1 /*- 2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 3 * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org> 4 * Copyright (c) 2009 Apple, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_ktrace.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/capability.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/rwlock.h> 41 #include <sys/proc.h> 42 #include <sys/malloc.h> 43 #include <sys/unistd.h> 44 #include <sys/file.h> 45 #include <sys/filedesc.h> 46 #include <sys/filio.h> 47 #include <sys/fcntl.h> 48 #include <sys/kthread.h> 49 #include <sys/selinfo.h> 50 #include <sys/queue.h> 51 #include <sys/event.h> 52 #include <sys/eventvar.h> 53 #include <sys/poll.h> 54 #include <sys/protosw.h> 55 #include <sys/sigio.h> 56 #include <sys/signalvar.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/stat.h> 60 #include <sys/sysctl.h> 61 #include <sys/sysproto.h> 62 #include <sys/syscallsubr.h> 63 #include <sys/taskqueue.h> 64 #include <sys/uio.h> 65 #ifdef KTRACE 66 #include <sys/ktrace.h> 67 #endif 68 69 #include <vm/uma.h> 70 71 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); 72 73 /* 74 * This lock is used if multiple kq locks are required. This possibly 75 * should be made into a per proc lock. 76 */ 77 static struct mtx kq_global; 78 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF); 79 #define KQ_GLOBAL_LOCK(lck, haslck) do { \ 80 if (!haslck) \ 81 mtx_lock(lck); \ 82 haslck = 1; \ 83 } while (0) 84 #define KQ_GLOBAL_UNLOCK(lck, haslck) do { \ 85 if (haslck) \ 86 mtx_unlock(lck); \ 87 haslck = 0; \ 88 } while (0) 89 90 TASKQUEUE_DEFINE_THREAD(kqueue); 91 92 static int kevent_copyout(void *arg, struct kevent *kevp, int count); 93 static int kevent_copyin(void *arg, struct kevent *kevp, int count); 94 static int kqueue_register(struct kqueue *kq, struct kevent *kev, 95 struct thread *td, int waitok); 96 static int kqueue_acquire(struct file *fp, struct kqueue **kqp); 97 static void kqueue_release(struct kqueue *kq, int locked); 98 static int kqueue_expand(struct kqueue *kq, struct filterops *fops, 99 uintptr_t ident, int waitok); 100 static void kqueue_task(void *arg, int pending); 101 static int kqueue_scan(struct kqueue *kq, int maxevents, 102 struct kevent_copyops *k_ops, 103 const struct timespec *timeout, 104 struct kevent *keva, struct thread *td); 105 static void kqueue_wakeup(struct kqueue *kq); 106 static struct filterops *kqueue_fo_find(int filt); 107 static void kqueue_fo_release(int filt); 108 109 static fo_rdwr_t kqueue_read; 110 static fo_rdwr_t kqueue_write; 111 static fo_truncate_t kqueue_truncate; 112 static fo_ioctl_t kqueue_ioctl; 113 static fo_poll_t kqueue_poll; 114 static fo_kqfilter_t kqueue_kqfilter; 115 static fo_stat_t kqueue_stat; 116 static fo_close_t kqueue_close; 117 118 static struct fileops kqueueops = { 119 .fo_read = kqueue_read, 120 .fo_write = kqueue_write, 121 .fo_truncate = kqueue_truncate, 122 .fo_ioctl = kqueue_ioctl, 123 .fo_poll = kqueue_poll, 124 .fo_kqfilter = kqueue_kqfilter, 125 .fo_stat = kqueue_stat, 126 .fo_close = kqueue_close, 127 .fo_chmod = invfo_chmod, 128 .fo_chown = invfo_chown, 129 }; 130 131 static int knote_attach(struct knote *kn, struct kqueue *kq); 132 static void knote_drop(struct knote *kn, struct thread *td); 133 static void knote_enqueue(struct knote *kn); 134 static void knote_dequeue(struct knote *kn); 135 static void knote_init(void); 136 static struct knote *knote_alloc(int waitok); 137 static void knote_free(struct knote *kn); 138 139 static void filt_kqdetach(struct knote *kn); 140 static int filt_kqueue(struct knote *kn, long hint); 141 static int filt_procattach(struct knote *kn); 142 static void filt_procdetach(struct knote *kn); 143 static int filt_proc(struct knote *kn, long hint); 144 static int filt_fileattach(struct knote *kn); 145 static void filt_timerexpire(void *knx); 146 static int filt_timerattach(struct knote *kn); 147 static void filt_timerdetach(struct knote *kn); 148 static int filt_timer(struct knote *kn, long hint); 149 static int filt_userattach(struct knote *kn); 150 static void filt_userdetach(struct knote *kn); 151 static int filt_user(struct knote *kn, long hint); 152 static void filt_usertouch(struct knote *kn, struct kevent *kev, 153 u_long type); 154 155 static struct filterops file_filtops = { 156 .f_isfd = 1, 157 .f_attach = filt_fileattach, 158 }; 159 static struct filterops kqread_filtops = { 160 .f_isfd = 1, 161 .f_detach = filt_kqdetach, 162 .f_event = filt_kqueue, 163 }; 164 /* XXX - move to kern_proc.c? */ 165 static struct filterops proc_filtops = { 166 .f_isfd = 0, 167 .f_attach = filt_procattach, 168 .f_detach = filt_procdetach, 169 .f_event = filt_proc, 170 }; 171 static struct filterops timer_filtops = { 172 .f_isfd = 0, 173 .f_attach = filt_timerattach, 174 .f_detach = filt_timerdetach, 175 .f_event = filt_timer, 176 }; 177 static struct filterops user_filtops = { 178 .f_attach = filt_userattach, 179 .f_detach = filt_userdetach, 180 .f_event = filt_user, 181 .f_touch = filt_usertouch, 182 }; 183 184 static uma_zone_t knote_zone; 185 static int kq_ncallouts = 0; 186 static int kq_calloutmax = (4 * 1024); 187 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW, 188 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue"); 189 190 /* XXX - ensure not KN_INFLUX?? */ 191 #define KNOTE_ACTIVATE(kn, islock) do { \ 192 if ((islock)) \ 193 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED); \ 194 else \ 195 KQ_LOCK((kn)->kn_kq); \ 196 (kn)->kn_status |= KN_ACTIVE; \ 197 if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \ 198 knote_enqueue((kn)); \ 199 if (!(islock)) \ 200 KQ_UNLOCK((kn)->kn_kq); \ 201 } while(0) 202 #define KQ_LOCK(kq) do { \ 203 mtx_lock(&(kq)->kq_lock); \ 204 } while (0) 205 #define KQ_FLUX_WAKEUP(kq) do { \ 206 if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) { \ 207 (kq)->kq_state &= ~KQ_FLUXWAIT; \ 208 wakeup((kq)); \ 209 } \ 210 } while (0) 211 #define KQ_UNLOCK_FLUX(kq) do { \ 212 KQ_FLUX_WAKEUP(kq); \ 213 mtx_unlock(&(kq)->kq_lock); \ 214 } while (0) 215 #define KQ_UNLOCK(kq) do { \ 216 mtx_unlock(&(kq)->kq_lock); \ 217 } while (0) 218 #define KQ_OWNED(kq) do { \ 219 mtx_assert(&(kq)->kq_lock, MA_OWNED); \ 220 } while (0) 221 #define KQ_NOTOWNED(kq) do { \ 222 mtx_assert(&(kq)->kq_lock, MA_NOTOWNED); \ 223 } while (0) 224 #define KN_LIST_LOCK(kn) do { \ 225 if (kn->kn_knlist != NULL) \ 226 kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg); \ 227 } while (0) 228 #define KN_LIST_UNLOCK(kn) do { \ 229 if (kn->kn_knlist != NULL) \ 230 kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg); \ 231 } while (0) 232 #define KNL_ASSERT_LOCK(knl, islocked) do { \ 233 if (islocked) \ 234 KNL_ASSERT_LOCKED(knl); \ 235 else \ 236 KNL_ASSERT_UNLOCKED(knl); \ 237 } while (0) 238 #ifdef INVARIANTS 239 #define KNL_ASSERT_LOCKED(knl) do { \ 240 knl->kl_assert_locked((knl)->kl_lockarg); \ 241 } while (0) 242 #define KNL_ASSERT_UNLOCKED(knl) do { \ 243 knl->kl_assert_unlocked((knl)->kl_lockarg); \ 244 } while (0) 245 #else /* !INVARIANTS */ 246 #define KNL_ASSERT_LOCKED(knl) do {} while(0) 247 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0) 248 #endif /* INVARIANTS */ 249 250 #define KN_HASHSIZE 64 /* XXX should be tunable */ 251 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 252 253 static int 254 filt_nullattach(struct knote *kn) 255 { 256 257 return (ENXIO); 258 }; 259 260 struct filterops null_filtops = { 261 .f_isfd = 0, 262 .f_attach = filt_nullattach, 263 }; 264 265 /* XXX - make SYSINIT to add these, and move into respective modules. */ 266 extern struct filterops sig_filtops; 267 extern struct filterops fs_filtops; 268 269 /* 270 * Table for for all system-defined filters. 