1 /*- 2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 3 * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org> 4 * Copyright (c) 2009 Apple, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_ktrace.h" 33 #include "opt_kqueue.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/capsicum.h> 38 #include <sys/kernel.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/rwlock.h> 42 #include <sys/proc.h> 43 #include <sys/malloc.h> 44 #include <sys/unistd.h> 45 #include <sys/file.h> 46 #include <sys/filedesc.h> 47 #include <sys/filio.h> 48 #include <sys/fcntl.h> 49 #include <sys/kthread.h> 50 #include <sys/selinfo.h> 51 #include <sys/stdatomic.h> 52 #include <sys/queue.h> 53 #include <sys/event.h> 54 #include <sys/eventvar.h> 55 #include <sys/poll.h> 56 #include <sys/protosw.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sigio.h> 59 #include <sys/signalvar.h> 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/stat.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysproto.h> 65 #include <sys/syscallsubr.h> 66 #include <sys/taskqueue.h> 67 #include <sys/uio.h> 68 #include <sys/user.h> 69 #ifdef KTRACE 70 #include <sys/ktrace.h> 71 #endif 72 73 #include <vm/uma.h> 74 75 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); 76 77 /* 78 * This lock is used if multiple kq locks are required. This possibly 79 * should be made into a per proc lock. 80 */ 81 static struct mtx kq_global; 82 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF); 83 #define KQ_GLOBAL_LOCK(lck, haslck) do { \ 84 if (!haslck) \ 85 mtx_lock(lck); \ 86 haslck = 1; \ 87 } while (0) 88 #define KQ_GLOBAL_UNLOCK(lck, haslck) do { \ 89 if (haslck) \ 90 mtx_unlock(lck); \ 91 haslck = 0; \ 92 } while (0) 93 94 TASKQUEUE_DEFINE_THREAD(kqueue); 95 96 static int kevent_copyout(void *arg, struct kevent *kevp, int count); 97 static int kevent_copyin(void *arg, struct kevent *kevp, int count); 98 static int kqueue_register(struct kqueue *kq, struct kevent *kev, 99 struct thread *td, int waitok); 100 static int kqueue_acquire(struct file *fp, struct kqueue **kqp); 101 static void kqueue_release(struct kqueue *kq, int locked); 102 static int kqueue_expand(struct kqueue *kq, struct filterops *fops, 103 uintptr_t ident, int waitok); 104 static void kqueue_task(void *arg, int pending); 105 static int kqueue_scan(struct kqueue *kq, int maxevents, 106 struct kevent_copyops *k_ops, 107 const struct timespec *timeout, 108 struct kevent *keva, struct thread *td); 109 static void kqueue_wakeup(struct kqueue *kq); 110 static struct filterops *kqueue_fo_find(int filt); 111 static void kqueue_fo_release(int filt); 112 113 static fo_ioctl_t kqueue_ioctl; 114 static fo_poll_t kqueue_poll; 115 static fo_kqfilter_t kqueue_kqfilter; 116 static fo_stat_t kqueue_stat; 117 static fo_close_t kqueue_close; 118 static fo_fill_kinfo_t kqueue_fill_kinfo; 119 120 static struct fileops kqueueops = { 121 .fo_read = invfo_rdwr, 122 .fo_write = invfo_rdwr, 123 .fo_truncate = invfo_truncate, 124 .fo_ioctl = kqueue_ioctl, 125 .fo_poll = kqueue_poll, 126 .fo_kqfilter = kqueue_kqfilter, 127 .fo_stat = kqueue_stat, 128 .fo_close = kqueue_close, 129 .fo_chmod = invfo_chmod, 130 .fo_chown = invfo_chown, 131 .fo_sendfile = invfo_sendfile, 132 .fo_fill_kinfo = kqueue_fill_kinfo, 133 }; 134 135 static int knote_attach(struct knote *kn, struct kqueue *kq); 136 static void knote_drop(struct knote *kn, struct thread *td); 137 static void knote_enqueue(struct knote *kn); 138 static void knote_dequeue(struct knote *kn); 139 static void knote_init(void); 140 static struct knote *knote_alloc(int waitok); 141 static void knote_free(struct knote *kn); 142 143 static void filt_kqdetach(struct knote *kn); 144 static int filt_kqueue(struct knote *kn, long hint); 145 static int filt_procattach(struct knote *kn); 146 static void filt_procdetach(struct knote *kn); 147 static int filt_proc(struct knote *kn, long hint); 148 static int filt_fileattach(struct knote *kn); 149 static void filt_timerexpire(void *knx); 150 static int filt_timerattach(struct knote *kn); 151 static void filt_timerdetach(struct knote *kn); 152 static int filt_timer(struct knote *kn, long hint); 153 static int filt_userattach(struct knote *kn); 154 static void filt_userdetach(struct knote *kn); 155 static int filt_user(struct knote *kn, long hint); 156 static void filt_usertouch(struct knote *kn, struct kevent *kev, 157 u_long type); 158 159 static struct filterops file_filtops = { 160 .f_isfd = 1, 161 .f_attach = filt_fileattach, 162 }; 163 static struct filterops kqread_filtops = { 164 .f_isfd = 1, 165 .f_detach = filt_kqdetach, 166 .f_event = filt_kqueue, 167 }; 168 /* XXX - move to kern_proc.c? */ 169 static struct filterops proc_filtops = { 170 .f_isfd = 0, 171 .f_attach = filt_procattach, 172 .f_detach = filt_procdetach, 173 .f_event = filt_proc, 174 }; 175 static struct filterops timer_filtops = { 176 .f_isfd = 0, 177 .f_attach = filt_timerattach, 178 .f_detach = filt_timerdetach, 179 .f_event = filt_timer, 180 }; 181 static struct filterops user_filtops = { 182 .f_attach = filt_userattach, 183 .f_detach = filt_userdetach, 184 .f_event = filt_user, 185 .f_touch = filt_usertouch, 186 }; 187 188 static uma_zone_t knote_zone; 189 static atomic_uint kq_ncallouts = ATOMIC_VAR_INIT(0); 190 static unsigned int kq_calloutmax = 4 * 1024; 191 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW, 192 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue"); 193 194 /* XXX - ensure not KN_INFLUX?? */ 195 #define KNOTE_ACTIVATE(kn, islock) do { \ 196 if ((islock)) \ 197 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED); \ 198 else \ 199 KQ_LOCK((kn)->kn_kq); \ 200 (kn)->kn_status |= KN_ACTIVE; \ 201 if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \ 202 knote_enqueue((kn)); \ 203 if (!(islock)) \ 204 KQ_UNLOCK((kn)->kn_kq); \ 205 } while(0) 206 #define KQ_LOCK(kq) do { \ 207 mtx_lock(&(kq)->kq_lock); \ 208 } while (0) 209 #define KQ_FLUX_WAKEUP(kq) do { \ 210 if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) { \ 211 (kq)->kq_state &= ~KQ_FLUXWAIT; \ 212 wakeup((kq)); \ 213 } \ 214 } while (0) 215 #define KQ_UNLOCK_FLUX(kq) do { \ 216 KQ_FLUX_WAKEUP(kq); \ 217 mtx_unlock(&(kq)->kq_lock); \ 218 } while (0) 219 #define KQ_UNLOCK(kq) do { \ 220 mtx_unlock(&(kq)->kq_lock); \ 221 } while (0) 222 #define KQ_OWNED(kq) do { \ 223 mtx_assert(&(kq)->kq_lock, MA_OWNED); \ 224 } while (0) 225 #define KQ_NOTOWNED(kq) do { \ 226 mtx_assert(&(kq)->kq_lock, MA_NOTOWNED); \ 227 } while (0) 228 #define KN_LIST_LOCK(kn) do { \ 229 if (kn->kn_knlist != NULL) \ 230 kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg); \ 231 } while (0) 232 #define KN_LIST_UNLOCK(kn) do { \ 233 if (kn->kn_knlist != NULL) \ 234 kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg); \ 235 } while (0) 236 #define KNL_ASSERT_LOCK(knl, islocked) do { \ 237 if (islocked) \ 238 KNL_ASSERT_LOCKED(knl); \ 239 else \ 240 KNL_ASSERT_UNLOCKED(knl); \ 241 } while (0) 242 #ifdef INVARIANTS 243 #define KNL_ASSERT_LOCKED(knl) do { \ 244 knl->kl_assert_locked((knl)->kl_lockarg); \ 245 } while (0) 246 #define KNL_ASSERT_UNLOCKED(knl) do { \ 247 knl->kl_assert_unlocked((knl)->kl_lockarg); \ 248 } while (0) 249 #else /* !INVARIANTS */ 250 #define KNL_ASSERT_LOCKED(knl) do {} while(0) 251 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0) 252 #endif /* INVARIANTS */ 253 254 #ifndef KN_HASHSIZE 255 #define KN_HASHSIZE 64 /* XXX should be tunable */ 256 #endif 257 258 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 259 260 static int 261 filt_nullattach(struct knote *kn) 262 { 263 264 return (ENXIO); 265 }; 266 267 struct filterops null_filtops = { 268 .f_isfd = 0, 269 .f_attach = filt_nullattach, 270 }; 271 272 /* XXX - make SYSINIT to add these, and move into respective modules. */ 273 extern struct filterops sig_filtops; 274 extern struct filterops fs_filtops; 275 276 /* 277 * Table for for all system-defined filters. 