98 static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
99 		    uintptr_t ident, int waitok);
100 static void	kqueue_task(void *arg, int pending);
101 static int	kqueue_scan(struct kqueue *kq, int maxevents,
102 		    struct kevent_copyops *k_ops,
103 		    const struct timespec *timeout,
104 		    struct kevent *keva, struct thread *td);
105 static void 	kqueue_wakeup(struct kqueue *kq);
106 static struct filterops *kqueue_fo_find(int filt);
107 static void	kqueue_fo_release(int filt);
108 
109 static fo_rdwr_t	kqueue_read;
110 static fo_rdwr_t	kqueue_write;
111 static fo_truncate_t	kqueue_truncate;
112 static fo_ioctl_t	kqueue_ioctl;
113 static fo_poll_t	kqueue_poll;
114 static fo_kqfilter_t	kqueue_kqfilter;
115 static fo_stat_t	kqueue_stat;
116 static fo_close_t	kqueue_close;
117 
118 static struct fileops kqueueops = {
119 	.fo_read = kqueue_read,
120 	.fo_write = kqueue_write,
121 	.fo_truncate = kqueue_truncate,
122 	.fo_ioctl = kqueue_ioctl,
123 	.fo_poll = kqueue_poll,
124 	.fo_kqfilter = kqueue_kqfilter,
125 	.fo_stat = kqueue_stat,
126 	.fo_close = kqueue_close,
127 	.fo_chmod = invfo_chmod,
128 	.fo_chown = invfo_chown,
129 };
130 
131 static int 	knote_attach(struct knote *kn, struct kqueue *kq);
132 static void 	knote_drop(struct knote *kn, struct thread *td);
133 static void 	knote_enqueue(struct knote *kn);
134 static void 	knote_dequeue(struct knote *kn);
135 static void 	knote_init(void);
136 static struct 	knote *knote_alloc(int waitok);
137 static void 	knote_free(struct knote *kn);
138 
139 static void	filt_kqdetach(struct knote *kn);
140 static int	filt_kqueue(struct knote *kn, long hint);
141 static int	filt_procattach(struct knote *kn);
142 static void	filt_procdetach(struct knote *kn);
143 static int	filt_proc(struct knote *kn, long hint);
144 static int	filt_fileattach(struct knote *kn);
145 static void	filt_timerexpire(void *knx);
146 static int	filt_timerattach(struct knote *kn);
147 static void	filt_timerdetach(struct knote *kn);
148 static int	filt_timer(struct knote *kn, long hint);
149 static int	filt_userattach(struct knote *kn);
150 static void	filt_userdetach(struct knote *kn);
151 static int	filt_user(struct knote *kn, long hint);
152 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
153 		    u_long type);
154 
155 static struct filterops file_filtops = {
156 	.f_isfd = 1,
157 	.f_attach = filt_fileattach,
158 };
159 static struct filterops kqread_filtops = {
160 	.f_isfd = 1,
161 	.f_detach = filt_kqdetach,
162 	.f_event = filt_kqueue,
163 };
164 /* XXX - move to kern_proc.c?  */
165 static struct filterops proc_filtops = {
166 	.f_isfd = 0,
167 	.f_attach = filt_procattach,
168 	.f_detach = filt_procdetach,
169 	.f_event = filt_proc,
170 };
171 static struct filterops timer_filtops = {
172 	.f_isfd = 0,
173 	.f_attach = filt_timerattach,
174 	.f_detach = filt_timerdetach,
175 	.f_event = filt_timer,
176 };
177 static struct filterops user_filtops = {
178 	.f_attach = filt_userattach,
179 	.f_detach = filt_userdetach,
180 	.f_event = filt_user,
181 	.f_touch = filt_usertouch,
182 };
183 
184 static uma_zone_t	knote_zone;
185 static int 		kq_ncallouts = 0;
186 static int 		kq_calloutmax = (4 * 1024);
187 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
188     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
189 
190 /* XXX - ensure not KN_INFLUX?? */
191 #define KNOTE_ACTIVATE(kn, islock) do { 				\
192 	if ((islock))							\
193 		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
194 	else								\
195 		KQ_LOCK((kn)->kn_kq);					\
196 	(kn)->kn_status |= KN_ACTIVE;					\
197 	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
198 		knote_enqueue((kn));					\
199 	if (!(islock))							\
200 		KQ_UNLOCK((kn)->kn_kq);					\
201 } while(0)
202 #define KQ_LOCK(kq) do {						\
203 	mtx_lock(&(kq)->kq_lock);					\
204 } while (0)
205 #define KQ_FLUX_WAKEUP(kq) do {						\
206 	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
207 		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
208 		wakeup((kq));						\
209 	}								\
210 } while (0)
211 #define KQ_UNLOCK_FLUX(kq) do {						\
212 	KQ_FLUX_WAKEUP(kq);						\
213 	mtx_unlock(&(kq)->kq_lock);					\
214 } while (0)
215 #define KQ_UNLOCK(kq) do {						\
216 	mtx_unlock(&(kq)->kq_lock);					\
217 } while (0)
218 #define KQ_OWNED(kq) do {						\
219 	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
220 } while (0)
221 #define KQ_NOTOWNED(kq) do {						\
222 	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
223 } while (0)
224 #define KN_LIST_LOCK(kn) do {						\
225 	if (kn->kn_knlist != NULL)					\
226 		kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);	\
227 } while (0)
228 #define KN_LIST_UNLOCK(kn) do {						\
229 	if (kn->kn_knlist != NULL) 					\
230 		kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);	\
231 } while (0)
232 #define	KNL_ASSERT_LOCK(knl, islocked) do {				\
233 	if (islocked)							\
234 		KNL_ASSERT_LOCKED(knl);				\
235 	else								\
236 		KNL_ASSERT_UNLOCKED(knl);				\
237 } while (0)
238 #ifdef INVARIANTS
239 #define	KNL_ASSERT_LOCKED(knl) do {					\
240 	knl->kl_assert_locked((knl)->kl_lockarg);			\
241 } while (0)
242 #define	KNL_ASSERT_UNLOCKED(knl) do {					\
243 	knl->kl_assert_unlocked((knl)->kl_lockarg);			\
244 } while (0)
245 #else /* !INVARIANTS */
246 #define	KNL_ASSERT_LOCKED(knl) do {} while(0)
247 #define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
248 #endif /* INVARIANTS */
249 
250 #define	KN_HASHSIZE		64		/* XXX should be tunable */
251 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
252 
253 static int
254 filt_nullattach(struct knote *kn)
255 {
256 
257 	return (ENXIO);
258 };
259 
260 struct filterops null_filtops = {
261 	.f_isfd = 0,
262 	.f_attach = filt_nullattach,
263 };
264 
265 /* XXX - make SYSINIT to add these, and move into respective modules. */
266 extern struct filterops sig_filtops;
267 extern struct filterops fs_filtops;
268 
269 /*
270  * Table for for all system-defined filters.
271  */
272 static struct mtx	filterops_lock;
273 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
274 	MTX_DEF);
275 static struct {
276 	struct filterops *for_fop;
277 	int for_refcnt;
278 } sysfilt_ops[EVFILT_SYSCOUNT] = {
279 	{ &file_filtops },			/* EVFILT_READ */
280 	{ &file_filtops },			/* EVFILT_WRITE */
281 	{ &null_filtops },			/* EVFILT_AIO */
282 	{ &file_filtops },			/* EVFILT_VNODE */
283 	{ &proc_filtops },			/* EVFILT_PROC */
284 	{ &sig_filtops },			/* EVFILT_SIGNAL */
285 	{ &timer_filtops },			/* EVFILT_TIMER */
286 	{ &null_filtops },			/* former EVFILT_NETDEV */
287 	{ &fs_filtops },			/* EVFILT_FS */
288 	{ &null_filtops },			/* EVFILT_LIO */
289 	{ &user_filtops },			/* EVFILT_USER */
290 };
291 
292 /*
293  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
294  * method.