271 */ 272 static struct mtx filterops_lock; 273 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops", 274 MTX_DEF); 275 static struct { 276 struct filterops *for_fop; 277 int for_refcnt; 278 } sysfilt_ops[EVFILT_SYSCOUNT] = { 279 { &file_filtops }, /* EVFILT_READ */ 280 { &file_filtops }, /* EVFILT_WRITE */ 281 { &null_filtops }, /* EVFILT_AIO */ 282 { &file_filtops }, /* EVFILT_VNODE */ 283 { &proc_filtops }, /* EVFILT_PROC */ 284 { &sig_filtops }, /* EVFILT_SIGNAL */ 285 { &timer_filtops }, /* EVFILT_TIMER */ 286 { &null_filtops }, /* former EVFILT_NETDEV */ 287 { &fs_filtops }, /* EVFILT_FS */ 288 { &null_filtops }, /* EVFILT_LIO */ 289 { &user_filtops }, /* EVFILT_USER */ 290 }; 291 292 /* 293 * Simple redirection for all cdevsw style objects to call their fo_kqfilter 294 * method. 295 */ 296 static int 297 filt_fileattach(struct knote *kn) 298 { 299 300 return (fo_kqfilter(kn->kn_fp, kn)); 301 } 302 303 /*ARGSUSED*/ 304 static int 305 kqueue_kqfilter(struct file *fp, struct knote *kn) 306 { 307 struct kqueue *kq = kn->kn_fp->f_data; 308 309 if (kn->kn_filter != EVFILT_READ) 310 return (EINVAL); 311 312 kn->kn_status |= KN_KQUEUE; 313 kn->kn_fop = &kqread_filtops; 314 knlist_add(&kq->kq_sel.si_note, kn, 0); 315 316 return (0); 317 } 318 319 static void 320 filt_kqdetach(struct knote *kn) 321 { 322 struct kqueue *kq = kn->kn_fp->f_data; 323 324 knlist_remove(&kq->kq_sel.si_note, kn, 0); 325 } 326 327 /*ARGSUSED*/ 328 static int 329 filt_kqueue(struct knote *kn, long hint) 330 { 331 struct kqueue *kq = kn->kn_fp->f_data; 332 333 kn->kn_data = kq->kq_count; 334 return (kn->kn_data > 0); 335 } 336 337 /* XXX - move to kern_proc.c? */ 338 static int 339 filt_procattach(struct knote *kn) 340 { 341 struct proc *p; 342 int immediate; 343 int error; 344 345 immediate = 0; 346 p = pfind(kn->kn_id); 347 if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) { 348 p = zpfind(kn->kn_id); 349 immediate = 1; 350 } else if (p != NULL && (p->p_flag & P_WEXIT)) { 351 immediate = 1; 352 } 353 354 if (p == NULL) 355 return (ESRCH); 356 if ((error = p_cansee(curthread, p))) { 357 PROC_UNLOCK(p); 358 return (error); 359 } 360 361 kn->kn_ptr.p_proc = p; 362 kn->kn_flags |= EV_CLEAR; /* automatically set */ 363 364 /* 365 * internal flag indicating registration done by kernel 366 */ 367 if (kn->kn_flags & EV_FLAG1) { 368 kn->kn_data = kn->kn_sdata; /* ppid */ 369 kn->kn_fflags = NOTE_CHILD; 370 kn->kn_flags &= ~EV_FLAG1; 371 } 372 373 if (immediate == 0) 374 knlist_add(&p->p_klist, kn, 1); 375 376 /* 377 * Immediately activate any exit notes if the target process is a 378 * zombie. This is necessary to handle the case where the target 379 * process, e.g. a child, dies before the kevent is registered. 380 */ 381 if (immediate && filt_proc(kn, NOTE_EXIT)) 382 KNOTE_ACTIVATE(kn, 0); 383 384 PROC_UNLOCK(p); 385 386 return (0); 387 } 388 389 /* 390 * The knote may be attached to a different process, which may exit, 391 * leaving nothing for the knote to be attached to. So when the process 392 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 393 * it will be deleted when read out. However, as part of the knote deletion, 394 * this routine is called, so a check is needed to avoid actually performing 395 * a detach, because the original process does not exist any more. 396 */ 397 /* XXX - move to kern_proc.c? */ 398 static void 399 filt_procdetach(struct knote *kn) 400 { 401 struct proc *p; 402 403 p = kn->kn_ptr.p_proc; 404 knlist_remove(&p->p_klist, kn, 0); 405 kn->kn_ptr.p_proc = NULL; 406 } 407 408 /* XXX - move to kern_proc.c? */ 409 static int 410 filt_proc(struct knote *kn, long hint) 411 { 412 struct proc *p = kn->kn_ptr.p_proc; 413 u_int event; 414 415 /* 416 * mask off extra data 417 */ 418 event = (u_int)hint & NOTE_PCTRLMASK; 419 420 /* 421 * if the user is interested in this event, record it. 422 */ 423 if (kn->kn_sfflags & event) 424 kn->kn_fflags |= event; 425 426 /* 427 * process is gone, so flag the event as finished. 428 */ 429 if (event == NOTE_EXIT) { 430 if (!(kn->kn_status & KN_DETACHED)) 431 knlist_remove_inevent(&p->p_klist, kn); 432 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 433 kn->kn_data = p->p_xstat; 434 kn->kn_ptr.p_proc = NULL; 435 return (1); 436 } 437 438 return (kn->kn_fflags != 0); 439 } 440 441 /* 442 * Called when the process forked. It mostly does the same as the 443 * knote(), activating all knotes registered to be activated when the 444 * process forked. Additionally, for each knote attached to the 445 * parent, check whether user wants to track the new process. If so 446 * attach a new knote to it, and immediately report an event with the 447 * child's pid. 448 */ 449 void 450 knote_fork(struct knlist *list, int pid) 451 { 452 struct kqueue *kq; 453 struct knote *kn; 454 struct kevent kev; 455 int error; 456 457 if (list == NULL) 458 return; 459 list->kl_lock(list->kl_lockarg); 460 461 SLIST_FOREACH(kn, &list->kl_list, kn_selnext) { 462 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) 463 continue; 464 kq = kn->kn_kq; 465 KQ_LOCK(kq); 466 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) { 467 KQ_UNLOCK(kq); 468 continue; 469 } 470 471 /* 472 * The same as knote(), activate the event. 473 */ 474 if ((kn->kn_sfflags & NOTE_TRACK) == 0) { 475 kn->kn_status |= KN_HASKQLOCK; 476 if (kn->kn_fop->f_event(kn, NOTE_FORK | pid)) 477 KNOTE_ACTIVATE(kn, 1); 478 kn->kn_status &= ~KN_HASKQLOCK; 479 KQ_UNLOCK(kq); 480 continue; 481 } 482 483 /* 484 * The NOTE_TRACK case. In addition to the activation 485 * of the event, we need to register new event to 486 * track the child. Drop the locks in preparation for 487 * the call to kqueue_register(). 488 */ 489 kn->kn_status |= KN_INFLUX; 490 KQ_UNLOCK(kq); 491 list->kl_unlock(list->kl_lockarg); 492 493 /* 494 * Activate existing knote and register a knote with 495 * new process. 