278 */ 279 static struct mtx filterops_lock; 280 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops", 281 MTX_DEF); 282 static struct { 283 struct filterops *for_fop; 284 int for_nolock; 285 int for_refcnt; 286 } sysfilt_ops[EVFILT_SYSCOUNT] = { 287 { &file_filtops, 1 }, /* EVFILT_READ */ 288 { &file_filtops, 1 }, /* EVFILT_WRITE */ 289 { &null_filtops }, /* EVFILT_AIO */ 290 { &file_filtops, 1 }, /* EVFILT_VNODE */ 291 { &proc_filtops, 1 }, /* EVFILT_PROC */ 292 { &sig_filtops, 1 }, /* EVFILT_SIGNAL */ 293 { &timer_filtops, 1 }, /* EVFILT_TIMER */ 294 { &file_filtops, 1 }, /* EVFILT_PROCDESC */ 295 { &fs_filtops, 1 }, /* EVFILT_FS */ 296 { &null_filtops }, /* EVFILT_LIO */ 297 { &user_filtops, 1 }, /* EVFILT_USER */ 298 { &null_filtops }, /* EVFILT_SENDFILE */ 299 }; 300 301 /* 302 * Simple redirection for all cdevsw style objects to call their fo_kqfilter 303 * method. 304 */ 305 static int 306 filt_fileattach(struct knote *kn) 307 { 308 309 return (fo_kqfilter(kn->kn_fp, kn)); 310 } 311 312 /*ARGSUSED*/ 313 static int 314 kqueue_kqfilter(struct file *fp, struct knote *kn) 315 { 316 struct kqueue *kq = kn->kn_fp->f_data; 317 318 if (kn->kn_filter != EVFILT_READ) 319 return (EINVAL); 320 321 kn->kn_status |= KN_KQUEUE; 322 kn->kn_fop = &kqread_filtops; 323 knlist_add(&kq->kq_sel.si_note, kn, 0); 324 325 return (0); 326 } 327 328 static void 329 filt_kqdetach(struct knote *kn) 330 { 331 struct kqueue *kq = kn->kn_fp->f_data; 332 333 knlist_remove(&kq->kq_sel.si_note, kn, 0); 334 } 335 336 /*ARGSUSED*/ 337 static int 338 filt_kqueue(struct knote *kn, long hint) 339 { 340 struct kqueue *kq = kn->kn_fp->f_data; 341 342 kn->kn_data = kq->kq_count; 343 return (kn->kn_data > 0); 344 } 345 346 /* XXX - move to kern_proc.c? */ 347 static int 348 filt_procattach(struct knote *kn) 349 { 350 struct proc *p; 351 int immediate; 352 int error; 353 354 immediate = 0; 355 p = pfind(kn->kn_id); 356 if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) { 357 p = zpfind(kn->kn_id); 358 immediate = 1; 359 } else if (p != NULL && (p->p_flag & P_WEXIT)) { 360 immediate = 1; 361 } 362 363 if (p == NULL) 364 return (ESRCH); 365 if ((error = p_cansee(curthread, p))) { 366 PROC_UNLOCK(p); 367 return (error); 368 } 369 370 kn->kn_ptr.p_proc = p; 371 kn->kn_flags |= EV_CLEAR; /* automatically set */ 372 373 /* 374 * internal flag indicating registration done by kernel 375 */ 376 if (kn->kn_flags & EV_FLAG1) { 377 kn->kn_data = kn->kn_sdata; /* ppid */ 378 kn->kn_fflags = NOTE_CHILD; 379 kn->kn_flags &= ~EV_FLAG1; 380 } 381 382 if (immediate == 0) 383 knlist_add(&p->p_klist, kn, 1); 384 385 /* 386 * Immediately activate any exit notes if the target process is a 387 * zombie. This is necessary to handle the case where the target 388 * process, e.g. a child, dies before the kevent is registered. 389 */ 390 if (immediate && filt_proc(kn, NOTE_EXIT)) 391 KNOTE_ACTIVATE(kn, 0); 392 393 PROC_UNLOCK(p); 394 395 return (0); 396 } 397 398 /* 399 * The knote may be attached to a different process, which may exit, 400 * leaving nothing for the knote to be attached to. So when the process 401 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 402 * it will be deleted when read out. However, as part of the knote deletion, 403 * this routine is called, so a check is needed to avoid actually performing 404 * a detach, because the original process does not exist any more. 405 */ 406 /* XXX - move to kern_proc.c? */ 407 static void 408 filt_procdetach(struct knote *kn) 409 { 410 struct proc *p; 411 412 p = kn->kn_ptr.p_proc; 413 knlist_remove(&p->p_klist, kn, 0); 414 kn->kn_ptr.p_proc = NULL; 415 } 416 417 /* XXX - move to kern_proc.c? */ 418 static int 419 filt_proc(struct knote *kn, long hint) 420 { 421 struct proc *p; 422 u_int event; 423 424 p = kn->kn_ptr.p_proc; 425 /* Mask off extra data. */ 426 event = (u_int)hint & NOTE_PCTRLMASK; 427 428 /* If the user is interested in this event, record it. */ 429 if (kn->kn_sfflags & event) 430 kn->kn_fflags |= event; 431 432 /* Process is gone, so flag the event as finished. */ 433 if (event == NOTE_EXIT) { 434 if (!(kn->kn_status & KN_DETACHED)) 435 knlist_remove_inevent(&p->p_klist, kn); 436 kn->kn_flags |= EV_EOF | EV_ONESHOT; 437 kn->kn_ptr.p_proc = NULL; 438 if (kn->kn_fflags & NOTE_EXIT) 439 kn->kn_data = p->p_xstat; 440 if (kn->kn_fflags == 0) 441 kn->kn_flags |= EV_DROP; 442 return (1); 443 } 444 445 return (kn->kn_fflags != 0); 446 } 447 448 /* 449 * Called when the process forked. It mostly does the same as the 450 * knote(), activating all knotes registered to be activated when the 451 * process forked. Additionally, for each knote attached to the 452 * parent, check whether user wants to track the new process. If so 453 * attach a new knote to it, and immediately report an event with the 454 * child's pid. 455 */ 456 void 457 knote_fork(struct knlist *list, int pid) 458 { 459 struct kqueue *kq; 460 struct knote *kn; 461 struct kevent kev; 462 int error; 463 464 if (list == NULL) 465 return; 466 list->kl_lock(list->kl_lockarg); 467 468 SLIST_FOREACH(kn, &list->kl_list, kn_selnext) { 469 /* 470 * XXX - Why do we skip the kn if it is _INFLUX? Does this 471 * mean we will not properly wake up some notes? 472 */ 473 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) 474 continue; 475 kq = kn->kn_kq; 476 KQ_LOCK(kq); 477 if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) { 478 KQ_UNLOCK(kq); 479 continue; 480 } 481 482 /* 483 * The same as knote(), activate the event. 484 */ 485 if ((kn->kn_sfflags & NOTE_TRACK) == 0) { 486 kn->kn_status |= KN_HASKQLOCK; 487 if (kn->kn_fop->f_event(kn, NOTE_FORK)) 488 KNOTE_ACTIVATE(kn, 1); 489 kn->kn_status &= ~KN_HASKQLOCK; 490 KQ_UNLOCK(kq); 491 continue; 492 } 493 494 /* 495 * The NOTE_TRACK case. In addition to the activation 496 * of the event, we need to register new event to 497 * track the child. Drop the locks in preparation for 498 * the call to kqueue_register(). 499 */ 500 kn->kn_status |= KN_INFLUX; 501 KQ_UNLOCK(kq); 502 list->kl_unlock(list->kl_lockarg); 503 504 /* 505 * Activate existing knote and register a knote with 506 * new process. 507 */ 508 kev.ident = pid; 509 kev.filter = kn->kn_filter; 510 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1; 511 kev.fflags = kn->kn_sfflags; 512 kev.data = kn->kn_id; /* parent */ 513 kev.udata = kn->kn_kevent.udata;/* preserve udata */ 514 error = kqueue_register(kq, &kev, NULL, 0); 515 if (error) 516 kn->kn_fflags |= NOTE_TRACKERR; 517 if (kn->kn_fop->f_event(kn, NOTE_FORK)) 518 KNOTE_ACTIVATE(kn, 0); 519 KQ_LOCK(kq); 520 kn->kn_status &= ~KN_INFLUX; 521 KQ_UNLOCK_FLUX(kq); 522 list->kl_lock(list->kl_lockarg); 523 } 524 list->kl_unlock(list->kl_lockarg); 525 } 526 527 /* 528 * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the 529 * interval timer support code. 530 */ 531 532 #define NOTE_TIMER_PRECMASK (NOTE_SECONDS|NOTE_MSECONDS|NOTE_USECONDS| \ 533 NOTE_NSECONDS) 534 535 static __inline sbintime_t 536 timer2sbintime(intptr_t data, int flags) 537 { 538 sbintime_t modifier; 539 540 switch (flags & NOTE_TIMER_PRECMASK) { 541 case NOTE_SECONDS: 542 modifier = SBT_1S; 543 break; 544 case NOTE_MSECONDS: /* FALLTHROUGH */ 545 case 0: 546 modifier = SBT_1MS; 547 break; 548 case NOTE_USECONDS: 549 modifier = SBT_1US; 550 break; 551 case NOTE_NSECONDS: 552 modifier = SBT_1NS; 553 break; 554 default: 555 return (-1); 556 } 557 558 #ifdef __LP64__ 559 if (data > SBT_MAX / modifier) 560 return (SBT_MAX); 561 #endif 562 return (modifier * data); 563 } 564 565 static void 566 filt_timerexpire(void *knx) 567 { 568 struct callout *calloutp; 569 struct knote *kn; 570 571 kn = knx; 572 kn->kn_data++; 573 KNOTE_ACTIVATE(kn, 0); /* XXX - handle locking */ 574 575 if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) { 576 calloutp = (struct callout *)kn->kn_hook; 577 *kn->kn_ptr.p_nexttime += timer2sbintime(kn->kn_sdata, 578 kn->kn_sfflags); 579 callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0, 580 filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE); 581 } 582 } 583 584 /* 585 * data contains amount of time to sleep 586 */ 587 static int 588 filt_timerattach(struct knote *kn) 589 { 590 struct callout *calloutp; 591 sbintime_t to; 592 unsigned int ncallouts; 593 594 if ((intptr_t)kn->kn_sdata < 0) 595 return (EINVAL); 596 if ((intptr_t)kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0) 597 kn->kn_sdata = 1; 598 /* Only precision unit are supported in flags so far */ 599 if (kn->kn_sfflags & ~NOTE_TIMER_PRECMASK) 600 return (EINVAL); 601 602 to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags); 603 if (to < 0) 604 return (EINVAL); 605 606 ncallouts = atomic_load_explicit(&kq_ncallouts, memory_order_relaxed); 607 do { 608 if (ncallouts >= kq_calloutmax) 609 return (ENOMEM); 610 } while (!atomic_compare_exchange_weak_explicit(&kq_ncallouts, 611 &ncallouts, ncallouts + 1, memory_order_relaxed, 612 memory_order_relaxed)); 613 614 kn->kn_flags |= EV_CLEAR; /* automatically set */ 615 kn->kn_status &= ~KN_DETACHED; /* knlist_add clears it */ 616 kn->kn_ptr.p_nexttime = malloc(sizeof(sbintime_t), M_KQUEUE, M_WAITOK); 617 calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK); 618 callout_init(calloutp, 1); 619 kn->kn_hook = calloutp; 620 *kn->kn_ptr.p_nexttime = to + sbinuptime(); 621 callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0, 622 filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE); 623 624 return (0); 625 } 626 627 static void 628 filt_timerdetach(struct knote *kn) 629 { 630 struct callout *calloutp; 631 unsigned int old; 632 633 calloutp = (struct callout *)kn->kn_hook; 634 callout_drain(calloutp); 635 free(calloutp, M_KQUEUE); 636 free(kn->kn_ptr.p_nexttime, M_KQUEUE); 637 old = atomic_fetch_sub_explicit(&kq_ncallouts, 1, memory_order_relaxed); 638 KASSERT(old > 0, ("Number of callouts cannot become negative")); 639 kn->kn_status |= KN_DETACHED; /* knlist_remove sets it */ 640 } 641 642 static int 643 filt_timer(struct knote *kn, long hint) 644 { 645 646 return (kn->kn_data != 0); 647 } 648 649 static int 650 filt_userattach(struct knote *kn) 651 { 652 653 /* 654 * EVFILT_USER knotes are not attached to anything in the kernel. 655 */ 656 kn->kn_hook = NULL; 657 if (kn->kn_fflags & NOTE_TRIGGER) 658 kn->kn_hookid = 1; 659 else 660 kn->kn_hookid = 0; 661 return (0); 662 } 663 664 static void 665 filt_userdetach(__unused struct knote *kn) 666 { 667 668 /* 669 * EVFILT_USER knotes are not attached to anything in the kernel. 670 */ 671 } 672 673 static int 674 filt_user(struct knote *kn, __unused long hint) 675 { 676 677 return (kn->kn_hookid); 678 } 679 680 static void 681 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type) 682 { 683 u_int ffctrl; 684 685 switch (type) { 686 case EVENT_REGISTER: 687 if (kev->fflags & NOTE_TRIGGER) 688 kn->kn_hookid = 1; 689 690 ffctrl = kev->fflags & NOTE_FFCTRLMASK; 691 kev->fflags &= NOTE_FFLAGSMASK; 692 switch (ffctrl) { 693 case NOTE_FFNOP: 694 break; 695 696 case NOTE_FFAND: 697 kn->kn_sfflags &= kev->fflags; 698 break; 699 700 case NOTE_FFOR: 701 kn->kn_sfflags |= kev->fflags; 702 break; 703 704 case NOTE_FFCOPY: 705 kn->kn_sfflags = kev->fflags; 706 break; 707 708 default: 709 /* XXX Return error? */ 710 break; 711 } 712 kn->kn_sdata = kev->data; 713 if (kev->flags & EV_CLEAR) { 714 kn->kn_hookid = 0; 715 kn->kn_data = 0; 716 kn->kn_fflags = 0; 717 } 718 break; 719 720 case EVENT_PROCESS: 721 *kev = kn->kn_kevent; 722 kev->fflags = kn->kn_sfflags; 723 kev->data = kn->kn_sdata; 724 if (kn->kn_flags & EV_CLEAR) { 725 kn->kn_hookid = 0; 726 kn->kn_data = 0; 727 kn->kn_fflags = 0; 728 } 729 break; 730 731 default: 732 panic("filt_usertouch() - invalid type (%ld)", type); 733 break; 734 } 735 } 736 737 int 738 sys_kqueue(struct thread *td, struct kqueue_args *uap) 739 { 740 741 return (kern_kqueue(td, 0)); 742 } 743 744 int 745 kern_kqueue(struct thread *td, int flags) 746 { 747 struct filedesc *fdp; 748 struct kqueue *kq; 749 struct file *fp; 750 struct proc *p; 751 struct ucred *cred; 752 int fd, error; 753 754 p = td->td_proc; 755 cred = td->td_ucred; 756 crhold(cred); 757 if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES))) { 758 crfree(cred); 759 return (ENOMEM); 760 } 761 762 fdp = p->p_fd; 763 error = falloc(td, &fp, &fd, flags); 764 if (error) 765 goto done2; 766 767 /* An extra reference on `fp' has been held for us by falloc(). */ 768 kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO); 769 mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK); 770 TAILQ_INIT(&kq->kq_head); 771 kq->kq_fdp = fdp; 772 kq->kq_cred = cred; 773 knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock); 774 TASK_INIT(&kq->kq_task, 0, kqueue_task, kq); 775 776 FILEDESC_XLOCK(fdp); 777 TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list); 778 FILEDESC_XUNLOCK(fdp); 779 780 finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops); 781 fdrop(fp, td); 782 783 td->td_retval[0] = fd; 784 done2: 785 if (error != 0) { 786 chgkqcnt(cred->cr_ruidinfo, -1, 0); 787 crfree(cred); 788 } 789 return (error); 790 } 791 792 #ifndef _SYS_SYSPROTO_H_ 793 struct kevent_args { 794 int fd; 795 const struct kevent *changelist; 796 int nchanges; 797 struct kevent *eventlist; 798 int nevents; 799 const struct timespec *timeout; 800 }; 801 #endif 802 int 803 sys_kevent(struct thread *td, struct kevent_args *uap) 804 { 805 struct timespec ts, *tsp; 806 struct kevent_copyops k_ops = { uap, 807 kevent_copyout, 808 kevent_copyin}; 809 int error; 810 #ifdef KTRACE 811 struct uio ktruio; 812 struct iovec ktriov; 813 struct uio *ktruioin = NULL; 814 struct uio *ktruioout = NULL; 815 #endif 816 817 if (uap->timeout != NULL) { 818 error = copyin(uap->timeout, &ts, sizeof(ts)); 819 if (error) 820 return (error); 821 tsp = &ts; 822 } else 823 tsp = NULL; 824 825 #ifdef KTRACE 826 if (KTRPOINT(td, KTR_GENIO)) { 827 ktriov.iov_base = uap->changelist; 828 ktriov.iov_len = uap->nchanges * sizeof(struct kevent); 829 ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1, 830 .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ, 831 .uio_td = td }; 832 ktruioin = cloneuio(&ktruio); 833 ktriov.iov_base = uap->eventlist; 834 ktriov.iov_len = uap->nevents * sizeof(struct kevent); 835 ktruioout = cloneuio(&ktruio); 836 } 837 #endif 838 839 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 840 &k_ops, tsp); 841 842 #ifdef KTRACE 843 if (ktruioin != NULL) { 844 ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent); 845 ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0); 846 ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent); 847 ktrgenio(uap->fd, UIO_READ, ktruioout, error); 848 } 849 #endif 850 851 return (error); 852 } 853 854 /* 855 * Copy 'count' items into the destination list pointed to by uap->eventlist. 856 */ 857 static int 858 kevent_copyout(void *arg, struct kevent *kevp, int count) 859 { 860 struct kevent_args *uap; 861 int error; 862 863 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 864 uap = (struct kevent_args *)arg; 865 866 error = copyout(kevp, uap->eventlist, count * sizeof *kevp); 867 if (error == 0) 868 uap->eventlist += count; 869 return (error); 870 } 871 872 /* 873 * Copy 'count' items from the list pointed to by uap->changelist. 