xref: /freebsd/sys/kern/kern_event.c (revision 5f0216bd883edee71bf81051e3c20505e4820903)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
4  * Copyright (c) 2009 Apple, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_ktrace.h"
33 #include "opt_kqueue.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/capsicum.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/rwlock.h>
42 #include <sys/proc.h>
43 #include <sys/malloc.h>
44 #include <sys/unistd.h>
45 #include <sys/file.h>
46 #include <sys/filedesc.h>
47 #include <sys/filio.h>
48 #include <sys/fcntl.h>
49 #include <sys/kthread.h>
50 #include <sys/selinfo.h>
51 #include <sys/stdatomic.h>
52 #include <sys/queue.h>
53 #include <sys/event.h>
54 #include <sys/eventvar.h>
55 #include <sys/poll.h>
56 #include <sys/protosw.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sigio.h>
59 #include <sys/signalvar.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/stat.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysproto.h>
65 #include <sys/syscallsubr.h>
66 #include <sys/taskqueue.h>
67 #include <sys/uio.h>
68 #include <sys/user.h>
69 #ifdef KTRACE
70 #include <sys/ktrace.h>
71 #endif
72 
73 #include <vm/uma.h>
74 
75 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
76 
77 /*
78  * This lock is used if multiple kq locks are required.  This possibly
79  * should be made into a per proc lock.
80  */
81 static struct mtx	kq_global;
82 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
83 #define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
84 	if (!haslck)				\
85 		mtx_lock(lck);			\
86 	haslck = 1;				\
87 } while (0)
88 #define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
89 	if (haslck)				\
90 		mtx_unlock(lck);			\
91 	haslck = 0;				\
92 } while (0)
93 
94 TASKQUEUE_DEFINE_THREAD(kqueue);
95 
96 static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
97 static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
98 static int	kqueue_register(struct kqueue *kq, struct kevent *kev,
99 		    struct thread *td, int waitok);
100 static int	kqueue_acquire(struct file *fp, struct kqueue **kqp);
101 static void	kqueue_release(struct kqueue *kq, int locked);
102 static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
103 		    uintptr_t ident, int waitok);
104 static void	kqueue_task(void *arg, int pending);
105 static int	kqueue_scan(struct kqueue *kq, int maxevents,
106 		    struct kevent_copyops *k_ops,
107 		    const struct timespec *timeout,
108 		    struct kevent *keva, struct thread *td);
109 static void 	kqueue_wakeup(struct kqueue *kq);
110 static struct filterops *kqueue_fo_find(int filt);
111 static void	kqueue_fo_release(int filt);
112 
113 static fo_ioctl_t	kqueue_ioctl;
114 static fo_poll_t	kqueue_poll;
115 static fo_kqfilter_t	kqueue_kqfilter;
116 static fo_stat_t	kqueue_stat;
117 static fo_close_t	kqueue_close;
118 static fo_fill_kinfo_t	kqueue_fill_kinfo;
119 
120 static struct fileops kqueueops = {
121 	.fo_read = invfo_rdwr,
122 	.fo_write = invfo_rdwr,
123 	.fo_truncate = invfo_truncate,
124 	.fo_ioctl = kqueue_ioctl,
125 	.fo_poll = kqueue_poll,
126 	.fo_kqfilter = kqueue_kqfilter,
127 	.fo_stat = kqueue_stat,
128 	.fo_close = kqueue_close,
129 	.fo_chmod = invfo_chmod,
130 	.fo_chown = invfo_chown,
131 	.fo_sendfile = invfo_sendfile,
132 	.fo_fill_kinfo = kqueue_fill_kinfo,
133 };
134 
135 static int 	knote_attach(struct knote *kn, struct kqueue *kq);
136 static void 	knote_drop(struct knote *kn, struct thread *td);
137 static void 	knote_enqueue(struct knote *kn);
138 static void 	knote_dequeue(struct knote *kn);
139 static void 	knote_init(void);
140 static struct 	knote *knote_alloc(int waitok);
141 static void 	knote_free(struct knote *kn);
142 
143 static void	filt_kqdetach(struct knote *kn);
144 static int	filt_kqueue(struct knote *kn, long hint);
145 static int	filt_procattach(struct knote *kn);
146 static void	filt_procdetach(struct knote *kn);
147 static int	filt_proc(struct knote *kn, long hint);
148 static int	filt_fileattach(struct knote *kn);
149 static void	filt_timerexpire(void *knx);
150 static int	filt_timerattach(struct knote *kn);