496 */ 497 kev.ident = pid; 498 kev.filter = kn->kn_filter; 499 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1; 500 kev.fflags = kn->kn_sfflags; 501 kev.data = kn->kn_id; /* parent */ 502 kev.udata = kn->kn_kevent.udata;/* preserve udata */ 503 error = kqueue_register(kq, &kev, NULL, 0); 504 if (kn->kn_fop->f_event(kn, NOTE_FORK | pid)) 505 KNOTE_ACTIVATE(kn, 0); 506 if (error) 507 kn->kn_fflags |= NOTE_TRACKERR; 508 KQ_LOCK(kq); 509 kn->kn_status &= ~KN_INFLUX; 510 KQ_UNLOCK_FLUX(kq); 511 list->kl_lock(list->kl_lockarg); 512 } 513 list->kl_unlock(list->kl_lockarg); 514 } 515 516 static int 517 timertoticks(intptr_t data) 518 { 519 struct timeval tv; 520 int tticks; 521 522 tv.tv_sec = data / 1000; 523 tv.tv_usec = (data % 1000) * 1000; 524 tticks = tvtohz(&tv); 525 526 return tticks; 527 } 528 529 /* XXX - move to kern_timeout.c? */ 530 static void 531 filt_timerexpire(void *knx) 532 { 533 struct knote *kn = knx; 534 struct callout *calloutp; 535 536 kn->kn_data++; 537 KNOTE_ACTIVATE(kn, 0); /* XXX - handle locking */ 538 539 if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) { 540 calloutp = (struct callout *)kn->kn_hook; 541 callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata), 542 filt_timerexpire, kn); 543 } 544 } 545 546 /* 547 * data contains amount of time to sleep, in milliseconds 548 */ 549 /* XXX - move to kern_timeout.c? */ 550 static int 551 filt_timerattach(struct knote *kn) 552 { 553 struct callout *calloutp; 554 555 atomic_add_int(&kq_ncallouts, 1); 556 557 if (kq_ncallouts >= kq_calloutmax) { 558 atomic_add_int(&kq_ncallouts, -1); 559 return (ENOMEM); 560 } 561 562 kn->kn_flags |= EV_CLEAR; /* automatically set */ 563 kn->kn_status &= ~KN_DETACHED; /* knlist_add usually sets it */ 564 calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK); 565 callout_init(calloutp, CALLOUT_MPSAFE); 566 kn->kn_hook = calloutp; 567 callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata), 568 filt_timerexpire, kn); 569 570 return (0); 571 } 572 573 /* XXX - move to kern_timeout.c? */ 574 static void 575 filt_timerdetach(struct knote *kn) 576 { 577 struct callout *calloutp; 578 579 calloutp = (struct callout *)kn->kn_hook; 580 callout_drain(calloutp); 581 free(calloutp, M_KQUEUE); 582 atomic_add_int(&kq_ncallouts, -1); 583 kn->kn_status |= KN_DETACHED; /* knlist_remove usually clears it */ 584 } 585 586 /* XXX - move to kern_timeout.c? */ 587 static int 588 filt_timer(struct knote *kn, long hint) 589 { 590 591 return (kn->kn_data != 0); 592 } 593 594 static int 595 filt_userattach(struct knote *kn) 596 { 597 598 /* 599 * EVFILT_USER knotes are not attached to anything in the kernel. 600 */ 601 kn->kn_hook = NULL; 602 if (kn->kn_fflags & NOTE_TRIGGER) 603 kn->kn_hookid = 1; 604 else 605 kn->kn_hookid = 0; 606 return (0); 607 } 608 609 static void 610 filt_userdetach(__unused struct knote *kn) 611 { 612 613 /* 614 * EVFILT_USER knotes are not attached to anything in the kernel. 615 */ 616 } 617 618 static int 619 filt_user(struct knote *kn, __unused long hint) 620 { 621 622 return (kn->kn_hookid); 623 } 624 625 static void 626 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type) 627 { 628 u_int ffctrl; 629 630 switch (type) { 631 case EVENT_REGISTER: 632 if (kev->fflags & NOTE_TRIGGER) 633 kn->kn_hookid = 1; 634 635 ffctrl = kev->fflags & NOTE_FFCTRLMASK; 636 kev->fflags &= NOTE_FFLAGSMASK; 637 switch (ffctrl) { 638 case NOTE_FFNOP: 639 break; 640 641 case NOTE_FFAND: 642 kn->kn_sfflags &= kev->fflags; 643 break; 644 645 case NOTE_FFOR: 646 kn->kn_sfflags |= kev->fflags; 647 break; 648 649 case NOTE_FFCOPY: 650 kn->kn_sfflags = kev->fflags; 651 break; 652 653 default: 654 /* XXX Return error? */ 655 break; 656 } 657 kn->kn_sdata = kev->data; 658 if (kev->flags & EV_CLEAR) { 659 kn->kn_hookid = 0; 660 kn->kn_data = 0; 661 kn->kn_fflags = 0; 662 } 663 break; 664 665 case EVENT_PROCESS: 666 *kev = kn->kn_kevent; 667 kev->fflags = kn->kn_sfflags; 668 kev->data = kn->kn_sdata; 669 if (kn->kn_flags & EV_CLEAR) { 670 kn->kn_hookid = 0; 671 kn->kn_data = 0; 672 kn->kn_fflags = 0; 673 } 674 break; 675 676 default: 677 panic("filt_usertouch() - invalid type (%ld)", type); 678 break; 679 } 680 } 681 682 int 683 sys_kqueue(struct thread *td, struct kqueue_args *uap) 684 { 685 struct filedesc *fdp; 686 struct kqueue *kq; 687 struct file *fp; 688 int fd, error; 689 690 fdp = td->td_proc->p_fd; 691 error = falloc(td, &fp, &fd, 0); 692 if (error) 693 goto done2; 694 695 /* An extra reference on `nfp' has been held for us by falloc(). */ 696 kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO); 697 mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK); 698 TAILQ_INIT(&kq->kq_head); 699 kq->kq_fdp = fdp; 700 knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock); 701 TASK_INIT(&kq->kq_task, 0, kqueue_task, kq); 702 703 FILEDESC_XLOCK(fdp); 704 SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list); 705 FILEDESC_XUNLOCK(fdp); 706 707 finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops); 708 fdrop(fp, td); 709 710 td->td_retval[0] = fd; 711 done2: 712 return (error); 713 } 714 715 #ifndef _SYS_SYSPROTO_H_ 716 struct kevent_args { 717 int fd; 718 const struct kevent *changelist; 719 int nchanges; 720 struct kevent *eventlist; 721 int nevents; 722 const struct timespec *timeout; 723 }; 724 #endif 725 int 726 sys_kevent(struct thread *td, struct kevent_args *uap) 727 { 728 struct timespec ts, *tsp; 729 struct kevent_copyops k_ops = { uap, 730 kevent_copyout, 731 kevent_copyin}; 732 int error; 733 #ifdef KTRACE 734 struct uio ktruio; 735 struct iovec ktriov; 736 struct uio *ktruioin = NULL; 737 struct uio *ktruioout = NULL; 738 #endif 739 740 if (uap->timeout != NULL) { 741 error = copyin(uap->timeout, &ts, sizeof(ts)); 742 if (error) 743 return (error); 744 tsp = &ts; 745 } else 746 tsp = NULL; 747 748 #ifdef KTRACE 749 if (KTRPOINT(td, KTR_GENIO)) { 750 ktriov.iov_base = uap->changelist; 751 ktriov.iov_len = uap->nchanges * sizeof(struct kevent); 752 ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1, 753 .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ, 754 .uio_td = td }; 755 ktruioin = cloneuio(&ktruio); 756 ktriov.iov_base = uap->eventlist; 757 ktriov.iov_len = uap->nevents * sizeof(struct kevent); 758 ktruioout = cloneuio(&ktruio); 759 } 760 #endif 761 762 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 763 &k_ops, tsp); 764 765 #ifdef KTRACE 766 if (ktruioin != NULL) { 767 ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent); 768 ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0); 769 ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent); 770 ktrgenio(uap->fd, UIO_READ, ktruioout, error); 771 } 772 #endif 773 774 return (error); 775 } 776 777 /* 778 * Copy 'count' items into the destination list pointed to by uap->eventlist. 779 */ 780 static int 781 kevent_copyout(void *arg, struct kevent *kevp, int count) 782 { 783 struct kevent_args *uap; 784 int error; 785 786 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 787 uap = (struct kevent_args *)arg; 788 789 error = copyout(kevp, uap->eventlist, count * sizeof *kevp); 790 if (error == 0) 791 uap->eventlist += count; 792 return (error); 793 } 794 795 /* 796 * Copy 'count' items from the list pointed to by uap->changelist. 