874 */ 875 static int 876 kevent_copyin(void *arg, struct kevent *kevp, int count) 877 { 878 struct kevent_args *uap; 879 int error; 880 881 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 882 uap = (struct kevent_args *)arg; 883 884 error = copyin(uap->changelist, kevp, count * sizeof *kevp); 885 if (error == 0) 886 uap->changelist += count; 887 return (error); 888 } 889 890 int 891 kern_kevent(struct thread *td, int fd, int nchanges, int nevents, 892 struct kevent_copyops *k_ops, const struct timespec *timeout) 893 { 894 cap_rights_t rights; 895 struct file *fp; 896 int error; 897 898 cap_rights_init(&rights); 899 if (nchanges > 0) 900 cap_rights_set(&rights, CAP_KQUEUE_CHANGE); 901 if (nevents > 0) 902 cap_rights_set(&rights, CAP_KQUEUE_EVENT); 903 error = fget(td, fd, &rights, &fp); 904 if (error != 0) 905 return (error); 906 907 error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout); 908 fdrop(fp, td); 909 910 return (error); 911 } 912 913 int 914 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents, 915 struct kevent_copyops *k_ops, const struct timespec *timeout) 916 { 917 struct kevent keva[KQ_NEVENTS]; 918 struct kevent *kevp, *changes; 919 struct kqueue *kq; 920 int i, n, nerrors, error; 921 922 error = kqueue_acquire(fp, &kq); 923 if (error != 0) 924 return (error); 925 926 nerrors = 0; 927 928 while (nchanges > 0) { 929 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges; 930 error = k_ops->k_copyin(k_ops->arg, keva, n); 931 if (error) 932 goto done; 933 changes = keva; 934 for (i = 0; i < n; i++) { 935 kevp = &changes[i]; 936 if (!kevp->filter) 937 continue; 938 kevp->flags &= ~EV_SYSFLAGS; 939 error = kqueue_register(kq, kevp, td, 1); 940 if (error || (kevp->flags & EV_RECEIPT)) { 941 if (nevents != 0) { 942 kevp->flags = EV_ERROR; 943 kevp->data = error; 944 (void) k_ops->k_copyout(k_ops->arg, 945 kevp, 1); 946 nevents--; 947 nerrors++; 948 } else { 949 goto done; 950 } 951 } 952 } 953 nchanges -= n; 954 } 955 if (nerrors) { 956 td->td_retval[0] = nerrors; 957 error = 0; 958 goto done; 959 } 960 961 error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td); 962 done: 963 kqueue_release(kq, 0); 964 return (error); 965 } 966 967 int 968 kqueue_add_filteropts(int filt, struct filterops *filtops) 969 { 970 int error; 971 972 error = 0; 973 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) { 974 printf( 975 "trying to add a filterop that is out of range: %d is beyond %d\n", 976 ~filt, EVFILT_SYSCOUNT); 977 return EINVAL; 978 } 979 mtx_lock(&filterops_lock); 980 if (sysfilt_ops[~filt].for_fop != &null_filtops && 981 sysfilt_ops[~filt].for_fop != NULL) 982 error = EEXIST; 983 else { 984 sysfilt_ops[~filt].for_fop = filtops; 985 sysfilt_ops[~filt].for_refcnt = 0; 986 } 987 mtx_unlock(&filterops_lock); 988 989 return (error); 990 } 991 992 int 993 kqueue_del_filteropts(int filt) 994 { 995 int error; 996 997 error = 0; 998 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) 999 return EINVAL; 1000 1001 mtx_lock(&filterops_lock); 1002 if (sysfilt_ops[~filt].for_fop == &null_filtops || 1003 sysfilt_ops[~filt].for_fop == NULL) 1004 error = EINVAL; 1005 else if (sysfilt_ops[~filt].for_refcnt != 0) 1006 error = EBUSY; 1007 else { 1008 sysfilt_ops[~filt].for_fop = &null_filtops; 1009 sysfilt_ops[~filt].for_refcnt = 0; 1010 } 1011 mtx_unlock(&filterops_lock); 1012 1013 return error; 1014 } 1015 1016 static struct filterops * 1017 kqueue_fo_find(int filt) 1018 { 1019 1020 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) 1021 return NULL; 1022 1023 if (sysfilt_ops[~filt].for_nolock) 1024 return sysfilt_ops[~filt].for_fop; 1025 1026 mtx_lock(&filterops_lock); 1027 sysfilt_ops[~filt].for_refcnt++; 1028 if (sysfilt_ops[~filt].for_fop == NULL) 1029 sysfilt_ops[~filt].for_fop = &null_filtops; 1030 mtx_unlock(&filterops_lock); 1031 1032 return sysfilt_ops[~filt].for_fop; 1033 } 1034 1035 static void 1036 kqueue_fo_release(int filt) 1037 { 1038 1039 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) 1040 return; 1041 1042 if (sysfilt_ops[~filt].for_nolock) 1043 return; 1044 1045 mtx_lock(&filterops_lock); 1046 KASSERT(sysfilt_ops[~filt].for_refcnt > 0, 1047 ("filter object refcount not valid on release")); 1048 sysfilt_ops[~filt].for_refcnt--; 1049 mtx_unlock(&filterops_lock); 1050 } 1051 1052 /* 1053 * A ref to kq (obtained via kqueue_acquire) must be held. waitok will 1054 * influence if memory allocation should wait. Make sure it is 0 if you 1055 * hold any mutexes. 1056 */ 1057 static int 1058 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok) 1059 { 1060 struct filterops *fops; 1061 struct file *fp; 1062 struct knote *kn, *tkn; 1063 cap_rights_t rights; 1064 int error, filt, event; 1065 int haskqglobal, filedesc_unlock; 1066 1067 fp = NULL; 1068 kn = NULL; 1069 error = 0; 1070 haskqglobal = 0; 1071 filedesc_unlock = 0; 1072 1073 filt = kev->filter; 1074 fops = kqueue_fo_find(filt); 1075 if (fops == NULL) 1076 return EINVAL; 1077 1078 if (kev->flags & EV_ADD) 1079 tkn = knote_alloc(waitok); /* prevent waiting with locks */ 1080 else 1081 tkn = NULL; 1082 1083 findkn: 1084 if (fops->f_isfd) { 1085 KASSERT(td != NULL, ("td is NULL")); 1086 error = fget(td, kev->ident, 1087 cap_rights_init(&rights, CAP_EVENT), &fp); 1088 if (error) 1089 goto done; 1090 1091 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops, 1092 kev->ident, 0) != 0) { 1093 /* try again */ 1094 fdrop(fp, td); 1095 fp = NULL; 1096 error = kqueue_expand(kq, fops, kev->ident, waitok); 1097 if (error) 1098 goto done; 1099 goto findkn; 1100 } 1101 1102 if (fp->f_type == DTYPE_KQUEUE) { 1103 /* 1104 * if we add some inteligence about what we are doing, 1105 * we should be able to support events on ourselves. 1106 * We need to know when we are doing this to prevent 1107 * getting both the knlist lock and the kq lock since 1108 * they are the same thing. 1109 */ 1110 if (fp->f_data == kq) { 1111 error = EINVAL; 1112 goto done; 1113 } 1114 1115 /* 1116 * Pre-lock the filedesc before the global 1117 * lock mutex, see the comment in 1118 * kqueue_close(). 1119 */ 1120 FILEDESC_XLOCK(td->td_proc->p_fd); 1121 filedesc_unlock = 1; 1122 KQ_GLOBAL_LOCK(&kq_global, haskqglobal); 1123 } 1124 1125 KQ_LOCK(kq); 1126 if (kev->ident < kq->kq_knlistsize) { 1127 SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link) 1128 if (kev->filter == kn->kn_filter) 1129 break; 1130 } 1131 } else { 1132 if ((kev->flags & EV_ADD) == EV_ADD) 1133 kqueue_expand(kq, fops, kev->ident, waitok); 1134 1135 KQ_LOCK(kq); 1136 if (kq->kq_knhashmask != 0) { 1137 struct klist *list; 1138 1139 list = &kq->kq_knhash[ 1140 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)]; 1141 SLIST_FOREACH(kn, list, kn_link) 1142 if (kev->ident == kn->kn_id && 1143 kev->filter == kn->kn_filter) 1144 break; 1145 } 1146 } 1147 1148 /* knote is in the process of changing, wait for it to stablize. */ 1149 if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) { 1150 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1151 if (filedesc_unlock) { 1152 FILEDESC_XUNLOCK(td->td_proc->p_fd); 1153 filedesc_unlock = 0; 1154 } 1155 kq->kq_state |= KQ_FLUXWAIT; 1156 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0); 1157 if (fp != NULL) { 1158 fdrop(fp, td); 1159 fp = NULL; 1160 } 1161 goto findkn; 1162 } 1163 1164 /* 1165 * kn now contains the matching knote, or NULL if no match 1166 */ 1167 if (kn == NULL) { 1168 if (kev->flags & EV_ADD) { 1169 kn = tkn; 1170 tkn = NULL; 1171 if (kn == NULL) { 1172 KQ_UNLOCK(kq); 1173 error = ENOMEM; 1174 goto done; 1175 } 1176 kn->kn_fp = fp; 1177 kn->kn_kq = kq; 1178 kn->kn_fop = fops; 1179 /* 1180 * apply reference counts to knote structure, and 1181 * do not release it at the end of this routine. 