151 static void	filt_timerdetach(struct knote *kn);
152 static int	filt_timer(struct knote *kn, long hint);
153 static int	filt_userattach(struct knote *kn);
154 static void	filt_userdetach(struct knote *kn);
155 static int	filt_user(struct knote *kn, long hint);
156 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
157 		    u_long type);
158 
159 static struct filterops file_filtops = {
160 	.f_isfd = 1,
161 	.f_attach = filt_fileattach,
162 };
163 static struct filterops kqread_filtops = {
164 	.f_isfd = 1,
165 	.f_detach = filt_kqdetach,
166 	.f_event = filt_kqueue,
167 };
168 /* XXX - move to kern_proc.c?  */
169 static struct filterops proc_filtops = {
170 	.f_isfd = 0,
171 	.f_attach = filt_procattach,
172 	.f_detach = filt_procdetach,
173 	.f_event = filt_proc,
174 };
175 static struct filterops timer_filtops = {
176 	.f_isfd = 0,
177 	.f_attach = filt_timerattach,
178 	.f_detach = filt_timerdetach,
179 	.f_event = filt_timer,
180 };
181 static struct filterops user_filtops = {
182 	.f_attach = filt_userattach,
183 	.f_detach = filt_userdetach,
184 	.f_event = filt_user,
185 	.f_touch = filt_usertouch,
186 };
187 
188 static uma_zone_t	knote_zone;
189 static atomic_uint	kq_ncallouts = ATOMIC_VAR_INIT(0);
190 static unsigned int 	kq_calloutmax = 4 * 1024;
191 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
192     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
193 
194 /* XXX - ensure not KN_INFLUX?? */
195 #define KNOTE_ACTIVATE(kn, islock) do { 				\
196 	if ((islock))							\
197 		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
198 	else								\
199 		KQ_LOCK((kn)->kn_kq);					\
200 	(kn)->kn_status |= KN_ACTIVE;					\
201 	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
202 		knote_enqueue((kn));					\
203 	if (!(islock))							\
204 		KQ_UNLOCK((kn)->kn_kq);					\
205 } while(0)
206 #define KQ_LOCK(kq) do {						\
207 	mtx_lock(&(kq)->kq_lock);					\
208 } while (0)
209 #define KQ_FLUX_WAKEUP(kq) do {						\
210 	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
211 		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
212 		wakeup((kq));						\
213 	}								\
214 } while (0)
215 #define KQ_UNLOCK_FLUX(kq) do {						\
216 	KQ_FLUX_WAKEUP(kq);						\
217 	mtx_unlock(&(kq)->kq_lock);					\
218 } while (0)
219 #define KQ_UNLOCK(kq) do {						\
220 	mtx_unlock(&(kq)->kq_lock);					\
221 } while (0)
222 #define KQ_OWNED(kq) do {						\
223 	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
224 } while (0)
225 #define KQ_NOTOWNED(kq) do {						\
226 	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
227 } while (0)
228 #define KN_LIST_LOCK(kn) do {						\
229 	if (kn->kn_knlist != NULL)					\
230 		kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);	\
231 } while (0)
232 #define KN_LIST_UNLOCK(kn) do {						\
233 	if (kn->kn_knlist != NULL) 					\
234 		kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);	\
235 } while (0)
236 #define	KNL_ASSERT_LOCK(knl, islocked) do {				\
237 	if (islocked)							\
238 		KNL_ASSERT_LOCKED(knl);				\
239 	else								\
240 		KNL_ASSERT_UNLOCKED(knl);				\
241 } while (0)
242 #ifdef INVARIANTS
243 #define	KNL_ASSERT_LOCKED(knl) do {					\
244 	knl->kl_assert_locked((knl)->kl_lockarg);			\
245 } while (0)
246 #define	KNL_ASSERT_UNLOCKED(knl) do {					\
247 	knl->kl_assert_unlocked((knl)->kl_lockarg);			\
248 } while (0)
249 #else /* !INVARIANTS */
250 #define	KNL_ASSERT_LOCKED(knl) do {} while(0)
251 #define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
252 #endif /* INVARIANTS */
253 
254 #ifndef	KN_HASHSIZE
255 #define	KN_HASHSIZE		64		/* XXX should be tunable */
256 #endif
257 
258 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
259 
260 static int
261 filt_nullattach(struct knote *kn)
262 {
263 
264 	return (ENXIO);
265 };
266 
267 struct filterops null_filtops = {
268 	.f_isfd = 0,
269 	.f_attach = filt_nullattach,
270 };
271 
272 /* XXX - make SYSINIT to add these, and move into respective modules. */
273 extern struct filterops sig_filtops;
274 extern struct filterops fs_filtops;
275 
276 /*
277  * Table for for all system-defined filters.