295  */
296 static int
297 filt_fileattach(struct knote *kn)
298 {
299 
300 	return (fo_kqfilter(kn->kn_fp, kn));
301 }
302 
303 /*ARGSUSED*/
304 static int
305 kqueue_kqfilter(struct file *fp, struct knote *kn)
306 {
307 	struct kqueue *kq = kn->kn_fp->f_data;
308 
309 	if (kn->kn_filter != EVFILT_READ)
310 		return (EINVAL);
311 
312 	kn->kn_status |= KN_KQUEUE;
313 	kn->kn_fop = &kqread_filtops;
314 	knlist_add(&kq->kq_sel.si_note, kn, 0);
315 
316 	return (0);
317 }
318 
319 static void
320 filt_kqdetach(struct knote *kn)
321 {
322 	struct kqueue *kq = kn->kn_fp->f_data;
323 
324 	knlist_remove(&kq->kq_sel.si_note, kn, 0);
325 }
326 
327 /*ARGSUSED*/
328 static int
329 filt_kqueue(struct knote *kn, long hint)
330 {
331 	struct kqueue *kq = kn->kn_fp->f_data;
332 
333 	kn->kn_data = kq->kq_count;
334 	return (kn->kn_data > 0);
335 }
336 
337 /* XXX - move to kern_proc.c?  */
338 static int
339 filt_procattach(struct knote *kn)
340 {
341 	struct proc *p;
342 	int immediate;
343 	int error;
344 
345 	immediate = 0;
346 	p = pfind(kn->kn_id);
347 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
348 		p = zpfind(kn->kn_id);
349 		immediate = 1;
350 	} else if (p != NULL && (p->p_flag & P_WEXIT)) {
351 		immediate = 1;
352 	}
353 
354 	if (p == NULL)
355 		return (ESRCH);
356 	if ((error = p_cansee(curthread, p))) {
357 		PROC_UNLOCK(p);
358 		return (error);
359 	}
360 
361 	kn->kn_ptr.p_proc = p;
362 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
363 
364 	/*
365 	 * internal flag indicating registration done by kernel
366 	 */
367 	if (kn->kn_flags & EV_FLAG1) {
368 		kn->kn_data = kn->kn_sdata;		/* ppid */
369 		kn->kn_fflags = NOTE_CHILD;
370 		kn->kn_flags &= ~EV_FLAG1;
371 	}
372 
373 	if (immediate == 0)
374 		knlist_add(&p->p_klist, kn, 1);
375 
376 	/*
377 	 * Immediately activate any exit notes if the target process is a
378 	 * zombie.  This is necessary to handle the case where the target
379 	 * process, e.g. a child, dies before the kevent is registered.
380 	 */
381 	if (immediate && filt_proc(kn, NOTE_EXIT))
382 		KNOTE_ACTIVATE(kn, 0);
383 
384 	PROC_UNLOCK(p);
385 
386 	return (0);
387 }
388 
389 /*
390  * The knote may be attached to a different process, which may exit,
391  * leaving nothing for the knote to be attached to.  So when the process
392  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
393  * it will be deleted when read out.  However, as part of the knote deletion,
394  * this routine is called, so a check is needed to avoid actually performing
395  * a detach, because the original process does not exist any more.
396  */
397 /* XXX - move to kern_proc.c?  */
398 static void
399 filt_procdetach(struct knote *kn)
400 {
401 	struct proc *p;
402 
403 	p = kn->kn_ptr.p_proc;
404 	knlist_remove(&p->p_klist, kn, 0);
405 	kn->kn_ptr.p_proc = NULL;
406 }
407 
408 /* XXX - move to kern_proc.c?  */
409 static int
410 filt_proc(struct knote *kn, long hint)
411 {
412 	struct proc *p = kn->kn_ptr.p_proc;
413 	u_int event;
414 
415 	/*
416 	 * mask off extra data
417 	 */
418 	event = (u_int)hint & NOTE_PCTRLMASK;
419 
420 	/*
421 	 * if the user is interested in this event, record it.
422 	 */
423 	if (kn->kn_sfflags & event)
424 		kn->kn_fflags |= event;
425 
426 	/*
427 	 * process is gone, so flag the event as finished.
428 	 */
429 	if (event == NOTE_EXIT) {
430 		if (!(kn->kn_status & KN_DETACHED))
431 			knlist_remove_inevent(&p->p_klist, kn);
432 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
433 		kn->kn_data = p->p_xstat;
434 		kn->kn_ptr.p_proc = NULL;
435 		return (1);
436 	}
437 
438 	return (kn->kn_fflags != 0);
439 }
440 
441 /*
442  * Called when the process forked. It mostly does the same as the
443  * knote(), activating all knotes registered to be activated when the
444  * process forked. Additionally, for each knote attached to the
445  * parent, check whether user wants to track the new process. If so
446  * attach a new knote to it, and immediately report an event with the
447  * child's pid.
448  */
449 void
450 knote_fork(struct knlist *list, int pid)
451 {
452 	struct kqueue *kq;
453 	struct knote *kn;
454 	struct kevent kev;
455 	int error;
456 
457 	if (list == NULL)
458 		return;
459 	list->kl_lock(list->kl_lockarg);
460 
461 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
462 		if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
463 			continue;
464 		kq = kn->kn_kq;
465 		KQ_LOCK(kq);
466 		if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
467 			KQ_UNLOCK(kq);
468 			continue;
469 		}
470 
471 		/*
472 		 * The same as knote(), activate the event.
473 		 */
474 		if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
475 			kn->kn_status |= KN_HASKQLOCK;
476 			if (kn->kn_fop->f_event(kn, NOTE_FORK | pid))
477 				KNOTE_ACTIVATE(kn, 1);
478 			kn->kn_status &= ~KN_HASKQLOCK;
479 			KQ_UNLOCK(kq);
480 			continue;
481 		}
482 
483 		/*
484 		 * The NOTE_TRACK case. In addition to the activation
485 		 * of the event, we need to register new event to
486 		 * track the child. Drop the locks in preparation for
487 		 * the call to kqueue_register().
488 		 */
489 		kn->kn_status |= KN_INFLUX;
490 		KQ_UNLOCK(kq);
491 		list->kl_unlock(list->kl_lockarg);
492 
493 		/*
494 		 * Activate existing knote and register a knote with
495 		 * new process.
496 		 */
497 		kev.ident = pid;
498 		kev.filter = kn->kn_filter;
499 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
500 		kev.fflags = kn->kn_sfflags;
501 		kev.data = kn->kn_id;		/* parent */
502 		kev.udata = kn->kn_kevent.udata;/* preserve udata */
503 		error = kqueue_register(kq, &kev, NULL, 0);
504 		if (kn->kn_fop->f_event(kn, NOTE_FORK | pid))
505 			KNOTE_ACTIVATE(kn, 0);
506 		if (error)
507 			kn->kn_fflags |= NOTE_TRACKERR;
508 		KQ_LOCK(kq);
509 		kn->kn_status &= ~KN_INFLUX;
510 		KQ_UNLOCK_FLUX(kq);
511 		list->kl_lock(list->kl_lockarg);
512 	}
513 	list->kl_unlock(list->kl_lockarg);
514 }
515 
516 static int
517 timertoticks(intptr_t data)
518 {
519 	struct timeval tv;
520 	int tticks;
521 
522 	tv.tv_sec = data / 1000;
523 	tv.tv_usec = (data % 1000) * 1000;
524 	tticks = tvtohz(&tv);
525 
526 	return tticks;
527 }
528 
529 /* XXX - move to kern_timeout.c? */
530 static void
531 filt_timerexpire(void *knx)
532 {
533 	struct knote *kn = knx;
534 	struct callout *calloutp;
535 
536 	kn->kn_data++;
537 	KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
538 
539 	if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
540 		calloutp = (struct callout *)kn->kn_hook;
541 		callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata),
542 		    filt_timerexpire, kn);
543 	}
544 }
545 
546 /*
547  * data contains amount of time to sleep, in milliseconds
548  */
549 /* XXX - move to kern_timeout.c? */
550 static int
551 filt_timerattach(struct knote *kn)
552 {
553 	struct callout *calloutp;
554 
555 	atomic_add_int(&kq_ncallouts, 1);
556 
557 	if (kq_ncallouts >= kq_calloutmax) {
558 		atomic_add_int(&kq_ncallouts, -1);
559 		return (ENOMEM);
560 	}
561 
562 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
563 	kn->kn_status &= ~KN_DETACHED;		/* knlist_add usually sets it */
564 	calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
565 	callout_init(calloutp, CALLOUT_MPSAFE);
566 	kn->kn_hook = calloutp;
567 	callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata),
568 	    filt_timerexpire, kn);
569 
570 	return (0);
571 }
572 
573 /* XXX - move to kern_timeout.c? */
574 static void
575 filt_timerdetach(struct knote *kn)
576 {
577 	struct callout *calloutp;
578 
579 	calloutp = (struct callout *)kn->kn_hook;
580 	callout_drain(calloutp);
581 	free(calloutp, M_KQUEUE);
582 	atomic_add_int(&kq_ncallouts, -1);
583 	kn->kn_status |= KN_DETACHED;	/* knlist_remove usually clears it */
584 }
585 
586 /* XXX - move to kern_timeout.c? */
587 static int
588 filt_timer(struct knote *kn, long hint)
589 {
590 
591 	return (kn->kn_data != 0);
592 }
593 
594 static int
595 filt_userattach(struct knote *kn)
596 {
597 
598 	/*
599 	 * EVFILT_USER knotes are not attached to anything in the kernel.