1182 */ 1183 fops = NULL; 1184 fp = NULL; 1185 1186 kn->kn_sfflags = kev->fflags; 1187 kn->kn_sdata = kev->data; 1188 kev->fflags = 0; 1189 kev->data = 0; 1190 kn->kn_kevent = *kev; 1191 kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE | 1192 EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT); 1193 kn->kn_status = KN_INFLUX|KN_DETACHED; 1194 1195 error = knote_attach(kn, kq); 1196 KQ_UNLOCK(kq); 1197 if (error != 0) { 1198 tkn = kn; 1199 goto done; 1200 } 1201 1202 if ((error = kn->kn_fop->f_attach(kn)) != 0) { 1203 knote_drop(kn, td); 1204 goto done; 1205 } 1206 KN_LIST_LOCK(kn); 1207 goto done_ev_add; 1208 } else { 1209 /* No matching knote and the EV_ADD flag is not set. */ 1210 KQ_UNLOCK(kq); 1211 error = ENOENT; 1212 goto done; 1213 } 1214 } 1215 1216 if (kev->flags & EV_DELETE) { 1217 kn->kn_status |= KN_INFLUX; 1218 KQ_UNLOCK(kq); 1219 if (!(kn->kn_status & KN_DETACHED)) 1220 kn->kn_fop->f_detach(kn); 1221 knote_drop(kn, td); 1222 goto done; 1223 } 1224 1225 if (kev->flags & EV_FORCEONESHOT) { 1226 kn->kn_flags |= EV_ONESHOT; 1227 KNOTE_ACTIVATE(kn, 1); 1228 } 1229 1230 /* 1231 * The user may change some filter values after the initial EV_ADD, 1232 * but doing so will not reset any filter which has already been 1233 * triggered. 1234 */ 1235 kn->kn_status |= KN_INFLUX | KN_SCAN; 1236 KQ_UNLOCK(kq); 1237 KN_LIST_LOCK(kn); 1238 kn->kn_kevent.udata = kev->udata; 1239 if (!fops->f_isfd && fops->f_touch != NULL) { 1240 fops->f_touch(kn, kev, EVENT_REGISTER); 1241 } else { 1242 kn->kn_sfflags = kev->fflags; 1243 kn->kn_sdata = kev->data; 1244 } 1245 1246 /* 1247 * We can get here with kn->kn_knlist == NULL. This can happen when 1248 * the initial attach event decides that the event is "completed" 1249 * already. i.e. filt_procattach is called on a zombie process. It 1250 * will call filt_proc which will remove it from the list, and NULL 1251 * kn_knlist. 1252 */ 1253 done_ev_add: 1254 if ((kev->flags & EV_DISABLE) && 1255 ((kn->kn_status & KN_DISABLED) == 0)) { 1256 kn->kn_status |= KN_DISABLED; 1257 } 1258 1259 if ((kn->kn_status & KN_DISABLED) == 0) 1260 event = kn->kn_fop->f_event(kn, 0); 1261 else 1262 event = 0; 1263 KQ_LOCK(kq); 1264 if (event) 1265 KNOTE_ACTIVATE(kn, 1); 1266 kn->kn_status &= ~(KN_INFLUX | KN_SCAN); 1267 KN_LIST_UNLOCK(kn); 1268 1269 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { 1270 kn->kn_status &= ~KN_DISABLED; 1271 if ((kn->kn_status & KN_ACTIVE) && 1272 ((kn->kn_status & KN_QUEUED) == 0)) 1273 knote_enqueue(kn); 1274 } 1275 KQ_UNLOCK_FLUX(kq); 1276 1277 done: 1278 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1279 if (filedesc_unlock) 1280 FILEDESC_XUNLOCK(td->td_proc->p_fd); 1281 if (fp != NULL) 1282 fdrop(fp, td); 1283 if (tkn != NULL) 1284 knote_free(tkn); 1285 if (fops != NULL) 1286 kqueue_fo_release(filt); 1287 return (error); 1288 } 1289 1290 static int 1291 kqueue_acquire(struct file *fp, struct kqueue **kqp) 1292 { 1293 int error; 1294 struct kqueue *kq; 1295 1296 error = 0; 1297 1298 kq = fp->f_data; 1299 if (fp->f_type != DTYPE_KQUEUE || kq == NULL) 1300 return (EBADF); 1301 *kqp = kq; 1302 KQ_LOCK(kq); 1303 if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) { 1304 KQ_UNLOCK(kq); 1305 return (EBADF); 1306 } 1307 kq->kq_refcnt++; 1308 KQ_UNLOCK(kq); 1309 1310 return error; 1311 } 1312 1313 static void 1314 kqueue_release(struct kqueue *kq, int locked) 1315 { 1316 if (locked) 1317 KQ_OWNED(kq); 1318 else 1319 KQ_LOCK(kq); 1320 kq->kq_refcnt--; 1321 if (kq->kq_refcnt == 1) 1322 wakeup(&kq->kq_refcnt); 1323 if (!locked) 1324 KQ_UNLOCK(kq); 1325 } 1326 1327 static void 1328 kqueue_schedtask(struct kqueue *kq) 1329 { 1330 1331 KQ_OWNED(kq); 1332 KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN), 1333 ("scheduling kqueue task while draining")); 1334 1335 if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) { 1336 taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task); 1337 kq->kq_state |= KQ_TASKSCHED; 1338 } 1339 } 1340 1341 /* 1342 * Expand the kq to make sure we have storage for fops/ident pair. 1343 * 1344 * Return 0 on success (or no work necessary), return errno on failure. 1345 * 1346 * Not calling hashinit w/ waitok (proper malloc flag) should be safe. 1347 * If kqueue_register is called from a non-fd context, there usually/should 1348 * be no locks held. 1349 */ 1350 static int 1351 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident, 1352 int waitok) 1353 { 1354 struct klist *list, *tmp_knhash, *to_free; 1355 u_long tmp_knhashmask; 1356 int size; 1357 int fd; 1358 int mflag = waitok ? M_WAITOK : M_NOWAIT; 1359 1360 KQ_NOTOWNED(kq); 1361 1362 to_free = NULL; 1363 if (fops->f_isfd) { 1364 fd = ident; 1365 if (kq->kq_knlistsize <= fd) { 1366 size = kq->kq_knlistsize; 1367 while (size <= fd) 1368 size += KQEXTENT; 1369 list = malloc(size * sizeof(*list), M_KQUEUE, mflag); 1370 if (list == NULL) 1371 return ENOMEM; 1372 KQ_LOCK(kq); 1373 if (kq->kq_knlistsize > fd) { 1374 to_free = list; 1375 list = NULL; 1376 } else { 1377 if (kq->kq_knlist != NULL) { 1378 bcopy(kq->kq_knlist, list, 1379 kq->kq_knlistsize * sizeof(*list)); 1380 to_free = kq->kq_knlist; 1381 kq->kq_knlist = NULL; 1382 } 1383 bzero((caddr_t)list + 1384 kq->kq_knlistsize * sizeof(*list), 1385 (size - kq->kq_knlistsize) * sizeof(*list)); 1386 kq->kq_knlistsize = size; 1387 kq->kq_knlist = list; 1388 } 1389 KQ_UNLOCK(kq); 1390 } 1391 } else { 1392 if (kq->kq_knhashmask == 0) { 1393 tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE, 1394 &tmp_knhashmask); 1395 if (tmp_knhash == NULL) 1396 return ENOMEM; 1397 KQ_LOCK(kq); 1398 if (kq->kq_knhashmask == 0) { 1399 kq->kq_knhash = tmp_knhash; 1400 kq->kq_knhashmask = tmp_knhashmask; 1401 } else { 1402 to_free = tmp_knhash; 1403 } 1404 KQ_UNLOCK(kq); 1405 } 1406 } 1407 free(to_free, M_KQUEUE); 1408 1409 KQ_NOTOWNED(kq); 1410 return 0; 1411 } 1412 1413 static void 1414 kqueue_task(void *arg, int pending) 1415 { 1416 struct kqueue *kq; 1417 int haskqglobal; 1418 1419 haskqglobal = 0; 1420 kq = arg; 1421 1422 KQ_GLOBAL_LOCK(&kq_global, haskqglobal); 1423 KQ_LOCK(kq); 1424 1425 KNOTE_LOCKED(&kq->kq_sel.si_note, 0); 1426 1427 kq->kq_state &= ~KQ_TASKSCHED; 1428 if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) { 1429 wakeup(&kq->kq_state); 1430 } 1431 KQ_UNLOCK(kq); 1432 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1433 } 1434 1435 /* 1436 * Scan, update kn_data (if not ONESHOT), and copyout triggered events. 1437 * We treat KN_MARKER knotes as if they are INFLUX. 1438 */ 1439 static int 1440 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops, 1441 const struct timespec *tsp, struct kevent *keva, struct thread *td) 1442 { 1443 struct kevent *kevp; 1444 struct knote *kn, *marker; 1445 sbintime_t asbt, rsbt; 1446 int count, error, haskqglobal, influx, nkev, touch; 1447 1448 count = maxevents; 1449 nkev = 0; 1450 error = 0; 1451 haskqglobal = 0; 1452 1453 if (maxevents == 0) 1454 goto done_nl; 1455 1456 rsbt = 0; 1457 if (tsp != NULL) { 1458 if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 || 1459 tsp->tv_nsec >= 1000000000) { 1460 error = EINVAL; 1461 goto done_nl; 1462 } 1463 if (timespecisset(tsp)) { 1464 if (tsp->tv_sec <= INT32_MAX) { 1465 rsbt = tstosbt(*tsp); 1466 if (TIMESEL(&asbt, rsbt)) 1467 asbt += tc_tick_sbt; 1468 if (asbt <= SBT_MAX - rsbt) 1469 asbt += rsbt; 1470 else 1471 asbt = 0; 1472 rsbt >>= tc_precexp; 1473 } else 1474 asbt = 0; 1475 } else 1476 asbt = -1; 1477 } else 1478 asbt = 0; 1479 marker = knote_alloc(1); 1480 if (marker == NULL) { 1481 error = ENOMEM; 1482 goto done_nl; 1483 } 1484 marker->kn_status = KN_MARKER; 1485 KQ_LOCK(kq); 1486 1487 retry: 1488 kevp = keva; 1489 if (kq->kq_count == 0) { 1490 if (asbt == -1) { 1491 error = EWOULDBLOCK; 1492 } else { 1493 kq->kq_state |= KQ_SLEEP; 1494 error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH, 1495 "kqread", asbt, rsbt, C_ABSOLUTE); 1496 } 1497 if (error == 0) 1498 goto retry; 1499 /* don't restart after signals... */ 