797 */ 798 static int 799 kevent_copyin(void *arg, struct kevent *kevp, int count) 800 { 801 struct kevent_args *uap; 802 int error; 803 804 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 805 uap = (struct kevent_args *)arg; 806 807 error = copyin(uap->changelist, kevp, count * sizeof *kevp); 808 if (error == 0) 809 uap->changelist += count; 810 return (error); 811 } 812 813 int 814 kern_kevent(struct thread *td, int fd, int nchanges, int nevents, 815 struct kevent_copyops *k_ops, const struct timespec *timeout) 816 { 817 struct kevent keva[KQ_NEVENTS]; 818 struct kevent *kevp, *changes; 819 struct kqueue *kq; 820 struct file *fp; 821 int i, n, nerrors, error; 822 823 if ((error = fget(td, fd, CAP_POST_EVENT, &fp)) != 0) 824 return (error); 825 if ((error = kqueue_acquire(fp, &kq)) != 0) 826 goto done_norel; 827 828 nerrors = 0; 829 830 while (nchanges > 0) { 831 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges; 832 error = k_ops->k_copyin(k_ops->arg, keva, n); 833 if (error) 834 goto done; 835 changes = keva; 836 for (i = 0; i < n; i++) { 837 kevp = &changes[i]; 838 if (!kevp->filter) 839 continue; 840 kevp->flags &= ~EV_SYSFLAGS; 841 error = kqueue_register(kq, kevp, td, 1); 842 if (error || (kevp->flags & EV_RECEIPT)) { 843 if (nevents != 0) { 844 kevp->flags = EV_ERROR; 845 kevp->data = error; 846 (void) k_ops->k_copyout(k_ops->arg, 847 kevp, 1); 848 nevents--; 849 nerrors++; 850 } else { 851 goto done; 852 } 853 } 854 } 855 nchanges -= n; 856 } 857 if (nerrors) { 858 td->td_retval[0] = nerrors; 859 error = 0; 860 goto done; 861 } 862 863 error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td); 864 done: 865 kqueue_release(kq, 0); 866 done_norel: 867 fdrop(fp, td); 868 return (error); 869 } 870 871 int 872 kqueue_add_filteropts(int filt, struct filterops *filtops) 873 { 874 int error; 875 876 error = 0; 877 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) { 878 printf( 879 "trying to add a filterop that is out of range: %d is beyond %d\n", 880 ~filt, EVFILT_SYSCOUNT); 881 return EINVAL; 882 } 883 mtx_lock(&filterops_lock); 884 if (sysfilt_ops[~filt].for_fop != &null_filtops && 885 sysfilt_ops[~filt].for_fop != NULL) 886 error = EEXIST; 887 else { 888 sysfilt_ops[~filt].for_fop = filtops; 889 sysfilt_ops[~filt].for_refcnt = 0; 890 } 891 mtx_unlock(&filterops_lock); 892 893 return (error); 894 } 895 896 int 897 kqueue_del_filteropts(int filt) 898 { 899 int error; 900 901 error = 0; 902 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) 903 return EINVAL; 904 905 mtx_lock(&filterops_lock); 906 if (sysfilt_ops[~filt].for_fop == &null_filtops || 907 sysfilt_ops[~filt].for_fop == NULL) 908 error = EINVAL; 909 else if (sysfilt_ops[~filt].for_refcnt != 0) 910 error = EBUSY; 911 else { 912 sysfilt_ops[~filt].for_fop = &null_filtops; 913 sysfilt_ops[~filt].for_refcnt = 0; 914 } 915 mtx_unlock(&filterops_lock); 916 917 return error; 918 } 919 920 static struct filterops * 921 kqueue_fo_find(int filt) 922 { 923 924 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) 925 return NULL; 926 927 mtx_lock(&filterops_lock); 928 sysfilt_ops[~filt].for_refcnt++; 929 if (sysfilt_ops[~filt].for_fop == NULL) 930 sysfilt_ops[~filt].for_fop = &null_filtops; 931 mtx_unlock(&filterops_lock); 932 933 return sysfilt_ops[~filt].for_fop; 934 } 935 936 static void 937 kqueue_fo_release(int filt) 938 { 939 940 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) 941 return; 942 943 mtx_lock(&filterops_lock); 944 KASSERT(sysfilt_ops[~filt].for_refcnt > 0, 945 ("filter object refcount not valid on release")); 946 sysfilt_ops[~filt].for_refcnt--; 947 mtx_unlock(&filterops_lock); 948 } 949 950 /* 951 * A ref to kq (obtained via kqueue_acquire) must be held. waitok will 952 * influence if memory allocation should wait. Make sure it is 0 if you 953 * hold any mutexes. 954 */ 955 static int 956 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok) 957 { 958 struct filterops *fops; 959 struct file *fp; 960 struct knote *kn, *tkn; 961 int error, filt, event; 962 int haskqglobal; 963 964 fp = NULL; 965 kn = NULL; 966 error = 0; 967 haskqglobal = 0; 968 969 filt = kev->filter; 970 fops = kqueue_fo_find(filt); 971 if (fops == NULL) 972 return EINVAL; 973 974 tkn = knote_alloc(waitok); /* prevent waiting with locks */ 975 976 findkn: 977 if (fops->f_isfd) { 978 KASSERT(td != NULL, ("td is NULL")); 979 error = fget(td, kev->ident, CAP_POLL_EVENT, &fp); 980 if (error) 981 goto done; 982 983 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops, 984 kev->ident, 0) != 0) { 985 /* try again */ 986 fdrop(fp, td); 987 fp = NULL; 988 error = kqueue_expand(kq, fops, kev->ident, waitok); 989 if (error) 990 goto done; 991 goto findkn; 992 } 993 994 if (fp->f_type == DTYPE_KQUEUE) { 995 /* 996 * if we add some inteligence about what we are doing, 997 * we should be able to support events on ourselves. 998 * We need to know when we are doing this to prevent 999 * getting both the knlist lock and the kq lock since 1000 * they are the same thing. 1001 */ 1002 if (fp->f_data == kq) { 1003 error = EINVAL; 1004 goto done; 1005 } 1006 1007 KQ_GLOBAL_LOCK(&kq_global, haskqglobal); 1008 } 1009 1010 KQ_LOCK(kq); 1011 if (kev->ident < kq->kq_knlistsize) { 1012 SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link) 1013 if (kev->filter == kn->kn_filter) 1014 break; 1015 } 1016 } else { 1017 if ((kev->flags & EV_ADD) == EV_ADD) 1018 kqueue_expand(kq, fops, kev->ident, waitok); 1019 1020 KQ_LOCK(kq); 1021 if (kq->kq_knhashmask != 0) { 1022 struct klist *list; 1023 1024 list = &kq->kq_knhash[ 1025 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)]; 1026 SLIST_FOREACH(kn, list, kn_link) 1027 if (kev->ident == kn->kn_id && 1028 kev->filter == kn->kn_filter) 1029 break; 1030 } 1031 } 1032 1033 /* knote is in the process of changing, wait for it to stablize. */ 1034 if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) { 1035 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1036 kq->kq_state |= KQ_FLUXWAIT; 1037 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0); 1038 if (fp != NULL) { 1039 fdrop(fp, td); 1040 fp = NULL; 1041 } 1042 goto findkn; 1043 } 1044 1045 /* 1046 * kn now contains the matching knote, or NULL if no match 1047 */ 1048 if (kn == NULL) { 1049 if (kev->flags & EV_ADD) { 1050 kn = tkn; 1051 tkn = NULL; 1052 if (kn == NULL) { 1053 KQ_UNLOCK(kq); 1054 error = ENOMEM; 1055 goto done; 1056 } 1057 kn->kn_fp = fp; 1058 kn->kn_kq = kq; 1059 kn->kn_fop = fops; 1060 /* 1061 * apply reference counts to knote structure, and 1062 * do not release it at the end of this routine. 1063 */ 1064 fops = NULL; 1065 fp = NULL; 1066 1067 kn->kn_sfflags = kev->fflags; 1068 kn->kn_sdata = kev->data; 1069 kev->fflags = 0; 1070 kev->data = 0; 1071 kn->kn_kevent = *kev; 1072 kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE | 1073 EV_ENABLE | EV_DISABLE); 1074 kn->kn_status = KN_INFLUX|KN_DETACHED; 1075 1076 error = knote_attach(kn, kq); 1077 KQ_UNLOCK(kq); 1078 if (error != 0) { 1079 tkn = kn; 1080 goto done; 1081 } 1082 1083 if ((error = kn->kn_fop->f_attach(kn)) != 0) { 1084 knote_drop(kn, td); 1085 goto done; 1086 } 1087 KN_LIST_LOCK(kn); 1088 goto done_ev_add; 1089 } else { 1090 /* No matching knote and the EV_ADD flag is not set. */ 1091 KQ_UNLOCK(kq); 1092 error = ENOENT; 1093 goto done; 1094 } 1095 } 1096 1097 if (kev->flags & EV_DELETE) { 1098 kn->kn_status |= KN_INFLUX; 1099 KQ_UNLOCK(kq); 1100 if (!(kn->kn_status & KN_DETACHED)) 1101 kn->kn_fop->f_detach(kn); 1102 knote_drop(kn, td); 1103 goto done; 1104 } 1105 1106 /* 1107 * The user may change some filter values after the initial EV_ADD, 1108 * but doing so will not reset any filter which has already been 1109 * triggered. 1110 */ 1111 kn->kn_status |= KN_INFLUX; 1112 KQ_UNLOCK(kq); 1113 KN_LIST_LOCK(kn); 1114 kn->kn_kevent.udata = kev->udata; 1115 if (!fops->f_isfd && fops->f_touch != NULL) { 1116 fops->f_touch(kn, kev, EVENT_REGISTER); 1117 } else { 1118 kn->kn_sfflags = kev->fflags; 1119 kn->kn_sdata = kev->data; 1120 } 1121 1122 /* 1123 * We can get here with kn->kn_knlist == NULL. This can happen when 1124 * the initial attach event decides that the event is "completed" 1125 * already. i.e. filt_procattach is called on a zombie process. It 1126 * will call filt_proc which will remove it from the list, and NULL 1127 * kn_knlist. 