600 	 */
601 	kn->kn_hook = NULL;
602 	if (kn->kn_fflags & NOTE_TRIGGER)
603 		kn->kn_hookid = 1;
604 	else
605 		kn->kn_hookid = 0;
606 	return (0);
607 }
608 
609 static void
610 filt_userdetach(__unused struct knote *kn)
611 {
612 
613 	/*
614 	 * EVFILT_USER knotes are not attached to anything in the kernel.
615 	 */
616 }
617 
618 static int
619 filt_user(struct knote *kn, __unused long hint)
620 {
621 
622 	return (kn->kn_hookid);
623 }
624 
625 static void
626 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
627 {
628 	u_int ffctrl;
629 
630 	switch (type) {
631 	case EVENT_REGISTER:
632 		if (kev->fflags & NOTE_TRIGGER)
633 			kn->kn_hookid = 1;
634 
635 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
636 		kev->fflags &= NOTE_FFLAGSMASK;
637 		switch (ffctrl) {
638 		case NOTE_FFNOP:
639 			break;
640 
641 		case NOTE_FFAND:
642 			kn->kn_sfflags &= kev->fflags;
643 			break;
644 
645 		case NOTE_FFOR:
646 			kn->kn_sfflags |= kev->fflags;
647 			break;
648 
649 		case NOTE_FFCOPY:
650 			kn->kn_sfflags = kev->fflags;
651 			break;
652 
653 		default:
654 			/* XXX Return error? */
655 			break;
656 		}
657 		kn->kn_sdata = kev->data;
658 		if (kev->flags & EV_CLEAR) {
659 			kn->kn_hookid = 0;
660 			kn->kn_data = 0;
661 			kn->kn_fflags = 0;
662 		}
663 		break;
664 
665         case EVENT_PROCESS:
666 		*kev = kn->kn_kevent;
667 		kev->fflags = kn->kn_sfflags;
668 		kev->data = kn->kn_sdata;
669 		if (kn->kn_flags & EV_CLEAR) {
670 			kn->kn_hookid = 0;
671 			kn->kn_data = 0;
672 			kn->kn_fflags = 0;
673 		}
674 		break;
675 
676 	default:
677 		panic("filt_usertouch() - invalid type (%ld)", type);
678 		break;
679 	}
680 }
681 
682 int
683 sys_kqueue(struct thread *td, struct kqueue_args *uap)
684 {
685 	struct filedesc *fdp;
686 	struct kqueue *kq;
687 	struct file *fp;
688 	int fd, error;
689 
690 	fdp = td->td_proc->p_fd;
691 	error = falloc(td, &fp, &fd, 0);
692 	if (error)
693 		goto done2;
694 
695 	/* An extra reference on `nfp' has been held for us by falloc(). */
696 	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
697 	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
698 	TAILQ_INIT(&kq->kq_head);
699 	kq->kq_fdp = fdp;
700 	knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
701 	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
702 
703 	FILEDESC_XLOCK(fdp);
704 	SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
705 	FILEDESC_XUNLOCK(fdp);
706 
707 	finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
708 	fdrop(fp, td);
709 
710 	td->td_retval[0] = fd;
711 done2:
712 	return (error);
713 }
714 
715 #ifndef _SYS_SYSPROTO_H_
716 struct kevent_args {
717 	int	fd;
718 	const struct kevent *changelist;
719 	int	nchanges;
720 	struct	kevent *eventlist;
721 	int	nevents;
722 	const struct timespec *timeout;
723 };
724 #endif
725 int
726 sys_kevent(struct thread *td, struct kevent_args *uap)
727 {
728 	struct timespec ts, *tsp;
729 	struct kevent_copyops k_ops = { uap,
730 					kevent_copyout,
731 					kevent_copyin};
732 	int error;
733 #ifdef KTRACE
734 	struct uio ktruio;
735 	struct iovec ktriov;
736 	struct uio *ktruioin = NULL;
737 	struct uio *ktruioout = NULL;
738 #endif
739 
740 	if (uap->timeout != NULL) {
741 		error = copyin(uap->timeout, &ts, sizeof(ts));
742 		if (error)
743 			return (error);
744 		tsp = &ts;
745 	} else
746 		tsp = NULL;
747 
748 #ifdef KTRACE
749 	if (KTRPOINT(td, KTR_GENIO)) {
750 		ktriov.iov_base = uap->changelist;
751 		ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
752 		ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
753 		    .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
754 		    .uio_td = td };
755 		ktruioin = cloneuio(&ktruio);
756 		ktriov.iov_base = uap->eventlist;
757 		ktriov.iov_len = uap->nevents * sizeof(struct kevent);
758 		ktruioout = cloneuio(&ktruio);
759 	}
760 #endif
761 
762 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
763 	    &k_ops, tsp);
764 
765 #ifdef KTRACE
766 	if (ktruioin != NULL) {
767 		ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
768 		ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
769 		ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
770 		ktrgenio(uap->fd, UIO_READ, ktruioout, error);
771 	}
772 #endif
773 
774 	return (error);
775 }
776 
777 /*
778  * Copy 'count' items into the destination list pointed to by uap->eventlist.
779  */
780 static int
781 kevent_copyout(void *arg, struct kevent *kevp, int count)
782 {
783 	struct kevent_args *uap;
784 	int error;
785 
786 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
787 	uap = (struct kevent_args *)arg;
788 
789 	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
790 	if (error == 0)
791 		uap->eventlist += count;
792 	return (error);
793 }
794 
795 /*
796  * Copy 'count' items from the list pointed to by uap->changelist.
797  */
798 static int
799 kevent_copyin(void *arg, struct kevent *kevp, int count)
800 {
801 	struct kevent_args *uap;
802 	int error;
803 
804 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
805 	uap = (struct kevent_args *)arg;
806 
807 	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
808 	if (error == 0)
809 		uap->changelist += count;
810 	return (error);
811 }
812 
813 int
814 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
815     struct kevent_copyops *k_ops, const struct timespec *timeout)
816 {
817 	struct kevent keva[KQ_NEVENTS];
818 	struct kevent *kevp, *changes;
819 	struct kqueue *kq;
820 	struct file *fp;
821 	int i, n, nerrors, error;
822 
823 	if ((error = fget(td, fd, CAP_POST_EVENT, &fp)) != 0)
824 		return (error);
825 	if ((error = kqueue_acquire(fp, &kq)) != 0)
826 		goto done_norel;
827 
828 	nerrors = 0;
829 
830 	while (nchanges > 0) {
831 		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
832 		error = k_ops->k_copyin(k_ops->arg, keva, n);
833 		if (error)
834 			goto done;
835 		changes = keva;
836 		for (i = 0; i < n; i++) {
837 			kevp = &changes[i];
838 			if (!kevp->filter)
839 				continue;
840 			kevp->flags &= ~EV_SYSFLAGS;
841 			error = kqueue_register(kq, kevp, td, 1);
842 			if (error || (kevp->flags & EV_RECEIPT)) {
843 				if (nevents != 0) {
844 					kevp->flags = EV_ERROR;
845 					kevp->data = error;
846 					(void) k_ops->k_copyout(k_ops->arg,
847 					    kevp, 1);
848 					nevents--;
849 					nerrors++;
850 				} else {
851 					goto done;
852 				}
853 			}
854 		}
855 		nchanges -= n;
856 	}
857 	if (nerrors) {
858 		td->td_retval[0] = nerrors;
859 		error = 0;
860 		goto done;
861 	}
862 
863 	error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
864 done:
865 	kqueue_release(kq, 0);
866 done_norel:
867 	fdrop(fp, td);
868 	return (error);
869 }
870 
871 int
872 kqueue_add_filteropts(int filt, struct filterops *filtops)
873 {
874 	int error;
875 
876 	error = 0;
877 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
878 		printf(
879 "trying to add a filterop that is out of range: %d is beyond %d\n",
880 		    ~filt, EVFILT_SYSCOUNT);
881 		return EINVAL;
882 	}
883 	mtx_lock(&filterops_lock);
884 	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
885 	    sysfilt_ops[~filt].for_fop != NULL)
886 		error = EEXIST;
887 	else {
888 		sysfilt_ops[~filt].for_fop = filtops;
889 		sysfilt_ops[~filt].for_refcnt = 0;
890 	}
891 	mtx_unlock(&filterops_lock);
892 
893 	return (error);
894 }
895 
896 int
897 kqueue_del_filteropts(int filt)
898 {
899 	int error;
900 
901 	error = 0;
902 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
903 		return EINVAL;
904 
905 	mtx_lock(&filterops_lock);
906 	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
907 	    sysfilt_ops[~filt].for_fop == NULL)
908 		error = EINVAL;
909 	else if (sysfilt_ops[~filt].for_refcnt != 0)
910 		error = EBUSY;
911 	else {
912 		sysfilt_ops[~filt].for_fop = &null_filtops;
913 		sysfilt_ops[~filt].for_refcnt = 0;
914 	}
915 	mtx_unlock(&filterops_lock);
916 
917 	return error;
918 }
919 
920 static struct filterops *
921 kqueue_fo_find(int filt)
922 {
923 
924 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
925 		return NULL;
926 
927 	mtx_lock(&filterops_lock);
928 	sysfilt_ops[~filt].for_refcnt++;
929 	if (sysfilt_ops[~filt].for_fop == NULL)
930 		sysfilt_ops[~filt].for_fop = &null_filtops;
931 	mtx_unlock(&filterops_lock);
932 
933 	return sysfilt_ops[~filt].for_fop;
934 }
935 
936 static void
937 kqueue_fo_release(int filt)
938 {
939 
940 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
941 		return;
942 
943 	mtx_lock(&filterops_lock);
944 	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
945 	    ("filter object refcount not valid on release"));
946 	sysfilt_ops[~filt].for_refcnt--;
947 	mtx_unlock(&filterops_lock);
948 }
949 
950 /*
951  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
952  * influence if memory allocation should wait.  Make sure it is 0 if you
953  * hold any mutexes.