1500 if (error == ERESTART) 1501 error = EINTR; 1502 else if (error == EWOULDBLOCK) 1503 error = 0; 1504 goto done; 1505 } 1506 1507 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe); 1508 influx = 0; 1509 while (count) { 1510 KQ_OWNED(kq); 1511 kn = TAILQ_FIRST(&kq->kq_head); 1512 1513 if ((kn->kn_status == KN_MARKER && kn != marker) || 1514 (kn->kn_status & KN_INFLUX) == KN_INFLUX) { 1515 if (influx) { 1516 influx = 0; 1517 KQ_FLUX_WAKEUP(kq); 1518 } 1519 kq->kq_state |= KQ_FLUXWAIT; 1520 error = msleep(kq, &kq->kq_lock, PSOCK, 1521 "kqflxwt", 0); 1522 continue; 1523 } 1524 1525 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 1526 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) { 1527 kn->kn_status &= ~KN_QUEUED; 1528 kq->kq_count--; 1529 continue; 1530 } 1531 if (kn == marker) { 1532 KQ_FLUX_WAKEUP(kq); 1533 if (count == maxevents) 1534 goto retry; 1535 goto done; 1536 } 1537 KASSERT((kn->kn_status & KN_INFLUX) == 0, 1538 ("KN_INFLUX set when not suppose to be")); 1539 1540 if ((kn->kn_flags & EV_DROP) == EV_DROP) { 1541 kn->kn_status &= ~KN_QUEUED; 1542 kn->kn_status |= KN_INFLUX; 1543 kq->kq_count--; 1544 KQ_UNLOCK(kq); 1545 /* 1546 * We don't need to lock the list since we've marked 1547 * it _INFLUX. 1548 */ 1549 if (!(kn->kn_status & KN_DETACHED)) 1550 kn->kn_fop->f_detach(kn); 1551 knote_drop(kn, td); 1552 KQ_LOCK(kq); 1553 continue; 1554 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) { 1555 kn->kn_status &= ~KN_QUEUED; 1556 kn->kn_status |= KN_INFLUX; 1557 kq->kq_count--; 1558 KQ_UNLOCK(kq); 1559 /* 1560 * We don't need to lock the list since we've marked 1561 * it _INFLUX. 1562 */ 1563 *kevp = kn->kn_kevent; 1564 if (!(kn->kn_status & KN_DETACHED)) 1565 kn->kn_fop->f_detach(kn); 1566 knote_drop(kn, td); 1567 KQ_LOCK(kq); 1568 kn = NULL; 1569 } else { 1570 kn->kn_status |= KN_INFLUX | KN_SCAN; 1571 KQ_UNLOCK(kq); 1572 if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE) 1573 KQ_GLOBAL_LOCK(&kq_global, haskqglobal); 1574 KN_LIST_LOCK(kn); 1575 if (kn->kn_fop->f_event(kn, 0) == 0) { 1576 KQ_LOCK(kq); 1577 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1578 kn->kn_status &= 1579 ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX | 1580 KN_SCAN); 1581 kq->kq_count--; 1582 KN_LIST_UNLOCK(kn); 1583 influx = 1; 1584 continue; 1585 } 1586 touch = (!kn->kn_fop->f_isfd && 1587 kn->kn_fop->f_touch != NULL); 1588 if (touch) 1589 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS); 1590 else 1591 *kevp = kn->kn_kevent; 1592 KQ_LOCK(kq); 1593 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1594 if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) { 1595 /* 1596 * Manually clear knotes who weren't 1597 * 'touch'ed. 1598 */ 1599 if (touch == 0 && kn->kn_flags & EV_CLEAR) { 1600 kn->kn_data = 0; 1601 kn->kn_fflags = 0; 1602 } 1603 if (kn->kn_flags & EV_DISPATCH) 1604 kn->kn_status |= KN_DISABLED; 1605 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 1606 kq->kq_count--; 1607 } else 1608 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 1609 1610 kn->kn_status &= ~(KN_INFLUX | KN_SCAN); 1611 KN_LIST_UNLOCK(kn); 1612 influx = 1; 1613 } 1614 1615 /* we are returning a copy to the user */ 1616 kevp++; 1617 nkev++; 1618 count--; 1619 1620 if (nkev == KQ_NEVENTS) { 1621 influx = 0; 1622 KQ_UNLOCK_FLUX(kq); 1623 error = k_ops->k_copyout(k_ops->arg, keva, nkev); 1624 nkev = 0; 1625 kevp = keva; 1626 KQ_LOCK(kq); 1627 if (error) 1628 break; 1629 } 1630 } 1631 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe); 1632 done: 1633 KQ_OWNED(kq); 1634 KQ_UNLOCK_FLUX(kq); 1635 knote_free(marker); 1636 done_nl: 1637 KQ_NOTOWNED(kq); 1638 if (nkev != 0) 1639 error = k_ops->k_copyout(k_ops->arg, keva, nkev); 1640 td->td_retval[0] = maxevents - count; 1641 return (error); 1642 } 1643 1644 /*ARGSUSED*/ 1645 static int 1646 kqueue_ioctl(struct file *fp, u_long cmd, void *data, 1647 struct ucred *active_cred, struct thread *td) 1648 { 1649 /* 1650 * Enabling sigio causes two major problems: 1651 * 1) infinite recursion: 1652 * Synopsys: kevent is being used to track signals and have FIOASYNC 1653 * set. On receipt of a signal this will cause a kqueue to recurse 1654 * into itself over and over. Sending the sigio causes the kqueue 1655 * to become ready, which in turn posts sigio again, forever. 1656 * Solution: this can be solved by setting a flag in the kqueue that 1657 * we have a SIGIO in progress. 1658 * 2) locking problems: 1659 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts 1660 * us above the proc and pgrp locks. 1661 * Solution: Post a signal using an async mechanism, being sure to 1662 * record a generation count in the delivery so that we do not deliver 1663 * a signal to the wrong process. 1664 * 1665 * Note, these two mechanisms are somewhat mutually exclusive! 1666 */ 1667 #if 0 1668 struct kqueue *kq; 1669 1670 kq = fp->f_data; 1671 switch (cmd) { 1672 case FIOASYNC: 1673 if (*(int *)data) { 1674 kq->kq_state |= KQ_ASYNC; 1675 } else { 1676 kq->kq_state &= ~KQ_ASYNC; 1677 } 1678 return (0); 1679 1680 case FIOSETOWN: 1681 return (fsetown(*(int *)data, &kq->kq_sigio)); 1682 1683 case FIOGETOWN: 1684 *(int *)data = fgetown(&kq->kq_sigio); 1685 return (0); 1686 } 1687 #endif 1688 1689 return (ENOTTY); 1690 } 1691 1692 /*ARGSUSED*/ 1693 static int 1694 kqueue_poll(struct file *fp, int events, struct ucred *active_cred, 1695 struct thread *td) 1696 { 1697 struct kqueue *kq; 1698 int revents = 0; 1699 int error; 1700 1701 if ((error = kqueue_acquire(fp, &kq))) 1702 return POLLERR; 1703 1704 KQ_LOCK(kq); 1705 if (events & (POLLIN | POLLRDNORM)) { 1706 if (kq->kq_count) { 1707 revents |= events & (POLLIN | POLLRDNORM); 1708 } else { 1709 selrecord(td, &kq->kq_sel); 1710 if (SEL_WAITING(&kq->kq_sel)) 1711 kq->kq_state |= KQ_SEL; 1712 } 1713 } 1714 kqueue_release(kq, 1); 1715 KQ_UNLOCK(kq); 1716 return (revents); 1717 } 1718 1719 /*ARGSUSED*/ 1720 static int 1721 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred, 1722 struct thread *td) 1723 { 1724 1725 bzero((void *)st, sizeof *st); 1726 /* 1727 * We no longer return kq_count because the unlocked value is useless. 1728 * If you spent all this time getting the count, why not spend your 1729 * syscall better by calling kevent? 1730 * 1731 * XXX - This is needed for libc_r. 1732 */ 1733 st->st_mode = S_IFIFO; 1734 return (0); 1735 } 1736 1737 /*ARGSUSED*/ 1738 static int 1739 kqueue_close(struct file *fp, struct thread *td) 1740 { 1741 struct kqueue *kq = fp->f_data; 1742 struct filedesc *fdp; 1743 struct knote *kn; 1744 int i; 1745 int error; 1746 int filedesc_unlock; 1747 1748 if ((error = kqueue_acquire(fp, &kq))) 1749 return error; 1750 1751 filedesc_unlock = 0; 1752 KQ_LOCK(kq); 1753 1754 KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING, 1755 ("kqueue already closing")); 1756 kq->kq_state |= KQ_CLOSING; 1757 if (kq->kq_refcnt > 1) 1758 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0); 1759 1760 KASSERT(kq->kq_refcnt == 1, ("other refs are out there!")); 1761 fdp = kq->kq_fdp; 1762 1763 KASSERT(knlist_empty(&kq->kq_sel.si_note), 1764 ("kqueue's knlist not empty")); 1765 1766 for (i = 0; i < kq->kq_knlistsize; i++) { 1767 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) { 1768 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) { 1769 kq->kq_state |= KQ_FLUXWAIT; 1770 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0); 1771 continue; 1772 } 1773 kn->kn_status |= KN_INFLUX; 1774 KQ_UNLOCK(kq); 1775 if (!(kn->kn_status & KN_DETACHED)) 1776 kn->kn_fop->f_detach(kn); 1777 knote_drop(kn, td); 1778 KQ_LOCK(kq); 1779 } 1780 } 1781 if (kq->kq_knhashmask != 0) { 1782 for (i = 0; i <= kq->kq_knhashmask; i++) { 1783 while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) { 1784 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) { 1785 kq->kq_state |= KQ_FLUXWAIT; 1786 msleep(kq, &kq->kq_lock, PSOCK, 1787 "kqclo2", 0); 1788 continue; 1789 } 1790 kn->kn_status |= KN_INFLUX; 1791 KQ_UNLOCK(kq); 1792 if (!