1128 */ 1129 done_ev_add: 1130 event = kn->kn_fop->f_event(kn, 0); 1131 KQ_LOCK(kq); 1132 if (event) 1133 KNOTE_ACTIVATE(kn, 1); 1134 kn->kn_status &= ~KN_INFLUX; 1135 KN_LIST_UNLOCK(kn); 1136 1137 if ((kev->flags & EV_DISABLE) && 1138 ((kn->kn_status & KN_DISABLED) == 0)) { 1139 kn->kn_status |= KN_DISABLED; 1140 } 1141 1142 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { 1143 kn->kn_status &= ~KN_DISABLED; 1144 if ((kn->kn_status & KN_ACTIVE) && 1145 ((kn->kn_status & KN_QUEUED) == 0)) 1146 knote_enqueue(kn); 1147 } 1148 KQ_UNLOCK_FLUX(kq); 1149 1150 done: 1151 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1152 if (fp != NULL) 1153 fdrop(fp, td); 1154 if (tkn != NULL) 1155 knote_free(tkn); 1156 if (fops != NULL) 1157 kqueue_fo_release(filt); 1158 return (error); 1159 } 1160 1161 static int 1162 kqueue_acquire(struct file *fp, struct kqueue **kqp) 1163 { 1164 int error; 1165 struct kqueue *kq; 1166 1167 error = 0; 1168 1169 kq = fp->f_data; 1170 if (fp->f_type != DTYPE_KQUEUE || kq == NULL) 1171 return (EBADF); 1172 *kqp = kq; 1173 KQ_LOCK(kq); 1174 if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) { 1175 KQ_UNLOCK(kq); 1176 return (EBADF); 1177 } 1178 kq->kq_refcnt++; 1179 KQ_UNLOCK(kq); 1180 1181 return error; 1182 } 1183 1184 static void 1185 kqueue_release(struct kqueue *kq, int locked) 1186 { 1187 if (locked) 1188 KQ_OWNED(kq); 1189 else 1190 KQ_LOCK(kq); 1191 kq->kq_refcnt--; 1192 if (kq->kq_refcnt == 1) 1193 wakeup(&kq->kq_refcnt); 1194 if (!locked) 1195 KQ_UNLOCK(kq); 1196 } 1197 1198 static void 1199 kqueue_schedtask(struct kqueue *kq) 1200 { 1201 1202 KQ_OWNED(kq); 1203 KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN), 1204 ("scheduling kqueue task while draining")); 1205 1206 if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) { 1207 taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task); 1208 kq->kq_state |= KQ_TASKSCHED; 1209 } 1210 } 1211 1212 /* 1213 * Expand the kq to make sure we have storage for fops/ident pair. 1214 * 1215 * Return 0 on success (or no work necessary), return errno on failure. 1216 * 1217 * Not calling hashinit w/ waitok (proper malloc flag) should be safe. 1218 * If kqueue_register is called from a non-fd context, there usually/should 1219 * be no locks held. 1220 */ 1221 static int 1222 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident, 1223 int waitok) 1224 { 1225 struct klist *list, *tmp_knhash, *to_free; 1226 u_long tmp_knhashmask; 1227 int size; 1228 int fd; 1229 int mflag = waitok ? M_WAITOK : M_NOWAIT; 1230 1231 KQ_NOTOWNED(kq); 1232 1233 to_free = NULL; 1234 if (fops->f_isfd) { 1235 fd = ident; 1236 if (kq->kq_knlistsize <= fd) { 1237 size = kq->kq_knlistsize; 1238 while (size <= fd) 1239 size += KQEXTENT; 1240 list = malloc(size * sizeof(*list), M_KQUEUE, mflag); 1241 if (list == NULL) 1242 return ENOMEM; 1243 KQ_LOCK(kq); 1244 if (kq->kq_knlistsize > fd) { 1245 to_free = list; 1246 list = NULL; 1247 } else { 1248 if (kq->kq_knlist != NULL) { 1249 bcopy(kq->kq_knlist, list, 1250 kq->kq_knlistsize * sizeof(*list)); 1251 to_free = kq->kq_knlist; 1252 kq->kq_knlist = NULL; 1253 } 1254 bzero((caddr_t)list + 1255 kq->kq_knlistsize * sizeof(*list), 1256 (size - kq->kq_knlistsize) * sizeof(*list)); 1257 kq->kq_knlistsize = size; 1258 kq->kq_knlist = list; 1259 } 1260 KQ_UNLOCK(kq); 1261 } 1262 } else { 1263 if (kq->kq_knhashmask == 0) { 1264 tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE, 1265 &tmp_knhashmask); 1266 if (tmp_knhash == NULL) 1267 return ENOMEM; 1268 KQ_LOCK(kq); 1269 if (kq->kq_knhashmask == 0) { 1270 kq->kq_knhash = tmp_knhash; 1271 kq->kq_knhashmask = tmp_knhashmask; 1272 } else { 1273 to_free = tmp_knhash; 1274 } 1275 KQ_UNLOCK(kq); 1276 } 1277 } 1278 free(to_free, M_KQUEUE); 1279 1280 KQ_NOTOWNED(kq); 1281 return 0; 1282 } 1283 1284 static void 1285 kqueue_task(void *arg, int pending) 1286 { 1287 struct kqueue *kq; 1288 int haskqglobal; 1289 1290 haskqglobal = 0; 1291 kq = arg; 1292 1293 KQ_GLOBAL_LOCK(&kq_global, haskqglobal); 1294 KQ_LOCK(kq); 1295 1296 KNOTE_LOCKED(&kq->kq_sel.si_note, 0); 1297 1298 kq->kq_state &= ~KQ_TASKSCHED; 1299 if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) { 1300 wakeup(&kq->kq_state); 1301 } 1302 KQ_UNLOCK(kq); 1303 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1304 } 1305 1306 /* 1307 * Scan, update kn_data (if not ONESHOT), and copyout triggered events. 1308 * We treat KN_MARKER knotes as if they are INFLUX. 1309 */ 1310 static int 1311 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops, 1312 const struct timespec *tsp, struct kevent *keva, struct thread *td) 1313 { 1314 struct kevent *kevp; 1315 struct timeval atv, rtv, ttv; 1316 struct knote *kn, *marker; 1317 int count, timeout, nkev, error, influx; 1318 int haskqglobal, touch; 1319 1320 count = maxevents; 1321 nkev = 0; 1322 error = 0; 1323 haskqglobal = 0; 1324 1325 if (maxevents == 0) 1326 goto done_nl; 1327 1328 if (tsp != NULL) { 1329 TIMESPEC_TO_TIMEVAL(&atv, tsp); 1330 if (itimerfix(&atv)) { 1331 error = EINVAL; 1332 goto done_nl; 1333 } 1334 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) 1335 timeout = -1; 1336 else 1337 timeout = atv.tv_sec > 24 * 60 * 60 ? 1338 24 * 60 * 60 * hz : tvtohz(&atv); 1339 getmicrouptime(&rtv); 1340 timevaladd(&atv, &rtv); 1341 } else { 1342 atv.tv_sec = 0; 1343 atv.tv_usec = 0; 1344 timeout = 0; 1345 } 1346 marker = knote_alloc(1); 1347 if (marker == NULL) { 1348 error = ENOMEM; 1349 goto done_nl; 1350 } 1351 marker->kn_status = KN_MARKER; 1352 KQ_LOCK(kq); 1353 goto start; 1354 1355 retry: 1356 if (atv.tv_sec || atv.tv_usec) { 1357 getmicrouptime(&rtv); 1358 if (timevalcmp(&rtv, &atv, >=)) 1359 goto done; 1360 ttv = atv; 1361 timevalsub(&ttv, &rtv); 1362 timeout = ttv.tv_sec > 24 * 60 * 60 ? 1363 24 * 60 * 60 * hz : tvtohz(&ttv); 1364 } 1365 1366 start: 1367 kevp = keva; 1368 if (kq->kq_count == 0) { 1369 if (timeout < 0) { 1370 error = EWOULDBLOCK; 1371 } else { 1372 kq->kq_state |= KQ_SLEEP; 1373 error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH, 1374 "kqread", timeout); 1375 } 1376 if (error == 0) 1377 goto retry; 1378 /* don't restart after signals... */ 1379 if (error == ERESTART) 1380 error = EINTR; 1381 else if (error == EWOULDBLOCK) 1382 error = 0; 1383 goto done; 1384 } 1385 1386 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe); 1387 influx = 0; 1388 while (count) { 1389 KQ_OWNED(kq); 1390 kn = TAILQ_FIRST(&kq->kq_head); 1391 1392 if ((kn->kn_status == KN_MARKER && kn != marker) || 1393 (kn->kn_status & KN_INFLUX) == KN_INFLUX) { 1394 if (influx) { 1395 influx = 0; 1396 KQ_FLUX_WAKEUP(kq); 1397 } 1398 kq->kq_state |= KQ_FLUXWAIT; 1399 error = msleep(kq, &kq->kq_lock, PSOCK, 1400 "kqflxwt", 0); 1401 continue; 1402 } 1403 1404 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 1405 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) { 1406 kn->kn_status &= ~KN_QUEUED; 1407 kq->kq_count--; 1408 continue; 1409 } 1410 if (kn == marker) { 1411 KQ_FLUX_WAKEUP(kq); 1412 if (count == maxevents) 1413 goto retry; 1414 goto done; 1415 } 1416 KASSERT((kn->kn_status & KN_INFLUX) == 0, 1417 ("KN_INFLUX set when not suppose to be")); 1418 1419 if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) { 1420 kn->kn_status &= ~KN_QUEUED; 1421 kn->kn_status |= KN_INFLUX; 1422 kq->kq_count--; 1423 KQ_UNLOCK(kq); 1424 /* 1425 * We don't need to lock the list since we've marked 1426 * it _INFLUX. 