954  */
955 static int
956 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
957 {
958 	struct filterops *fops;
959 	struct file *fp;
960 	struct knote *kn, *tkn;
961 	int error, filt, event;
962 	int haskqglobal;
963 
964 	fp = NULL;
965 	kn = NULL;
966 	error = 0;
967 	haskqglobal = 0;
968 
969 	filt = kev->filter;
970 	fops = kqueue_fo_find(filt);
971 	if (fops == NULL)
972 		return EINVAL;
973 
974 	tkn = knote_alloc(waitok);		/* prevent waiting with locks */
975 
976 findkn:
977 	if (fops->f_isfd) {
978 		KASSERT(td != NULL, ("td is NULL"));
979 		error = fget(td, kev->ident, CAP_POLL_EVENT, &fp);
980 		if (error)
981 			goto done;
982 
983 		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
984 		    kev->ident, 0) != 0) {
985 			/* try again */
986 			fdrop(fp, td);
987 			fp = NULL;
988 			error = kqueue_expand(kq, fops, kev->ident, waitok);
989 			if (error)
990 				goto done;
991 			goto findkn;
992 		}
993 
994 		if (fp->f_type == DTYPE_KQUEUE) {
995 			/*
996 			 * if we add some inteligence about what we are doing,
997 			 * we should be able to support events on ourselves.
998 			 * We need to know when we are doing this to prevent
999 			 * getting both the knlist lock and the kq lock since
1000 			 * they are the same thing.
1001 			 */
1002 			if (fp->f_data == kq) {
1003 				error = EINVAL;
1004 				goto done;
1005 			}
1006 
1007 			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1008 		}
1009 
1010 		KQ_LOCK(kq);
1011 		if (kev->ident < kq->kq_knlistsize) {
1012 			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
1013 				if (kev->filter == kn->kn_filter)
1014 					break;
1015 		}
1016 	} else {
1017 		if ((kev->flags & EV_ADD) == EV_ADD)
1018 			kqueue_expand(kq, fops, kev->ident, waitok);
1019 
1020 		KQ_LOCK(kq);
1021 		if (kq->kq_knhashmask != 0) {
1022 			struct klist *list;
1023 
1024 			list = &kq->kq_knhash[
1025 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1026 			SLIST_FOREACH(kn, list, kn_link)
1027 				if (kev->ident == kn->kn_id &&
1028 				    kev->filter == kn->kn_filter)
1029 					break;
1030 		}
1031 	}
1032 
1033 	/* knote is in the process of changing, wait for it to stablize. */
1034 	if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1035 		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1036 		kq->kq_state |= KQ_FLUXWAIT;
1037 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
1038 		if (fp != NULL) {
1039 			fdrop(fp, td);
1040 			fp = NULL;
1041 		}
1042 		goto findkn;
1043 	}
1044 
1045 	/*
1046 	 * kn now contains the matching knote, or NULL if no match
1047 	 */
1048 	if (kn == NULL) {
1049 		if (kev->flags & EV_ADD) {
1050 			kn = tkn;
1051 			tkn = NULL;
1052 			if (kn == NULL) {
1053 				KQ_UNLOCK(kq);
1054 				error = ENOMEM;
1055 				goto done;
1056 			}
1057 			kn->kn_fp = fp;
1058 			kn->kn_kq = kq;
1059 			kn->kn_fop = fops;
1060 			/*
1061 			 * apply reference counts to knote structure, and
1062 			 * do not release it at the end of this routine.
1063 			 */
1064 			fops = NULL;
1065 			fp = NULL;
1066 
1067 			kn->kn_sfflags = kev->fflags;
1068 			kn->kn_sdata = kev->data;
1069 			kev->fflags = 0;
1070 			kev->data = 0;
1071 			kn->kn_kevent = *kev;
1072 			kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
1073 			    EV_ENABLE | EV_DISABLE);
1074 			kn->kn_status = KN_INFLUX|KN_DETACHED;
1075 
1076 			error = knote_attach(kn, kq);
1077 			KQ_UNLOCK(kq);
1078 			if (error != 0) {
1079 				tkn = kn;
1080 				goto done;
1081 			}
1082 
1083 			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
1084 				knote_drop(kn, td);
1085 				goto done;
1086 			}
1087 			KN_LIST_LOCK(kn);
1088 			goto done_ev_add;
1089 		} else {
1090 			/* No matching knote and the EV_ADD flag is not set. */
1091 			KQ_UNLOCK(kq);
1092 			error = ENOENT;
1093 			goto done;
1094 		}
1095 	}
1096 
1097 	if (kev->flags & EV_DELETE) {
1098 		kn->kn_status |= KN_INFLUX;
1099 		KQ_UNLOCK(kq);
1100 		if (!(kn->kn_status & KN_DETACHED))
1101 			kn->kn_fop->f_detach(kn);
1102 		knote_drop(kn, td);
1103 		goto done;
1104 	}
1105 
1106 	/*
1107 	 * The user may change some filter values after the initial EV_ADD,
1108 	 * but doing so will not reset any filter which has already been
1109 	 * triggered.
1110 	 */
1111 	kn->kn_status |= KN_INFLUX;
1112 	KQ_UNLOCK(kq);
1113 	KN_LIST_LOCK(kn);
1114 	kn->kn_kevent.udata = kev->udata;
1115 	if (!fops->f_isfd && fops->f_touch != NULL) {
1116 		fops->f_touch(kn, kev, EVENT_REGISTER);
1117 	} else {
1118 		kn->kn_sfflags = kev->fflags;
1119 		kn->kn_sdata = kev->data;
1120 	}
1121 
1122 	/*
1123 	 * We can get here with kn->kn_knlist == NULL.  This can happen when
1124 	 * the initial attach event decides that the event is "completed"
1125 	 * already.  i.e. filt_procattach is called on a zombie process.  It
1126 	 * will call filt_proc which will remove it from the list, and NULL
1127 	 * kn_knlist.
1128 	 */
1129 done_ev_add:
1130 	event = kn->kn_fop->f_event(kn, 0);
1131 	KQ_LOCK(kq);
1132 	if (event)
1133 		KNOTE_ACTIVATE(kn, 1);
1134 	kn->kn_status &= ~KN_INFLUX;
1135 	KN_LIST_UNLOCK(kn);
1136 
1137 	if ((kev->flags & EV_DISABLE) &&
1138 	    ((kn->kn_status & KN_DISABLED) == 0)) {
1139 		kn->kn_status |= KN_DISABLED;
1140 	}
1141 
1142 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1143 		kn->kn_status &= ~KN_DISABLED;
1144 		if ((kn->kn_status & KN_ACTIVE) &&
1145 		    ((kn->kn_status & KN_QUEUED) == 0))
1146 			knote_enqueue(kn);
1147 	}
1148 	KQ_UNLOCK_FLUX(kq);
1149 
1150 done:
1151 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1152 	if (fp != NULL)
1153 		fdrop(fp, td);
1154 	if (tkn != NULL)
1155 		knote_free(tkn);
1156 	if (fops != NULL)
1157 		kqueue_fo_release(filt);
1158 	return (error);
1159 }
1160 
1161 static int
1162 kqueue_acquire(struct file *fp, struct kqueue **kqp)
1163 {
1164 	int error;
1165 	struct kqueue *kq;
1166 
1167 	error = 0;
1168 
1169 	kq = fp->f_data;
1170 	if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1171 		return (EBADF);
1172 	*kqp = kq;
1173 	KQ_LOCK(kq);
1174 	if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1175 		KQ_UNLOCK(kq);
1176 		return (EBADF);
1177 	}
1178 	kq->kq_refcnt++;
1179 	KQ_UNLOCK(kq);
1180 
1181 	return error;
1182 }
1183 
1184 static void
1185 kqueue_release(struct kqueue *kq, int locked)
1186 {
1187 	if (locked)
1188 		KQ_OWNED(kq);
1189 	else
1190 		KQ_LOCK(kq);
1191 	kq->kq_refcnt--;
1192 	if (kq->kq_refcnt == 1)
1193 		wakeup(&kq->kq_refcnt);
1194 	if (!locked)
1195 		KQ_UNLOCK(kq);
1196 }
1197 
1198 static void
1199 kqueue_schedtask(struct kqueue *kq)
1200 {
1201 
1202 	KQ_OWNED(kq);
1203 	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1204 	    ("scheduling kqueue task while draining"));
1205 
1206 	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1207 		taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
1208 		kq->kq_state |= KQ_TASKSCHED;
1209 	}
1210 }
1211 
1212 /*
1213  * Expand the kq to make sure we have storage for fops/ident pair.