(kn->kn_status & KN_DETACHED)) 1793 kn->kn_fop->f_detach(kn); 1794 knote_drop(kn, td); 1795 KQ_LOCK(kq); 1796 } 1797 } 1798 } 1799 1800 if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) { 1801 kq->kq_state |= KQ_TASKDRAIN; 1802 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0); 1803 } 1804 1805 if ((kq->kq_state & KQ_SEL) == KQ_SEL) { 1806 selwakeuppri(&kq->kq_sel, PSOCK); 1807 if (!SEL_WAITING(&kq->kq_sel)) 1808 kq->kq_state &= ~KQ_SEL; 1809 } 1810 1811 KQ_UNLOCK(kq); 1812 1813 /* 1814 * We could be called due to the knote_drop() doing fdrop(), 1815 * called from kqueue_register(). In this case the global 1816 * lock is owned, and filedesc sx is locked before, to not 1817 * take the sleepable lock after non-sleepable. 1818 */ 1819 if (!sx_xlocked(FILEDESC_LOCK(fdp))) { 1820 FILEDESC_XLOCK(fdp); 1821 filedesc_unlock = 1; 1822 } else 1823 filedesc_unlock = 0; 1824 TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list); 1825 if (filedesc_unlock) 1826 FILEDESC_XUNLOCK(fdp); 1827 1828 seldrain(&kq->kq_sel); 1829 knlist_destroy(&kq->kq_sel.si_note); 1830 mtx_destroy(&kq->kq_lock); 1831 kq->kq_fdp = NULL; 1832 1833 if (kq->kq_knhash != NULL) 1834 free(kq->kq_knhash, M_KQUEUE); 1835 if (kq->kq_knlist != NULL) 1836 free(kq->kq_knlist, M_KQUEUE); 1837 1838 funsetown(&kq->kq_sigio); 1839 chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0); 1840 crfree(kq->kq_cred); 1841 free(kq, M_KQUEUE); 1842 fp->f_data = NULL; 1843 1844 return (0); 1845 } 1846 1847 static int 1848 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 1849 { 1850 1851 kif->kf_type = KF_TYPE_KQUEUE; 1852 return (0); 1853 } 1854 1855 static void 1856 kqueue_wakeup(struct kqueue *kq) 1857 { 1858 KQ_OWNED(kq); 1859 1860 if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) { 1861 kq->kq_state &= ~KQ_SLEEP; 1862 wakeup(kq); 1863 } 1864 if ((kq->kq_state & KQ_SEL) == KQ_SEL) { 1865 selwakeuppri(&kq->kq_sel, PSOCK); 1866 if (!SEL_WAITING(&kq->kq_sel)) 1867 kq->kq_state &= ~KQ_SEL; 1868 } 1869 if (!knlist_empty(&kq->kq_sel.si_note)) 1870 kqueue_schedtask(kq); 1871 if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) { 1872 pgsigio(&kq->kq_sigio, SIGIO, 0); 1873 } 1874 } 1875 1876 /* 1877 * Walk down a list of knotes, activating them if their event has triggered. 1878 * 1879 * There is a possibility to optimize in the case of one kq watching another. 1880 * Instead of scheduling a task to wake it up, you could pass enough state 1881 * down the chain to make up the parent kqueue. Make this code functional 1882 * first. 1883 */ 1884 void 1885 knote(struct knlist *list, long hint, int lockflags) 1886 { 1887 struct kqueue *kq; 1888 struct knote *kn; 1889 int error; 1890 1891 if (list == NULL) 1892 return; 1893 1894 KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED); 1895 1896 if ((lockflags & KNF_LISTLOCKED) == 0) 1897 list->kl_lock(list->kl_lockarg); 1898 1899 /* 1900 * If we unlock the list lock (and set KN_INFLUX), we can eliminate 1901 * the kqueue scheduling, but this will introduce four 1902 * lock/unlock's for each knote to test. If we do, continue to use 1903 * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is 1904 * only safe if you want to remove the current item, which we are 1905 * not doing. 1906 */ 1907 SLIST_FOREACH(kn, &list->kl_list, kn_selnext) { 1908 kq = kn->kn_kq; 1909 KQ_LOCK(kq); 1910 if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) { 1911 /* 1912 * Do not process the influx notes, except for 1913 * the influx coming from the kq unlock in the 1914 * kqueue_scan(). In the later case, we do 1915 * not interfere with the scan, since the code 1916 * fragment in kqueue_scan() locks the knlist, 1917 * and cannot proceed until we finished. 1918 */ 1919 KQ_UNLOCK(kq); 1920 } else if ((lockflags & KNF_NOKQLOCK) != 0) { 1921 kn->kn_status |= KN_INFLUX; 1922 KQ_UNLOCK(kq); 1923 error = kn->kn_fop->f_event(kn, hint); 1924 KQ_LOCK(kq); 1925 kn->kn_status &= ~KN_INFLUX; 1926 if (error) 1927 KNOTE_ACTIVATE(kn, 1); 1928 KQ_UNLOCK_FLUX(kq); 1929 } else { 1930 kn->kn_status |= KN_HASKQLOCK; 1931 if (kn->kn_fop->f_event(kn, hint)) 1932 KNOTE_ACTIVATE(kn, 1); 1933 kn->kn_status &= ~KN_HASKQLOCK; 1934 KQ_UNLOCK(kq); 1935 } 1936 } 1937 if ((lockflags & KNF_LISTLOCKED) == 0) 1938 list->kl_unlock(list->kl_lockarg); 1939 } 1940 1941 /* 1942 * add a knote to a knlist 1943 */ 1944 void 1945 knlist_add(struct knlist *knl, struct knote *kn, int islocked) 1946 { 1947 KNL_ASSERT_LOCK(knl, islocked); 1948 KQ_NOTOWNED(kn->kn_kq); 1949 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == 1950 (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED")); 1951 if (!islocked) 1952 knl->kl_lock(knl->kl_lockarg); 1953 SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext); 1954 if (!islocked) 1955 knl->kl_unlock(knl->kl_lockarg); 1956 KQ_LOCK(kn->kn_kq); 1957 kn->kn_knlist = knl; 1958 kn->kn_status &= ~KN_DETACHED; 1959 KQ_UNLOCK(kn->kn_kq); 1960 } 1961 1962 static void 1963 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked) 1964 { 1965 KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked")); 1966 KNL_ASSERT_LOCK(knl, knlislocked); 1967 mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED); 1968 if (!kqislocked) 1969 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX, 1970 ("knlist_remove called w/o knote being KN_INFLUX or already removed")); 1971 if (!knlislocked) 1972 knl->kl_lock(knl->kl_lockarg); 1973 SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext); 1974 kn->kn_knlist = NULL; 1975 if (!knlislocked) 1976 knl->kl_unlock(knl->kl_lockarg); 1977 if (!kqislocked) 1978 KQ_LOCK(kn->kn_kq); 1979 kn->kn_status |= KN_DETACHED; 1980 if (!kqislocked) 1981 KQ_UNLOCK(kn->kn_kq); 1982 } 1983 1984 /* 1985 * remove knote from the specified knlist 1986 */ 1987 void 1988 knlist_remove(struct knlist *knl, struct knote *kn, int islocked) 1989 { 1990 1991 knlist_remove_kq(knl, kn, islocked, 0); 1992 } 1993 1994 /* 1995 * remove knote from the specified knlist while in f_event handler. 1996 */ 1997 void 1998 knlist_remove_inevent(struct knlist *knl, struct knote *kn) 1999 { 2000 2001 knlist_remove_kq(knl, kn, 1, 2002 (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK); 2003 } 2004 2005 int 2006 knlist_empty(struct knlist *knl) 2007 { 2008 2009 KNL_ASSERT_LOCKED(knl); 2010 return SLIST_EMPTY(&knl->kl_list); 2011 } 2012 2013 static struct mtx knlist_lock; 2014 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects", 2015 MTX_DEF); 2016 static void knlist_mtx_lock(void *arg); 2017 static void knlist_mtx_unlock(void *arg); 2018 2019 static void 2020 knlist_mtx_lock(void *arg) 2021 { 2022 2023 mtx_lock((struct mtx *)arg); 2024 } 2025 2026 static void 2027 knlist_mtx_unlock(void *arg) 2028 { 2029 2030 mtx_unlock((struct mtx *)arg); 2031 } 2032 2033 static void 2034 knlist_mtx_assert_locked(void *arg) 2035 { 2036 2037 mtx_assert((struct mtx *)arg, MA_OWNED); 2038 } 2039 2040 static void 2041 knlist_mtx_assert_unlocked(void *arg) 2042 { 2043 2044 mtx_assert((struct mtx *)arg, MA_NOTOWNED); 2045 } 2046 2047 static void 2048 knlist_rw_rlock(void *arg) 2049 { 2050 2051 rw_rlock((struct rwlock *)arg); 2052 } 2053 2054 static void 2055 knlist_rw_runlock(void *arg) 2056 { 2057 2058 rw_runlock((struct rwlock *)arg); 2059 } 2060 2061 static void 2062 knlist_rw_assert_locked(void *arg) 2063 { 2064 2065 rw_assert((struct rwlock *)arg, RA_LOCKED); 2066 } 2067 2068 static void 2069 knlist_rw_assert_unlocked(void *arg) 2070 { 2071 2072 rw_assert((struct rwlock *)arg, RA_UNLOCKED); 2073 } 2074 2075 void 2076 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *), 