1427 */ 1428 *kevp = kn->kn_kevent; 1429 if (!(kn->kn_status & KN_DETACHED)) 1430 kn->kn_fop->f_detach(kn); 1431 knote_drop(kn, td); 1432 KQ_LOCK(kq); 1433 kn = NULL; 1434 } else { 1435 kn->kn_status |= KN_INFLUX; 1436 KQ_UNLOCK(kq); 1437 if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE) 1438 KQ_GLOBAL_LOCK(&kq_global, haskqglobal); 1439 KN_LIST_LOCK(kn); 1440 if (kn->kn_fop->f_event(kn, 0) == 0) { 1441 KQ_LOCK(kq); 1442 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1443 kn->kn_status &= 1444 ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX); 1445 kq->kq_count--; 1446 KN_LIST_UNLOCK(kn); 1447 influx = 1; 1448 continue; 1449 } 1450 touch = (!kn->kn_fop->f_isfd && 1451 kn->kn_fop->f_touch != NULL); 1452 if (touch) 1453 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS); 1454 else 1455 *kevp = kn->kn_kevent; 1456 KQ_LOCK(kq); 1457 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1458 if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) { 1459 /* 1460 * Manually clear knotes who weren't 1461 * 'touch'ed. 1462 */ 1463 if (touch == 0 && kn->kn_flags & EV_CLEAR) { 1464 kn->kn_data = 0; 1465 kn->kn_fflags = 0; 1466 } 1467 if (kn->kn_flags & EV_DISPATCH) 1468 kn->kn_status |= KN_DISABLED; 1469 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 1470 kq->kq_count--; 1471 } else 1472 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 1473 1474 kn->kn_status &= ~(KN_INFLUX); 1475 KN_LIST_UNLOCK(kn); 1476 influx = 1; 1477 } 1478 1479 /* we are returning a copy to the user */ 1480 kevp++; 1481 nkev++; 1482 count--; 1483 1484 if (nkev == KQ_NEVENTS) { 1485 influx = 0; 1486 KQ_UNLOCK_FLUX(kq); 1487 error = k_ops->k_copyout(k_ops->arg, keva, nkev); 1488 nkev = 0; 1489 kevp = keva; 1490 KQ_LOCK(kq); 1491 if (error) 1492 break; 1493 } 1494 } 1495 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe); 1496 done: 1497 KQ_OWNED(kq); 1498 KQ_UNLOCK_FLUX(kq); 1499 knote_free(marker); 1500 done_nl: 1501 KQ_NOTOWNED(kq); 1502 if (nkev != 0) 1503 error = k_ops->k_copyout(k_ops->arg, keva, nkev); 1504 td->td_retval[0] = maxevents - count; 1505 return (error); 1506 } 1507 1508 /* 1509 * XXX 1510 * This could be expanded to call kqueue_scan, if desired. 1511 */ 1512 /*ARGSUSED*/ 1513 static int 1514 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred, 1515 int flags, struct thread *td) 1516 { 1517 return (ENXIO); 1518 } 1519 1520 /*ARGSUSED*/ 1521 static int 1522 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred, 1523 int flags, struct thread *td) 1524 { 1525 return (ENXIO); 1526 } 1527 1528 /*ARGSUSED*/ 1529 static int 1530 kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1531 struct thread *td) 1532 { 1533 1534 return (EINVAL); 1535 } 1536 1537 /*ARGSUSED*/ 1538 static int 1539 kqueue_ioctl(struct file *fp, u_long cmd, void *data, 1540 struct ucred *active_cred, struct thread *td) 1541 { 1542 /* 1543 * Enabling sigio causes two major problems: 1544 * 1) infinite recursion: 1545 * Synopsys: kevent is being used to track signals and have FIOASYNC 1546 * set. On receipt of a signal this will cause a kqueue to recurse 1547 * into itself over and over. Sending the sigio causes the kqueue 1548 * to become ready, which in turn posts sigio again, forever. 1549 * Solution: this can be solved by setting a flag in the kqueue that 1550 * we have a SIGIO in progress. 1551 * 2) locking problems: 1552 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts 1553 * us above the proc and pgrp locks. 1554 * Solution: Post a signal using an async mechanism, being sure to 1555 * record a generation count in the delivery so that we do not deliver 1556 * a signal to the wrong process. 1557 * 1558 * Note, these two mechanisms are somewhat mutually exclusive! 1559 */ 1560 #if 0 1561 struct kqueue *kq; 1562 1563 kq = fp->f_data; 1564 switch (cmd) { 1565 case FIOASYNC: 1566 if (*(int *)data) { 1567 kq->kq_state |= KQ_ASYNC; 1568 } else { 1569 kq->kq_state &= ~KQ_ASYNC; 1570 } 1571 return (0); 1572 1573 case FIOSETOWN: 1574 return (fsetown(*(int *)data, &kq->kq_sigio)); 1575 1576 case FIOGETOWN: 1577 *(int *)data = fgetown(&kq->kq_sigio); 1578 return (0); 1579 } 1580 #endif 1581 1582 return (ENOTTY); 1583 } 1584 1585 /*ARGSUSED*/ 1586 static int 1587 kqueue_poll(struct file *fp, int events, struct ucred *active_cred, 1588 struct thread *td) 1589 { 1590 struct kqueue *kq; 1591 int revents = 0; 1592 int error; 1593 1594 if ((error = kqueue_acquire(fp, &kq))) 1595 return POLLERR; 1596 1597 KQ_LOCK(kq); 1598 if (events & (POLLIN | POLLRDNORM)) { 1599 if (kq->kq_count) { 1600 revents |= events & (POLLIN | POLLRDNORM); 1601 } else { 1602 selrecord(td, &kq->kq_sel); 1603 if (SEL_WAITING(&kq->kq_sel)) 1604 kq->kq_state |= KQ_SEL; 1605 } 1606 } 1607 kqueue_release(kq, 1); 1608 KQ_UNLOCK(kq); 1609 return (revents); 1610 } 1611 1612 /*ARGSUSED*/ 1613 static int 1614 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred, 1615 struct thread *td) 1616 { 1617 1618 bzero((void *)st, sizeof *st); 1619 /* 1620 * We no longer return kq_count because the unlocked value is useless. 1621 * If you spent all this time getting the count, why not spend your 1622 * syscall better by calling kevent? 1623 * 1624 * XXX - This is needed for libc_r. 1625 */ 1626 st->st_mode = S_IFIFO; 1627 return (0); 1628 } 1629 1630 /*ARGSUSED*/ 1631 static int 1632 kqueue_close(struct file *fp, struct thread *td) 1633 { 1634 struct kqueue *kq = fp->f_data; 1635 struct filedesc *fdp; 1636 struct knote *kn; 1637 int i; 1638 int error; 1639 1640 if ((error = kqueue_acquire(fp, &kq))) 1641 return error; 1642 1643 KQ_LOCK(kq); 1644 1645 KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING, 1646 ("kqueue already closing")); 1647 kq->kq_state |= KQ_CLOSING; 1648 if (kq->kq_refcnt > 1) 1649 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0); 1650 1651 KASSERT(kq->kq_refcnt == 1, ("other refs are out there!")); 1652 fdp = kq->kq_fdp; 1653 1654 KASSERT(knlist_empty(&kq->kq_sel.si_note), 1655 ("kqueue's knlist not empty")); 1656 1657 for (i = 0; i < kq->kq_knlistsize; i++) { 1658 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) { 1659 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) { 1660 kq->kq_state |= KQ_FLUXWAIT; 1661 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0); 1662 continue; 1663 } 1664 kn->kn_status |= KN_INFLUX; 1665 KQ_UNLOCK(kq); 1666 if (!(kn->kn_status & KN_DETACHED)) 1667 kn->kn_fop->f_detach(kn); 1668 knote_drop(kn, td); 1669 KQ_LOCK(kq); 1670 } 1671 } 1672 if (kq->kq_knhashmask != 0) { 1673 for (i = 0; i <= kq->kq_knhashmask; i++) { 1674 while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) { 1675 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) { 1676 kq->kq_state |= KQ_FLUXWAIT; 1677 msleep(kq, &kq->kq_lock, PSOCK, 1678 "kqclo2", 0); 1679 continue; 1680 } 1681 kn->kn_status |= KN_INFLUX; 1682 KQ_UNLOCK(kq); 1683 if (!