1214  *
1215  * Return 0 on success (or no work necessary), return errno on failure.
1216  *
1217  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
1218  * If kqueue_register is called from a non-fd context, there usually/should
1219  * be no locks held.
1220  */
1221 static int
1222 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1223 	int waitok)
1224 {
1225 	struct klist *list, *tmp_knhash, *to_free;
1226 	u_long tmp_knhashmask;
1227 	int size;
1228 	int fd;
1229 	int mflag = waitok ? M_WAITOK : M_NOWAIT;
1230 
1231 	KQ_NOTOWNED(kq);
1232 
1233 	to_free = NULL;
1234 	if (fops->f_isfd) {
1235 		fd = ident;
1236 		if (kq->kq_knlistsize <= fd) {
1237 			size = kq->kq_knlistsize;
1238 			while (size <= fd)
1239 				size += KQEXTENT;
1240 			list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
1241 			if (list == NULL)
1242 				return ENOMEM;
1243 			KQ_LOCK(kq);
1244 			if (kq->kq_knlistsize > fd) {
1245 				to_free = list;
1246 				list = NULL;
1247 			} else {
1248 				if (kq->kq_knlist != NULL) {
1249 					bcopy(kq->kq_knlist, list,
1250 					    kq->kq_knlistsize * sizeof(*list));
1251 					to_free = kq->kq_knlist;
1252 					kq->kq_knlist = NULL;
1253 				}
1254 				bzero((caddr_t)list +
1255 				    kq->kq_knlistsize * sizeof(*list),
1256 				    (size - kq->kq_knlistsize) * sizeof(*list));
1257 				kq->kq_knlistsize = size;
1258 				kq->kq_knlist = list;
1259 			}
1260 			KQ_UNLOCK(kq);
1261 		}
1262 	} else {
1263 		if (kq->kq_knhashmask == 0) {
1264 			tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1265 			    &tmp_knhashmask);
1266 			if (tmp_knhash == NULL)
1267 				return ENOMEM;
1268 			KQ_LOCK(kq);
1269 			if (kq->kq_knhashmask == 0) {
1270 				kq->kq_knhash = tmp_knhash;
1271 				kq->kq_knhashmask = tmp_knhashmask;
1272 			} else {
1273 				to_free = tmp_knhash;
1274 			}
1275 			KQ_UNLOCK(kq);
1276 		}
1277 	}
1278 	free(to_free, M_KQUEUE);
1279 
1280 	KQ_NOTOWNED(kq);
1281 	return 0;
1282 }
1283 
1284 static void
1285 kqueue_task(void *arg, int pending)
1286 {
1287 	struct kqueue *kq;
1288 	int haskqglobal;
1289 
1290 	haskqglobal = 0;
1291 	kq = arg;
1292 
1293 	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1294 	KQ_LOCK(kq);
1295 
1296 	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1297 
1298 	kq->kq_state &= ~KQ_TASKSCHED;
1299 	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1300 		wakeup(&kq->kq_state);
1301 	}
1302 	KQ_UNLOCK(kq);
1303 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1304 }
1305 
1306 /*
1307  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1308  * We treat KN_MARKER knotes as if they are INFLUX.
1309  */
1310 static int
1311 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1312     const struct timespec *tsp, struct kevent *keva, struct thread *td)
1313 {
1314 	struct kevent *kevp;
1315 	struct timeval atv, rtv, ttv;
1316 	struct knote *kn, *marker;
1317 	int count, timeout, nkev, error, influx;
1318 	int haskqglobal, touch;
1319 
1320 	count = maxevents;
1321 	nkev = 0;
1322 	error = 0;
1323 	haskqglobal = 0;
1324 
1325 	if (maxevents == 0)
1326 		goto done_nl;
1327 
1328 	if (tsp != NULL) {
1329 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
1330 		if (itimerfix(&atv)) {
1331 			error = EINVAL;
1332 			goto done_nl;
1333 		}
1334 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1335 			timeout = -1;
1336 		else
1337 			timeout = atv.tv_sec > 24 * 60 * 60 ?
1338 			    24 * 60 * 60 * hz : tvtohz(&atv);
1339 		getmicrouptime(&rtv);
1340 		timevaladd(&atv, &rtv);
1341 	} else {
1342 		atv.tv_sec = 0;
1343 		atv.tv_usec = 0;
1344 		timeout = 0;
1345 	}
1346 	marker = knote_alloc(1);
1347 	if (marker == NULL) {
1348 		error = ENOMEM;
1349 		goto done_nl;
1350 	}
1351 	marker->kn_status = KN_MARKER;
1352 	KQ_LOCK(kq);
1353 	goto start;
1354 
1355 retry:
1356 	if (atv.tv_sec || atv.tv_usec) {
1357 		getmicrouptime(&rtv);
1358 		if (timevalcmp(&rtv, &atv, >=))
1359 			goto done;
1360 		ttv = atv;
1361 		timevalsub(&ttv, &rtv);
1362 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
1363 			24 * 60 * 60 * hz : tvtohz(&ttv);
1364 	}
1365 
1366 start:
1367 	kevp = keva;
1368 	if (kq->kq_count == 0) {
1369 		if (timeout < 0) {
1370 			error = EWOULDBLOCK;
1371 		} else {
1372 			kq->kq_state |= KQ_SLEEP;
1373 			error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH,
1374 			    "kqread", timeout);
1375 		}
1376 		if (error == 0)
1377 			goto retry;
1378 		/* don't restart after signals... */
1379 		if (error == ERESTART)
1380 			error = EINTR;
1381 		else if (error == EWOULDBLOCK)
1382 			error = 0;
1383 		goto done;
1384 	}
1385 
1386 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1387 	influx = 0;
1388 	while (count) {
1389 		KQ_OWNED(kq);
1390 		kn = TAILQ_FIRST(&kq->kq_head);
1391 
1392 		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1393 		    (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1394 			if (influx) {
1395 				influx = 0;
1396 				KQ_FLUX_WAKEUP(kq);
1397 			}
1398 			kq->kq_state |= KQ_FLUXWAIT;
1399 			error = msleep(kq, &kq->kq_lock, PSOCK,
1400 			    "kqflxwt", 0);
1401 			continue;
1402 		}
1403 
1404 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1405 		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1406 			kn->kn_status &= ~KN_QUEUED;
1407 			kq->kq_count--;
1408 			continue;
1409 		}
1410 		if (kn == marker) {
1411 			KQ_FLUX_WAKEUP(kq);
1412 			if (count == maxevents)
1413 				goto retry;
1414 			goto done;
1415 		}
1416 		KASSERT((kn->kn_status & KN_INFLUX) == 0,
1417 		    ("KN_INFLUX set when not suppose to be"));
1418 
1419 		if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1420 			kn->kn_status &= ~KN_QUEUED;
1421 			kn->kn_status |= KN_INFLUX;
1422 			kq->kq_count--;
1423 			KQ_UNLOCK(kq);
1424 			/*
1425 			 * We don't need to lock the list since we've marked
1426 			 * it _INFLUX.