2077 void (*kl_unlock)(void *), 2078 void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *)) 2079 { 2080 2081 if (lock == NULL) 2082 knl->kl_lockarg = &knlist_lock; 2083 else 2084 knl->kl_lockarg = lock; 2085 2086 if (kl_lock == NULL) 2087 knl->kl_lock = knlist_mtx_lock; 2088 else 2089 knl->kl_lock = kl_lock; 2090 if (kl_unlock == NULL) 2091 knl->kl_unlock = knlist_mtx_unlock; 2092 else 2093 knl->kl_unlock = kl_unlock; 2094 if (kl_assert_locked == NULL) 2095 knl->kl_assert_locked = knlist_mtx_assert_locked; 2096 else 2097 knl->kl_assert_locked = kl_assert_locked; 2098 if (kl_assert_unlocked == NULL) 2099 knl->kl_assert_unlocked = knlist_mtx_assert_unlocked; 2100 else 2101 knl->kl_assert_unlocked = kl_assert_unlocked; 2102 2103 SLIST_INIT(&knl->kl_list); 2104 } 2105 2106 void 2107 knlist_init_mtx(struct knlist *knl, struct mtx *lock) 2108 { 2109 2110 knlist_init(knl, lock, NULL, NULL, NULL, NULL); 2111 } 2112 2113 void 2114 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock) 2115 { 2116 2117 knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock, 2118 knlist_rw_assert_locked, knlist_rw_assert_unlocked); 2119 } 2120 2121 void 2122 knlist_destroy(struct knlist *knl) 2123 { 2124 2125 #ifdef INVARIANTS 2126 /* 2127 * if we run across this error, we need to find the offending 2128 * driver and have it call knlist_clear or knlist_delete. 2129 */ 2130 if (!SLIST_EMPTY(&knl->kl_list)) 2131 printf("WARNING: destroying knlist w/ knotes on it!\n"); 2132 #endif 2133 2134 knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL; 2135 SLIST_INIT(&knl->kl_list); 2136 } 2137 2138 /* 2139 * Even if we are locked, we may need to drop the lock to allow any influx 2140 * knotes time to "settle". 2141 */ 2142 void 2143 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn) 2144 { 2145 struct knote *kn, *kn2; 2146 struct kqueue *kq; 2147 2148 if (islocked) 2149 KNL_ASSERT_LOCKED(knl); 2150 else { 2151 KNL_ASSERT_UNLOCKED(knl); 2152 again: /* need to reacquire lock since we have dropped it */ 2153 knl->kl_lock(knl->kl_lockarg); 2154 } 2155 2156 SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) { 2157 kq = kn->kn_kq; 2158 KQ_LOCK(kq); 2159 if ((kn->kn_status & KN_INFLUX)) { 2160 KQ_UNLOCK(kq); 2161 continue; 2162 } 2163 knlist_remove_kq(knl, kn, 1, 1); 2164 if (killkn) { 2165 kn->kn_status |= KN_INFLUX | KN_DETACHED; 2166 KQ_UNLOCK(kq); 2167 knote_drop(kn, td); 2168 } else { 2169 /* Make sure cleared knotes disappear soon */ 2170 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 2171 KQ_UNLOCK(kq); 2172 } 2173 kq = NULL; 2174 } 2175 2176 if (!SLIST_EMPTY(&knl->kl_list)) { 2177 /* there are still KN_INFLUX remaining */ 2178 kn = SLIST_FIRST(&knl->kl_list); 2179 kq = kn->kn_kq; 2180 KQ_LOCK(kq); 2181 KASSERT(kn->kn_status & KN_INFLUX, 2182 ("knote removed w/o list lock")); 2183 knl->kl_unlock(knl->kl_lockarg); 2184 kq->kq_state |= KQ_FLUXWAIT; 2185 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0); 2186 kq = NULL; 2187 goto again; 2188 } 2189 2190 if (islocked) 2191 KNL_ASSERT_LOCKED(knl); 2192 else { 2193 knl->kl_unlock(knl->kl_lockarg); 2194 KNL_ASSERT_UNLOCKED(knl); 2195 } 2196 } 2197 2198 /* 2199 * Remove all knotes referencing a specified fd must be called with FILEDESC 2200 * lock. This prevents a race where a new fd comes along and occupies the 2201 * entry and we attach a knote to the fd. 2202 */ 2203 void 2204 knote_fdclose(struct thread *td, int fd) 2205 { 2206 struct filedesc *fdp = td->td_proc->p_fd; 2207 struct kqueue *kq; 2208 struct knote *kn; 2209 int influx; 2210 2211 FILEDESC_XLOCK_ASSERT(fdp); 2212 2213 /* 2214 * We shouldn't have to worry about new kevents appearing on fd 2215 * since filedesc is locked. 2216 */ 2217 TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) { 2218 KQ_LOCK(kq); 2219 2220 again: 2221 influx = 0; 2222 while (kq->kq_knlistsize > fd && 2223 (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) { 2224 if (kn->kn_status & KN_INFLUX) { 2225 /* someone else might be waiting on our knote */ 2226 if (influx) 2227 wakeup(kq); 2228 kq->kq_state |= KQ_FLUXWAIT; 2229 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0); 2230 goto again; 2231 } 2232 kn->kn_status |= KN_INFLUX; 2233 KQ_UNLOCK(kq); 2234 if (!(kn->kn_status & KN_DETACHED)) 2235 kn->kn_fop->f_detach(kn); 2236 knote_drop(kn, td); 2237 influx = 1; 2238 KQ_LOCK(kq); 2239 } 2240 KQ_UNLOCK_FLUX(kq); 2241 } 2242 } 2243 2244 static int 2245 knote_attach(struct knote *kn, struct kqueue *kq) 2246 { 2247 struct klist *list; 2248 2249 KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX")); 2250 KQ_OWNED(kq); 2251 2252 if (kn->kn_fop->f_isfd) { 2253 if (kn->kn_id >= kq->kq_knlistsize) 2254 return ENOMEM; 2255 list = &kq->kq_knlist[kn->kn_id]; 2256 } else { 2257 if (kq->kq_knhash == NULL) 2258 return ENOMEM; 2259 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 2260 } 2261 2262 SLIST_INSERT_HEAD(list, kn, kn_link); 2263 2264 return 0; 2265 } 2266 2267 /* 2268 * knote must already have been detached using the f_detach method. 2269 * no lock need to be held, it is assumed that the KN_INFLUX flag is set 2270 * to prevent other removal. 2271 */ 2272 static void 2273 knote_drop(struct knote *kn, struct thread *td) 2274 { 2275 struct kqueue *kq; 2276 struct klist *list; 2277 2278 kq = kn->kn_kq; 2279 2280 KQ_NOTOWNED(kq); 2281 KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX, 2282 ("knote_drop called without KN_INFLUX set in kn_status")); 2283 2284 KQ_LOCK(kq); 2285 if (kn->kn_fop->f_isfd) 2286 list = &kq->kq_knlist[kn->kn_id]; 2287 else 2288 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 2289 2290 if (!SLIST_EMPTY(list)) 2291 SLIST_REMOVE(list, kn, knote, kn_link); 2292 if (kn->kn_status & KN_QUEUED) 2293 knote_dequeue(kn); 2294 KQ_UNLOCK_FLUX(kq); 2295 2296 if (kn->kn_fop->f_isfd) { 2297 fdrop(kn->kn_fp, td); 2298 kn->kn_fp = NULL; 2299 } 2300 kqueue_fo_release(kn->kn_kevent.filter); 2301 kn->kn_fop = NULL; 2302 knote_free(kn); 2303 } 2304 2305 static void 2306 knote_enqueue(struct knote *kn) 2307 { 2308 struct kqueue *kq = kn->kn_kq; 2309 2310 KQ_OWNED(kn->kn_kq); 2311 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued")); 2312 2313 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2314 kn->kn_status |= KN_QUEUED; 2315 kq->kq_count++; 2316 kqueue_wakeup(kq); 2317 } 2318 2319 static void 2320 knote_dequeue(struct knote *kn) 2321 { 2322 struct kqueue *kq = kn->kn_kq; 2323 2324 KQ_OWNED(kn->kn_kq); 2325 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued")); 2326 2327 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2328 kn->kn_status &= ~KN_QUEUED; 2329 kq->kq_count--; 2330 } 2331 2332 static void 2333 knote_init(void) 2334 { 2335 2336 knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL, 2337 NULL, NULL, UMA_ALIGN_PTR, 0); 2338 } 2339 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL); 2340 2341 static struct knote * 2342 knote_alloc(int waitok) 2343 { 2344 return ((struct knote *)uma_zalloc(knote_zone, 2345 (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO)); 2346 } 2347 2348 static void 2349 knote_free(struct knote *kn) 2350 { 2351 if (kn != NULL) 2352 uma_zfree(knote_zone, kn); 2353 } 2354 2355 /* 2356 * Register the kev w/ the kq specified by fd. 2357 */ 2358 int 2359 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok) 2360 { 2361 struct kqueue *kq; 2362 struct file *fp; 2363 cap_rights_t rights; 2364 int error; 2365 2366 error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp); 2367 if (error != 0) 2368 return (error); 2369 if ((error = kqueue_acquire(fp, &kq)) != 0) 2370 goto noacquire; 2371 2372 error = kqueue_register(kq, kev, td, waitok); 2373 2374 kqueue_release(kq, 0); 2375 2376 noacquire: 2377 fdrop(fp, td); 2378 2379 return error; 2380 } 2381