(kn->kn_status & KN_DETACHED)) 1684 kn->kn_fop->f_detach(kn); 1685 knote_drop(kn, td); 1686 KQ_LOCK(kq); 1687 } 1688 } 1689 } 1690 1691 if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) { 1692 kq->kq_state |= KQ_TASKDRAIN; 1693 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0); 1694 } 1695 1696 if ((kq->kq_state & KQ_SEL) == KQ_SEL) { 1697 selwakeuppri(&kq->kq_sel, PSOCK); 1698 if (!SEL_WAITING(&kq->kq_sel)) 1699 kq->kq_state &= ~KQ_SEL; 1700 } 1701 1702 KQ_UNLOCK(kq); 1703 1704 FILEDESC_XLOCK(fdp); 1705 SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list); 1706 FILEDESC_XUNLOCK(fdp); 1707 1708 seldrain(&kq->kq_sel); 1709 knlist_destroy(&kq->kq_sel.si_note); 1710 mtx_destroy(&kq->kq_lock); 1711 kq->kq_fdp = NULL; 1712 1713 if (kq->kq_knhash != NULL) 1714 free(kq->kq_knhash, M_KQUEUE); 1715 if (kq->kq_knlist != NULL) 1716 free(kq->kq_knlist, M_KQUEUE); 1717 1718 funsetown(&kq->kq_sigio); 1719 free(kq, M_KQUEUE); 1720 fp->f_data = NULL; 1721 1722 return (0); 1723 } 1724 1725 static void 1726 kqueue_wakeup(struct kqueue *kq) 1727 { 1728 KQ_OWNED(kq); 1729 1730 if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) { 1731 kq->kq_state &= ~KQ_SLEEP; 1732 wakeup(kq); 1733 } 1734 if ((kq->kq_state & KQ_SEL) == KQ_SEL) { 1735 selwakeuppri(&kq->kq_sel, PSOCK); 1736 if (!SEL_WAITING(&kq->kq_sel)) 1737 kq->kq_state &= ~KQ_SEL; 1738 } 1739 if (!knlist_empty(&kq->kq_sel.si_note)) 1740 kqueue_schedtask(kq); 1741 if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) { 1742 pgsigio(&kq->kq_sigio, SIGIO, 0); 1743 } 1744 } 1745 1746 /* 1747 * Walk down a list of knotes, activating them if their event has triggered. 1748 * 1749 * There is a possibility to optimize in the case of one kq watching another. 1750 * Instead of scheduling a task to wake it up, you could pass enough state 1751 * down the chain to make up the parent kqueue. Make this code functional 1752 * first. 1753 */ 1754 void 1755 knote(struct knlist *list, long hint, int lockflags) 1756 { 1757 struct kqueue *kq; 1758 struct knote *kn; 1759 int error; 1760 1761 if (list == NULL) 1762 return; 1763 1764 KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED); 1765 1766 if ((lockflags & KNF_LISTLOCKED) == 0) 1767 list->kl_lock(list->kl_lockarg); 1768 1769 /* 1770 * If we unlock the list lock (and set KN_INFLUX), we can eliminate 1771 * the kqueue scheduling, but this will introduce four 1772 * lock/unlock's for each knote to test. If we do, continue to use 1773 * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is 1774 * only safe if you want to remove the current item, which we are 1775 * not doing. 1776 */ 1777 SLIST_FOREACH(kn, &list->kl_list, kn_selnext) { 1778 kq = kn->kn_kq; 1779 if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) { 1780 KQ_LOCK(kq); 1781 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) { 1782 KQ_UNLOCK(kq); 1783 } else if ((lockflags & KNF_NOKQLOCK) != 0) { 1784 kn->kn_status |= KN_INFLUX; 1785 KQ_UNLOCK(kq); 1786 error = kn->kn_fop->f_event(kn, hint); 1787 KQ_LOCK(kq); 1788 kn->kn_status &= ~KN_INFLUX; 1789 if (error) 1790 KNOTE_ACTIVATE(kn, 1); 1791 KQ_UNLOCK_FLUX(kq); 1792 } else { 1793 kn->kn_status |= KN_HASKQLOCK; 1794 if (kn->kn_fop->f_event(kn, hint)) 1795 KNOTE_ACTIVATE(kn, 1); 1796 kn->kn_status &= ~KN_HASKQLOCK; 1797 KQ_UNLOCK(kq); 1798 } 1799 } 1800 kq = NULL; 1801 } 1802 if ((lockflags & KNF_LISTLOCKED) == 0) 1803 list->kl_unlock(list->kl_lockarg); 1804 } 1805 1806 /* 1807 * add a knote to a knlist 1808 */ 1809 void 1810 knlist_add(struct knlist *knl, struct knote *kn, int islocked) 1811 { 1812 KNL_ASSERT_LOCK(knl, islocked); 1813 KQ_NOTOWNED(kn->kn_kq); 1814 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == 1815 (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED")); 1816 if (!islocked) 1817 knl->kl_lock(knl->kl_lockarg); 1818 SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext); 1819 if (!islocked) 1820 knl->kl_unlock(knl->kl_lockarg); 1821 KQ_LOCK(kn->kn_kq); 1822 kn->kn_knlist = knl; 1823 kn->kn_status &= ~KN_DETACHED; 1824 KQ_UNLOCK(kn->kn_kq); 1825 } 1826 1827 static void 1828 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked) 1829 { 1830 KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked")); 1831 KNL_ASSERT_LOCK(knl, knlislocked); 1832 mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED); 1833 if (!kqislocked) 1834 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX, 1835 ("knlist_remove called w/o knote being KN_INFLUX or already removed")); 1836 if (!knlislocked) 1837 knl->kl_lock(knl->kl_lockarg); 1838 SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext); 1839 kn->kn_knlist = NULL; 1840 if (!knlislocked) 1841 knl->kl_unlock(knl->kl_lockarg); 1842 if (!kqislocked) 1843 KQ_LOCK(kn->kn_kq); 1844 kn->kn_status |= KN_DETACHED; 1845 if (!kqislocked) 1846 KQ_UNLOCK(kn->kn_kq); 1847 } 1848 1849 /* 1850 * remove all knotes from a specified klist 1851 */ 1852 void 1853 knlist_remove(struct knlist *knl, struct knote *kn, int islocked) 1854 { 1855 1856 knlist_remove_kq(knl, kn, islocked, 0); 1857 } 1858 1859 /* 1860 * remove knote from a specified klist while in f_event handler. 1861 */ 1862 void 1863 knlist_remove_inevent(struct knlist *knl, struct knote *kn) 1864 { 1865 1866 knlist_remove_kq(knl, kn, 1, 1867 (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK); 1868 } 1869 1870 int 1871 knlist_empty(struct knlist *knl) 1872 { 1873 1874 KNL_ASSERT_LOCKED(knl); 1875 return SLIST_EMPTY(&knl->kl_list); 1876 } 1877 1878 static struct mtx knlist_lock; 1879 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects", 1880 MTX_DEF); 1881 static void knlist_mtx_lock(void *arg); 1882 static void knlist_mtx_unlock(void *arg); 1883 1884 static void 1885 knlist_mtx_lock(void *arg) 1886 { 1887 1888 mtx_lock((struct mtx *)arg); 1889 } 1890 1891 static void 1892 knlist_mtx_unlock(void *arg) 1893 { 1894 1895 mtx_unlock((struct mtx *)arg); 1896 } 1897 1898 static void 1899 knlist_mtx_assert_locked(void *arg) 1900 { 1901 1902 mtx_assert((struct mtx *)arg, MA_OWNED); 1903 } 1904 1905 static void 1906 knlist_mtx_assert_unlocked(void *arg) 1907 { 1908 1909 mtx_assert((struct mtx *)arg, MA_NOTOWNED); 1910 } 1911 1912 static void 1913 knlist_rw_rlock(void *arg) 1914 { 1915 1916 rw_rlock((struct rwlock *)arg); 1917 } 1918 1919 static void 1920 knlist_rw_runlock(void *arg) 1921 { 1922 1923 rw_runlock((struct rwlock *)arg); 1924 } 1925 1926 static void 1927 knlist_rw_assert_locked(void *arg) 1928 { 1929 1930 rw_assert((struct rwlock *)arg, RA_LOCKED); 1931 } 1932 1933 static void 1934 knlist_rw_assert_unlocked(void *arg) 1935 { 1936 1937 rw_assert((struct rwlock *)arg, RA_UNLOCKED); 1938 } 1939 1940 void 1941 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *), 1942 void (*kl_unlock)(void *), 1943 void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *)) 1944 { 1945 1946 if (lock == NULL) 1947 knl->kl_lockarg = &knlist_lock; 1948 else 1949 knl->kl_lockarg = lock; 1950 1951 if (kl_lock == NULL) 1952 knl->kl_lock = knlist_mtx_lock; 1953 else 1954 knl->kl_lock = kl_lock; 1955 if (kl_unlock == NULL) 1956 knl->kl_unlock = knlist_mtx_unlock; 1957 else 1958 knl->kl_unlock = kl_unlock; 1959 if (kl_assert_locked == NULL) 1960 knl->kl_assert_locked = knlist_mtx_assert_locked; 1961 else 1962 knl->kl_assert_locked = kl_assert_locked; 1963 if (kl_assert_unlocked == NULL) 1964 knl->kl_assert_unlocked = knlist_mtx_assert_unlocked; 1965 else 1966 knl->kl_assert_unlocked = kl_assert_unlocked; 1967 1968 SLIST_INIT(&knl->kl_list); 1969 } 1970 1971 void 1972 knlist_init_mtx(struct knlist *knl, struct mtx *lock) 1973 { 1974 1975 knlist_init(knl, lock, NULL, NULL, NULL, NULL); 1976 } 1977 1978 void 1979 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock) 1980 { 1981 1982 knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock, 1983 knlist_rw_assert_locked, knlist_rw_assert_unlocked); 1984 } 1985 1986 void 1987 knlist_destroy(struct knlist *knl) 1988 { 1989 1990 #ifdef INVARIANTS 1991 /* 1992 * if we run across this error, we need to find the offending 1993 * driver and have it call knlist_clear. 