1427 			 */
1428 			*kevp = kn->kn_kevent;
1429 			if (!(kn->kn_status & KN_DETACHED))
1430 				kn->kn_fop->f_detach(kn);
1431 			knote_drop(kn, td);
1432 			KQ_LOCK(kq);
1433 			kn = NULL;
1434 		} else {
1435 			kn->kn_status |= KN_INFLUX;
1436 			KQ_UNLOCK(kq);
1437 			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1438 				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1439 			KN_LIST_LOCK(kn);
1440 			if (kn->kn_fop->f_event(kn, 0) == 0) {
1441 				KQ_LOCK(kq);
1442 				KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1443 				kn->kn_status &=
1444 				    ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX);
1445 				kq->kq_count--;
1446 				KN_LIST_UNLOCK(kn);
1447 				influx = 1;
1448 				continue;
1449 			}
1450 			touch = (!kn->kn_fop->f_isfd &&
1451 			    kn->kn_fop->f_touch != NULL);
1452 			if (touch)
1453 				kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
1454 			else
1455 				*kevp = kn->kn_kevent;
1456 			KQ_LOCK(kq);
1457 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1458 			if (kn->kn_flags & (EV_CLEAR |  EV_DISPATCH)) {
1459 				/*
1460 				 * Manually clear knotes who weren't
1461 				 * 'touch'ed.
1462 				 */
1463 				if (touch == 0 && kn->kn_flags & EV_CLEAR) {
1464 					kn->kn_data = 0;
1465 					kn->kn_fflags = 0;
1466 				}
1467 				if (kn->kn_flags & EV_DISPATCH)
1468 					kn->kn_status |= KN_DISABLED;
1469 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1470 				kq->kq_count--;
1471 			} else
1472 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1473 
1474 			kn->kn_status &= ~(KN_INFLUX);
1475 			KN_LIST_UNLOCK(kn);
1476 			influx = 1;
1477 		}
1478 
1479 		/* we are returning a copy to the user */
1480 		kevp++;
1481 		nkev++;
1482 		count--;
1483 
1484 		if (nkev == KQ_NEVENTS) {
1485 			influx = 0;
1486 			KQ_UNLOCK_FLUX(kq);
1487 			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1488 			nkev = 0;
1489 			kevp = keva;
1490 			KQ_LOCK(kq);
1491 			if (error)
1492 				break;
1493 		}
1494 	}
1495 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1496 done:
1497 	KQ_OWNED(kq);
1498 	KQ_UNLOCK_FLUX(kq);
1499 	knote_free(marker);
1500 done_nl:
1501 	KQ_NOTOWNED(kq);
1502 	if (nkev != 0)
1503 		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1504 	td->td_retval[0] = maxevents - count;
1505 	return (error);
1506 }
1507 
1508 /*
1509  * XXX
1510  * This could be expanded to call kqueue_scan, if desired.
1511  */
1512 /*ARGSUSED*/
1513 static int
1514 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1515 	int flags, struct thread *td)
1516 {
1517 	return (ENXIO);
1518 }
1519 
1520 /*ARGSUSED*/
1521 static int
1522 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1523 	 int flags, struct thread *td)
1524 {
1525 	return (ENXIO);
1526 }
1527 
1528 /*ARGSUSED*/
1529 static int
1530 kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1531 	struct thread *td)
1532 {
1533 
1534 	return (EINVAL);
1535 }
1536 
1537 /*ARGSUSED*/
1538 static int
1539 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
1540 	struct ucred *active_cred, struct thread *td)
1541 {
1542 	/*
1543 	 * Enabling sigio causes two major problems:
1544 	 * 1) infinite recursion:
1545 	 * Synopsys: kevent is being used to track signals and have FIOASYNC
1546 	 * set.  On receipt of a signal this will cause a kqueue to recurse
1547 	 * into itself over and over.  Sending the sigio causes the kqueue
1548 	 * to become ready, which in turn posts sigio again, forever.
1549 	 * Solution: this can be solved by setting a flag in the kqueue that
1550 	 * we have a SIGIO in progress.
1551 	 * 2) locking problems:
1552 	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
1553 	 * us above the proc and pgrp locks.
1554 	 * Solution: Post a signal using an async mechanism, being sure to
1555 	 * record a generation count in the delivery so that we do not deliver
1556 	 * a signal to the wrong process.
1557 	 *
1558 	 * Note, these two mechanisms are somewhat mutually exclusive!
1559 	 */
1560 #if 0
1561 	struct kqueue *kq;
1562 
1563 	kq = fp->f_data;
1564 	switch (cmd) {
1565 	case FIOASYNC:
1566 		if (*(int *)data) {
1567 			kq->kq_state |= KQ_ASYNC;
1568 		} else {
1569 			kq->kq_state &= ~KQ_ASYNC;
1570 		}
1571 		return (0);
1572 
1573 	case FIOSETOWN:
1574 		return (fsetown(*(int *)data, &kq->kq_sigio));
1575 
1576 	case FIOGETOWN:
1577 		*(int *)data = fgetown(&kq->kq_sigio);
1578 		return (0);
1579 	}
1580 #endif
1581 
1582 	return (ENOTTY);
1583 }
1584 
1585 /*ARGSUSED*/
1586 static int
1587 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
1588 	struct thread *td)
1589 {
1590 	struct kqueue *kq;
1591 	int revents = 0;
1592 	int error;
1593 
1594 	if ((error = kqueue_acquire(fp, &kq)))
1595 		return POLLERR;
1596 
1597 	KQ_LOCK(kq);
1598 	if (events & (POLLIN | POLLRDNORM)) {
1599 		if (kq->kq_count) {
1600 			revents |= events & (POLLIN | POLLRDNORM);
1601 		} else {
1602 			selrecord(td, &kq->kq_sel);
1603 			if (SEL_WAITING(&kq->kq_sel))
1604 				kq->kq_state |= KQ_SEL;
1605 		}
1606 	}
1607 	kqueue_release(kq, 1);
1608 	KQ_UNLOCK(kq);
1609 	return (revents);
1610 }
1611 
1612 /*ARGSUSED*/
1613 static int
1614 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1615 	struct thread *td)
1616 {
1617 
1618 	bzero((void *)st, sizeof *st);
1619 	/*
1620 	 * We no longer return kq_count because the unlocked value is useless.
1621 	 * If you spent all this time getting the count, why not spend your
1622 	 * syscall better by calling kevent?
1623 	 *
1624 	 * XXX - This is needed for libc_r.
1625 	 */
1626 	st->st_mode = S_IFIFO;
1627 	return (0);
1628 }
1629 
1630 /*ARGSUSED*/
1631 static int
1632 kqueue_close(struct file *fp, struct thread *td)
1633 {
1634 	struct kqueue *kq = fp->f_data;
1635 	struct filedesc *fdp;
1636 	struct knote *kn;
1637 	int i;
1638 	int error;
1639 
1640 	if ((error = kqueue_acquire(fp, &kq)))
1641 		return error;
1642 
1643 	KQ_LOCK(kq);
1644 
1645 	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
1646 	    ("kqueue already closing"));
1647 	kq->kq_state |= KQ_CLOSING;
1648 	if (kq->kq_refcnt > 1)
1649 		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
1650 
1651 	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
1652 	fdp = kq->kq_fdp;
1653 
1654 	KASSERT(knlist_empty(&kq->kq_sel.si_note),
1655 	    ("kqueue's knlist not empty"));
1656 
1657 	for (i = 0; i < kq->kq_knlistsize; i++) {
1658 		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
1659 			if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1660 				kq->kq_state |= KQ_FLUXWAIT;
1661 				msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
1662 				continue;
1663 			}
1664 			kn->kn_status |= KN_INFLUX;
1665 			KQ_UNLOCK(kq);
1666 			if (!(kn->kn_status & KN_DETACHED))
1667 				kn->kn_fop->f_detach(kn);
1668 			knote_drop(kn, td);
1669 			KQ_LOCK(kq);
1670 		}
1671 	}
1672 	if (kq->kq_knhashmask != 0) {
1673 		for (i = 0; i <= kq->kq_knhashmask; i++) {
1674 			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
1675 				if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1676 					kq->kq_state |= KQ_FLUXWAIT;
1677 					msleep(kq, &kq->kq_lock, PSOCK,
1678 					       "kqclo2", 0);
1679 					continue;
1680 				}
1681 				kn->kn_status |= KN_INFLUX;
1682 				KQ_UNLOCK(kq);
1683 				if (!(kn->kn_status & KN_DETACHED))
1684 					kn->kn_fop->f_detach(kn);
1685 				knote_drop(kn, td);
1686 				KQ_LOCK(kq);
1687 			}
1688 		}
1689 	}
1690 
1691 	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
1692 		kq->kq_state |= KQ_TASKDRAIN;
1693 		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
1694 	}
1695 
1696 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1697 		selwakeuppri(&kq->kq_sel, PSOCK);
1698 		if (!SEL_WAITING(&kq->kq_sel))
1699 			kq->kq_state &= ~KQ_SEL;
1700 	}
1701 
1702 	KQ_UNLOCK(kq);
1703 
1704 	FILEDESC_XLOCK(fdp);
1705 	SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list);
1706 	FILEDESC_XUNLOCK(fdp);
1707 
1708 	seldrain(&kq->kq_sel);
1709 	knlist_destroy(&kq->kq_sel.si_note);
1710 	mtx_destroy(&kq->kq_lock);
1711 	kq->kq_fdp = NULL;
1712 
1713 	if (kq->kq_knhash != NULL)
1714 		free(kq->kq_knhash, M_KQUEUE);
1715 	if (kq->kq_knlist != NULL)
1716 		free(kq->kq_knlist, M_KQUEUE);
1717 
1718 	funsetown(&kq->kq_sigio);
1719 	free(kq, M_KQUEUE);
1720 	fp->f_data = NULL;
1721 
1722 	return (0);
1723 }
1724 
1725 static void
1726 kqueue_wakeup(struct kqueue *kq)
1727 {
1728 	KQ_OWNED(kq);
1729 
1730 	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
1731 		kq->kq_state &= ~KQ_SLEEP;
1732 		wakeup(kq);
1733 	}
1734 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1735 		selwakeuppri(&kq->kq_sel, PSOCK);
1736 		if (!SEL_WAITING(&kq->kq_sel))
1737 			kq->kq_state &= ~KQ_SEL;
1738 	}
1739 	if (!knlist_empty(&kq->kq_sel.si_note))
1740 		kqueue_schedtask(kq);
1741 	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
1742 		pgsigio(&kq->kq_sigio, SIGIO, 0);
1743 	}
1744 }
1745 
1746 /*
1747  * Walk down a list of knotes, activating them if their event has triggered.
1748  *
1749  * There is a possibility to optimize in the case of one kq watching another.
1750  * Instead of scheduling a task to wake it up, you could pass enough state
1751  * down the chain to make up the parent kqueue.  Make this code functional
1752  * first.
1753  */
1754 void
1755 knote(struct knlist *list, long hint, int lockflags)
1756 {
1757 	struct kqueue *kq;
1758 	struct knote *kn;
1759 	int error;
1760 
1761 	if (list == NULL)
1762 		return;
1763 
1764 	KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
1765 
1766 	if ((lockflags & KNF_LISTLOCKED) == 0)
1767 		list->kl_lock(list->kl_lockarg);
1768 
1769 	/*
1770 	 * If we unlock the list lock (and set KN_INFLUX), we can eliminate
1771 	 * the kqueue scheduling, but this will introduce four
1772 	 * lock/unlock's for each knote to test.  If we do, continue to use
1773 	 * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
1774 	 * only safe if you want to remove the current item, which we are
1775 	 * not doing.
1776 	 */
1777 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
1778 		kq = kn->kn_kq;
1779 		if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
1780 			KQ_LOCK(kq);
1781 			if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1782 				KQ_UNLOCK(kq);
1783 			} else if ((lockflags & KNF_NOKQLOCK) != 0) {
1784 				kn->kn_status |= KN_INFLUX;
1785 				KQ_UNLOCK(kq);
1786 				error = kn->kn_fop->f_event(kn, hint);
1787 				KQ_LOCK(kq);
1788 				kn->kn_status &= ~KN_INFLUX;
1789 				if (error)
1790 					KNOTE_ACTIVATE(kn, 1);
1791 				KQ_UNLOCK_FLUX(kq);
1792 			} else {
1793 				kn->kn_status |= KN_HASKQLOCK;
1794 				if (kn->kn_fop->f_event(kn, hint))
1795 					KNOTE_ACTIVATE(kn, 1);
1796 				kn->kn_status &= ~KN_HASKQLOCK;
1797 				KQ_UNLOCK(kq);
1798 			}
1799 		}
1800 		kq = NULL;
1801 	}
1802 	if ((lockflags & KNF_LISTLOCKED) == 0)
1803 		list->kl_unlock(list->kl_lockarg);
1804 }
1805 
1806 /*
1807  * add a knote to a knlist
1808  */
1809 void
1810 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
1811 {
1812 	KNL_ASSERT_LOCK(knl, islocked);
1813 	KQ_NOTOWNED(kn->kn_kq);
1814 	KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
1815 	    (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
1816 	if (!islocked)
1817 		knl->kl_lock(knl->kl_lockarg);
1818 	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
1819 	if (!islocked)
1820 		knl->kl_unlock(knl->kl_lockarg);
1821 	KQ_LOCK(kn->kn_kq);
1822 	kn->kn_knlist = knl;
1823 	kn->kn_status &= ~KN_DETACHED;
1824 	KQ_UNLOCK(kn->kn_kq);
1825 }
1826 
1827 static void
1828 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
1829 {
1830 	KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
1831 	KNL_ASSERT_LOCK(knl, knlislocked);
1832 	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
1833 	if (!kqislocked)
1834 		KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
1835     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
1836 	if (!knlislocked)
1837 		knl->kl_lock(knl->kl_lockarg);
1838 	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
1839 	kn->kn_knlist = NULL;
1840 	if (!knlislocked)
1841 		knl->kl_unlock(knl->kl_lockarg);
1842 	if (!kqislocked)
1843 		KQ_LOCK(kn->kn_kq);
1844 	kn->kn_status |= KN_DETACHED;
1845 	if (!kqislocked)
1846 		KQ_UNLOCK(kn->kn_kq);
1847 }
1848 
1849 /*
1850  * remove all knotes from a specified klist
1851  */
1852 void
1853 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
1854 {
1855 
1856 	knlist_remove_kq(knl, kn, islocked, 0);
1857 }
1858 
1859 /*
1860  * remove knote from a specified klist while in f_event handler.
1861  */
1862 void
1863 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
1864 {
1865 
1866 	knlist_remove_kq(knl, kn, 1,
1867 	    (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
1868 }
1869 
1870 int
1871 knlist_empty(struct knlist *knl)
1872 {
1873 
1874 	KNL_ASSERT_LOCKED(knl);
1875 	return SLIST_EMPTY(&knl->kl_list);
1876 }
1877 
1878 static struct mtx	knlist_lock;
1879 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
1880 	MTX_DEF);
1881 static void knlist_mtx_lock(void *arg);
1882 static void knlist_mtx_unlock(void *arg);
1883 
1884 static void
1885 knlist_mtx_lock(void *arg)
1886 {
1887 
1888 	mtx_lock((struct mtx *)arg);
1889 }
1890 
1891 static void
1892 knlist_mtx_unlock(void *arg)
1893 {
1894 
1895 	mtx_unlock((struct mtx *)arg);
1896 }
1897 
1898 static void
1899 knlist_mtx_assert_locked(void *arg)
1900 {
1901 
1902 	mtx_assert((struct mtx *)arg, MA_OWNED);
1903 }
1904 
1905 static void
1906 knlist_mtx_assert_unlocked(void *arg)
1907 {
1908 
1909 	mtx_assert((struct mtx *)arg, MA_NOTOWNED);
1910 }
1911 
1912 static void
1913 knlist_rw_rlock(void *arg)
1914 {
1915 
1916 	rw_rlock((struct rwlock *)arg);
1917 }
1918 
1919 static void
1920 knlist_rw_runlock(void *arg)
1921 {
1922 
1923 	rw_runlock((struct rwlock *)arg);
1924 }
1925 
1926 static void
1927 knlist_rw_assert_locked(void *arg)
1928 {
1929 
1930 	rw_assert((struct rwlock *)arg, RA_LOCKED);
1931 }
1932 
1933 static void
1934 knlist_rw_assert_unlocked(void *arg)
1935 {
1936 
1937 	rw_assert((struct rwlock *)arg, RA_UNLOCKED);
1938 }
1939 
1940 void
1941 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
1942     void (*kl_unlock)(void *),
1943     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
1944 {
1945 
1946 	if (lock == NULL)
1947 		knl->kl_lockarg = &knlist_lock;
1948 	else
1949 		knl->kl_lockarg = lock;
1950 
1951 	if (kl_lock == NULL)
1952 		knl->kl_lock = knlist_mtx_lock;
1953 	else
1954 		knl->kl_lock = kl_lock;
1955 	if (kl_unlock == NULL)
1956 		knl->kl_unlock = knlist_mtx_unlock;
1957 	else
1958 		knl->kl_unlock = kl_unlock;
1959 	if (kl_assert_locked == NULL)
1960 		knl->kl_assert_locked = knlist_mtx_assert_locked;
1961 	else
1962 		knl->kl_assert_locked = kl_assert_locked;
1963 	if (kl_assert_unlocked == NULL)
1964 		knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
1965 	else
1966 		knl->kl_assert_unlocked = kl_assert_unlocked;
1967 
1968 	SLIST_INIT(&knl->kl_list);
1969 }
1970 
1971 void
1972 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
1973 {
1974 
1975 	knlist_init(knl, lock, NULL, NULL, NULL, NULL);
1976 }
1977 
1978 void
1979 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
1980 {
1981 
1982 	knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
1983 	    knlist_rw_assert_locked, knlist_rw_assert_unlocked);
1984 }
1985 
1986 void
1987 knlist_destroy(struct knlist *knl)
1988 {
1989 
1990 #ifdef INVARIANTS
1991 	/*
1992 	 * if we run across this error, we need to find the offending
1993 	 * driver and have it call knlist_clear.