1994 */ 1995 if (!SLIST_EMPTY(&knl->kl_list)) 1996 printf("WARNING: destroying knlist w/ knotes on it!\n"); 1997 #endif 1998 1999 knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL; 2000 SLIST_INIT(&knl->kl_list); 2001 } 2002 2003 /* 2004 * Even if we are locked, we may need to drop the lock to allow any influx 2005 * knotes time to "settle". 2006 */ 2007 void 2008 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn) 2009 { 2010 struct knote *kn, *kn2; 2011 struct kqueue *kq; 2012 2013 if (islocked) 2014 KNL_ASSERT_LOCKED(knl); 2015 else { 2016 KNL_ASSERT_UNLOCKED(knl); 2017 again: /* need to reacquire lock since we have dropped it */ 2018 knl->kl_lock(knl->kl_lockarg); 2019 } 2020 2021 SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) { 2022 kq = kn->kn_kq; 2023 KQ_LOCK(kq); 2024 if ((kn->kn_status & KN_INFLUX)) { 2025 KQ_UNLOCK(kq); 2026 continue; 2027 } 2028 knlist_remove_kq(knl, kn, 1, 1); 2029 if (killkn) { 2030 kn->kn_status |= KN_INFLUX | KN_DETACHED; 2031 KQ_UNLOCK(kq); 2032 knote_drop(kn, td); 2033 } else { 2034 /* Make sure cleared knotes disappear soon */ 2035 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 2036 KQ_UNLOCK(kq); 2037 } 2038 kq = NULL; 2039 } 2040 2041 if (!SLIST_EMPTY(&knl->kl_list)) { 2042 /* there are still KN_INFLUX remaining */ 2043 kn = SLIST_FIRST(&knl->kl_list); 2044 kq = kn->kn_kq; 2045 KQ_LOCK(kq); 2046 KASSERT(kn->kn_status & KN_INFLUX, 2047 ("knote removed w/o list lock")); 2048 knl->kl_unlock(knl->kl_lockarg); 2049 kq->kq_state |= KQ_FLUXWAIT; 2050 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0); 2051 kq = NULL; 2052 goto again; 2053 } 2054 2055 if (islocked) 2056 KNL_ASSERT_LOCKED(knl); 2057 else { 2058 knl->kl_unlock(knl->kl_lockarg); 2059 KNL_ASSERT_UNLOCKED(knl); 2060 } 2061 } 2062 2063 /* 2064 * Remove all knotes referencing a specified fd must be called with FILEDESC 2065 * lock. This prevents a race where a new fd comes along and occupies the 2066 * entry and we attach a knote to the fd. 2067 */ 2068 void 2069 knote_fdclose(struct thread *td, int fd) 2070 { 2071 struct filedesc *fdp = td->td_proc->p_fd; 2072 struct kqueue *kq; 2073 struct knote *kn; 2074 int influx; 2075 2076 FILEDESC_XLOCK_ASSERT(fdp); 2077 2078 /* 2079 * We shouldn't have to worry about new kevents appearing on fd 2080 * since filedesc is locked. 2081 */ 2082 SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) { 2083 KQ_LOCK(kq); 2084 2085 again: 2086 influx = 0; 2087 while (kq->kq_knlistsize > fd && 2088 (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) { 2089 if (kn->kn_status & KN_INFLUX) { 2090 /* someone else might be waiting on our knote */ 2091 if (influx) 2092 wakeup(kq); 2093 kq->kq_state |= KQ_FLUXWAIT; 2094 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0); 2095 goto again; 2096 } 2097 kn->kn_status |= KN_INFLUX; 2098 KQ_UNLOCK(kq); 2099 if (!(kn->kn_status & KN_DETACHED)) 2100 kn->kn_fop->f_detach(kn); 2101 knote_drop(kn, td); 2102 influx = 1; 2103 KQ_LOCK(kq); 2104 } 2105 KQ_UNLOCK_FLUX(kq); 2106 } 2107 } 2108 2109 static int 2110 knote_attach(struct knote *kn, struct kqueue *kq) 2111 { 2112 struct klist *list; 2113 2114 KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX")); 2115 KQ_OWNED(kq); 2116 2117 if (kn->kn_fop->f_isfd) { 2118 if (kn->kn_id >= kq->kq_knlistsize) 2119 return ENOMEM; 2120 list = &kq->kq_knlist[kn->kn_id]; 2121 } else { 2122 if (kq->kq_knhash == NULL) 2123 return ENOMEM; 2124 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 2125 } 2126 2127 SLIST_INSERT_HEAD(list, kn, kn_link); 2128 2129 return 0; 2130 } 2131 2132 /* 2133 * knote must already have been detached using the f_detach method. 2134 * no lock need to be held, it is assumed that the KN_INFLUX flag is set 2135 * to prevent other removal. 2136 */ 2137 static void 2138 knote_drop(struct knote *kn, struct thread *td) 2139 { 2140 struct kqueue *kq; 2141 struct klist *list; 2142 2143 kq = kn->kn_kq; 2144 2145 KQ_NOTOWNED(kq); 2146 KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX, 2147 ("knote_drop called without KN_INFLUX set in kn_status")); 2148 2149 KQ_LOCK(kq); 2150 if (kn->kn_fop->f_isfd) 2151 list = &kq->kq_knlist[kn->kn_id]; 2152 else 2153 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 2154 2155 if (!SLIST_EMPTY(list)) 2156 SLIST_REMOVE(list, kn, knote, kn_link); 2157 if (kn->kn_status & KN_QUEUED) 2158 knote_dequeue(kn); 2159 KQ_UNLOCK_FLUX(kq); 2160 2161 if (kn->kn_fop->f_isfd) { 2162 fdrop(kn->kn_fp, td); 2163 kn->kn_fp = NULL; 2164 } 2165 kqueue_fo_release(kn->kn_kevent.filter); 2166 kn->kn_fop = NULL; 2167 knote_free(kn); 2168 } 2169 2170 static void 2171 knote_enqueue(struct knote *kn) 2172 { 2173 struct kqueue *kq = kn->kn_kq; 2174 2175 KQ_OWNED(kn->kn_kq); 2176 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued")); 2177 2178 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2179 kn->kn_status |= KN_QUEUED; 2180 kq->kq_count++; 2181 kqueue_wakeup(kq); 2182 } 2183 2184 static void 2185 knote_dequeue(struct knote *kn) 2186 { 2187 struct kqueue *kq = kn->kn_kq; 2188 2189 KQ_OWNED(kn->kn_kq); 2190 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued")); 2191 2192 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2193 kn->kn_status &= ~KN_QUEUED; 2194 kq->kq_count--; 2195 } 2196 2197 static void 2198 knote_init(void) 2199 { 2200 2201 knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL, 2202 NULL, NULL, UMA_ALIGN_PTR, 0); 2203 } 2204 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL); 2205 2206 static struct knote * 2207 knote_alloc(int waitok) 2208 { 2209 return ((struct knote *)uma_zalloc(knote_zone, 2210 (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO)); 2211 } 2212 2213 static void 2214 knote_free(struct knote *kn) 2215 { 2216 if (kn != NULL) 2217 uma_zfree(knote_zone, kn); 2218 } 2219 2220 /* 2221 * Register the kev w/ the kq specified by fd. 2222 */ 2223 int 2224 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok) 2225 { 2226 struct kqueue *kq; 2227 struct file *fp; 2228 int error; 2229 2230 if ((error = fget(td, fd, CAP_POST_EVENT, &fp)) != 0) 2231 return (error); 2232 if ((error = kqueue_acquire(fp, &kq)) != 0) 2233 goto noacquire; 2234 2235 error = kqueue_register(kq, kev, td, waitok); 2236 2237 kqueue_release(kq, 0); 2238 2239 noacquire: 2240 fdrop(fp, td); 2241 2242 return error; 2243 } 2244