1994 	 */
1995 	if (!SLIST_EMPTY(&knl->kl_list))
1996 		printf("WARNING: destroying knlist w/ knotes on it!\n");
1997 #endif
1998 
1999 	knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
2000 	SLIST_INIT(&knl->kl_list);
2001 }
2002 
2003 /*
2004  * Even if we are locked, we may need to drop the lock to allow any influx
2005  * knotes time to "settle".
2006  */
2007 void
2008 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
2009 {
2010 	struct knote *kn, *kn2;
2011 	struct kqueue *kq;
2012 
2013 	if (islocked)
2014 		KNL_ASSERT_LOCKED(knl);
2015 	else {
2016 		KNL_ASSERT_UNLOCKED(knl);
2017 again:		/* need to reacquire lock since we have dropped it */
2018 		knl->kl_lock(knl->kl_lockarg);
2019 	}
2020 
2021 	SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
2022 		kq = kn->kn_kq;
2023 		KQ_LOCK(kq);
2024 		if ((kn->kn_status & KN_INFLUX)) {
2025 			KQ_UNLOCK(kq);
2026 			continue;
2027 		}
2028 		knlist_remove_kq(knl, kn, 1, 1);
2029 		if (killkn) {
2030 			kn->kn_status |= KN_INFLUX | KN_DETACHED;
2031 			KQ_UNLOCK(kq);
2032 			knote_drop(kn, td);
2033 		} else {
2034 			/* Make sure cleared knotes disappear soon */
2035 			kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2036 			KQ_UNLOCK(kq);
2037 		}
2038 		kq = NULL;
2039 	}
2040 
2041 	if (!SLIST_EMPTY(&knl->kl_list)) {
2042 		/* there are still KN_INFLUX remaining */
2043 		kn = SLIST_FIRST(&knl->kl_list);
2044 		kq = kn->kn_kq;
2045 		KQ_LOCK(kq);
2046 		KASSERT(kn->kn_status & KN_INFLUX,
2047 		    ("knote removed w/o list lock"));
2048 		knl->kl_unlock(knl->kl_lockarg);
2049 		kq->kq_state |= KQ_FLUXWAIT;
2050 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
2051 		kq = NULL;
2052 		goto again;
2053 	}
2054 
2055 	if (islocked)
2056 		KNL_ASSERT_LOCKED(knl);
2057 	else {
2058 		knl->kl_unlock(knl->kl_lockarg);
2059 		KNL_ASSERT_UNLOCKED(knl);
2060 	}
2061 }
2062 
2063 /*
2064  * Remove all knotes referencing a specified fd must be called with FILEDESC
2065  * lock.  This prevents a race where a new fd comes along and occupies the
2066  * entry and we attach a knote to the fd.
2067  */
2068 void
2069 knote_fdclose(struct thread *td, int fd)
2070 {
2071 	struct filedesc *fdp = td->td_proc->p_fd;
2072 	struct kqueue *kq;
2073 	struct knote *kn;
2074 	int influx;
2075 
2076 	FILEDESC_XLOCK_ASSERT(fdp);
2077 
2078 	/*
2079 	 * We shouldn't have to worry about new kevents appearing on fd
2080 	 * since filedesc is locked.
2081 	 */
2082 	SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
2083 		KQ_LOCK(kq);
2084 
2085 again:
2086 		influx = 0;
2087 		while (kq->kq_knlistsize > fd &&
2088 		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
2089 			if (kn->kn_status & KN_INFLUX) {
2090 				/* someone else might be waiting on our knote */
2091 				if (influx)
2092 					wakeup(kq);
2093 				kq->kq_state |= KQ_FLUXWAIT;
2094 				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2095 				goto again;
2096 			}
2097 			kn->kn_status |= KN_INFLUX;
2098 			KQ_UNLOCK(kq);
2099 			if (!(kn->kn_status & KN_DETACHED))
2100 				kn->kn_fop->f_detach(kn);
2101 			knote_drop(kn, td);
2102 			influx = 1;
2103 			KQ_LOCK(kq);
2104 		}
2105 		KQ_UNLOCK_FLUX(kq);
2106 	}
2107 }
2108 
2109 static int
2110 knote_attach(struct knote *kn, struct kqueue *kq)
2111 {
2112 	struct klist *list;
2113 
2114 	KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
2115 	KQ_OWNED(kq);
2116 
2117 	if (kn->kn_fop->f_isfd) {
2118 		if (kn->kn_id >= kq->kq_knlistsize)
2119 			return ENOMEM;
2120 		list = &kq->kq_knlist[kn->kn_id];
2121 	} else {
2122 		if (kq->kq_knhash == NULL)
2123 			return ENOMEM;
2124 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2125 	}
2126 
2127 	SLIST_INSERT_HEAD(list, kn, kn_link);
2128 
2129 	return 0;
2130 }
2131 
2132 /*
2133  * knote must already have been detached using the f_detach method.
2134  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
2135  * to prevent other removal.
2136  */
2137 static void
2138 knote_drop(struct knote *kn, struct thread *td)
2139 {
2140 	struct kqueue *kq;
2141 	struct klist *list;
2142 
2143 	kq = kn->kn_kq;
2144 
2145 	KQ_NOTOWNED(kq);
2146 	KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
2147 	    ("knote_drop called without KN_INFLUX set in kn_status"));
2148 
2149 	KQ_LOCK(kq);
2150 	if (kn->kn_fop->f_isfd)
2151 		list = &kq->kq_knlist[kn->kn_id];
2152 	else
2153 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2154 
2155 	if (!SLIST_EMPTY(list))
2156 		SLIST_REMOVE(list, kn, knote, kn_link);
2157 	if (kn->kn_status & KN_QUEUED)
2158 		knote_dequeue(kn);
2159 	KQ_UNLOCK_FLUX(kq);
2160 
2161 	if (kn->kn_fop->f_isfd) {
2162 		fdrop(kn->kn_fp, td);
2163 		kn->kn_fp = NULL;
2164 	}
2165 	kqueue_fo_release(kn->kn_kevent.filter);
2166 	kn->kn_fop = NULL;
2167 	knote_free(kn);
2168 }
2169 
2170 static void
2171 knote_enqueue(struct knote *kn)
2172 {
2173 	struct kqueue *kq = kn->kn_kq;
2174 
2175 	KQ_OWNED(kn->kn_kq);
2176 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2177 
2178 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2179 	kn->kn_status |= KN_QUEUED;
2180 	kq->kq_count++;
2181 	kqueue_wakeup(kq);
2182 }
2183 
2184 static void
2185 knote_dequeue(struct knote *kn)
2186 {
2187 	struct kqueue *kq = kn->kn_kq;
2188 
2189 	KQ_OWNED(kn->kn_kq);
2190 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2191 
2192 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2193 	kn->kn_status &= ~KN_QUEUED;
2194 	kq->kq_count--;
2195 }
2196 
2197 static void
2198 knote_init(void)
2199 {
2200 
2201 	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
2202 	    NULL, NULL, UMA_ALIGN_PTR, 0);
2203 }
2204 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
2205 
2206 static struct knote *
2207 knote_alloc(int waitok)
2208 {
2209 	return ((struct knote *)uma_zalloc(knote_zone,
2210 	    (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
2211 }
2212 
2213 static void
2214 knote_free(struct knote *kn)
2215 {
2216 	if (kn != NULL)
2217 		uma_zfree(knote_zone, kn);
2218 }
2219 
2220 /*
2221  * Register the kev w/ the kq specified by fd.
2222  */
2223 int
2224 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
2225 {
2226 	struct kqueue *kq;
2227 	struct file *fp;
2228 	int error;
2229 
2230 	if ((error = fget(td, fd, CAP_POST_EVENT, &fp)) != 0)
2231 		return (error);
2232 	if ((error = kqueue_acquire(fp, &kq)) != 0)
2233 		goto noacquire;
2234 
2235 	error = kqueue_register(kq, kev, td, waitok);
2236 
2237 	kqueue_release(kq, 0);
2238 
2239 noacquire:
2240 	fdrop(fp, td);
2241 
2242 	return error;
2243 }
2244