278  */
279 static struct mtx	filterops_lock;
280 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
281 	MTX_DEF);
282 static struct {
283 	struct filterops *for_fop;
284 	int for_nolock;
285 	int for_refcnt;
286 } sysfilt_ops[EVFILT_SYSCOUNT] = {
287 	{ &file_filtops, 1 },			/* EVFILT_READ */
288 	{ &file_filtops, 1 },			/* EVFILT_WRITE */
289 	{ &null_filtops },			/* EVFILT_AIO */
290 	{ &file_filtops, 1 },			/* EVFILT_VNODE */
291 	{ &proc_filtops, 1 },			/* EVFILT_PROC */
292 	{ &sig_filtops, 1 },			/* EVFILT_SIGNAL */
293 	{ &timer_filtops, 1 },			/* EVFILT_TIMER */
294 	{ &file_filtops, 1 },			/* EVFILT_PROCDESC */
295 	{ &fs_filtops, 1 },			/* EVFILT_FS */
296 	{ &null_filtops },			/* EVFILT_LIO */
297 	{ &user_filtops, 1 },			/* EVFILT_USER */
298 	{ &null_filtops },			/* EVFILT_SENDFILE */
299 };
300 
301 /*
302  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
303  * method.
304  */
305 static int
306 filt_fileattach(struct knote *kn)
307 {
308 
309 	return (fo_kqfilter(kn->kn_fp, kn));
310 }
311 
312 /*ARGSUSED*/
313 static int
314 kqueue_kqfilter(struct file *fp, struct knote *kn)
315 {
316 	struct kqueue *kq = kn->kn_fp->f_data;
317 
318 	if (kn->kn_filter != EVFILT_READ)
319 		return (EINVAL);
320 
321 	kn->kn_status |= KN_KQUEUE;
322 	kn->kn_fop = &kqread_filtops;
323 	knlist_add(&kq->kq_sel.si_note, kn, 0);
324 
325 	return (0);
326 }
327 
328 static void
329 filt_kqdetach(struct knote *kn)
330 {
331 	struct kqueue *kq = kn->kn_fp->f_data;
332 
333 	knlist_remove(&kq->kq_sel.si_note, kn, 0);
334 }
335 
336 /*ARGSUSED*/
337 static int
338 filt_kqueue(struct knote *kn, long hint)
339 {
340 	struct kqueue *kq = kn->kn_fp->f_data;
341 
342 	kn->kn_data = kq->kq_count;
343 	return (kn->kn_data > 0);
344 }
345 
346 /* XXX - move to kern_proc.c?  */
347 static int
348 filt_procattach(struct knote *kn)
349 {
350 	struct proc *p;
351 	int immediate;
352 	int error;
353 
354 	immediate = 0;
355 	p = pfind(kn->kn_id);
356 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
357 		p = zpfind(kn->kn_id);
358 		immediate = 1;
359 	} else if (p != NULL && (p->p_flag & P_WEXIT)) {
360 		immediate = 1;
361 	}
362 
363 	if (p == NULL)
364 		return (ESRCH);
365 	if ((error = p_cansee(curthread, p))) {
366 		PROC_UNLOCK(p);
367 		return (error);
368 	}
369 
370 	kn->kn_ptr.p_proc = p;
371 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
372 
373 	/*
374 	 * internal flag indicating registration done by kernel
375 	 */
376 	if (kn->kn_flags & EV_FLAG1) {
377 		kn->kn_data = kn->kn_sdata;		/* ppid */
378 		kn->kn_fflags = NOTE_CHILD;
379 		kn->kn_flags &= ~EV_FLAG1;
380 	}
381 
382 	if (immediate == 0)
383 		knlist_add(&p->p_klist, kn, 1);
384 
385 	/*
386 	 * Immediately activate any exit notes if the target process is a
387 	 * zombie.  This is necessary to handle the case where the target
388 	 * process, e.g. a child, dies before the kevent is registered.
389 	 */
390 	if (immediate && filt_proc(kn, NOTE_EXIT))
391 		KNOTE_ACTIVATE(kn, 0);
392 
393 	PROC_UNLOCK(p);
394 
395 	return (0);
396 }
397 
398 /*
399  * The knote may be attached to a different process, which may exit,
400  * leaving nothing for the knote to be attached to.  So when the process
401  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
402  * it will be deleted when read out.  However, as part of the knote deletion,
403  * this routine is called, so a check is needed to avoid actually performing
404  * a detach, because the original process does not exist any more.
405  */
406 /* XXX - move to kern_proc.c?  */
407 static void
408 filt_procdetach(struct knote *kn)
409 {
410 	struct proc *p;
411 
412 	p = kn->kn_ptr.p_proc;
413 	knlist_remove(&p->p_klist, kn, 0);
414 	kn->kn_ptr.p_proc = NULL;
415 }
416 
417 /* XXX - move to kern_proc.c?  */
418 static int
419 filt_proc(struct knote *kn, long hint)
420 {
421 	struct proc *p;
422 	u_int event;
423 
424 	p = kn->kn_ptr.p_proc;
425 	/* Mask off extra data. */
426 	event = (u_int)hint & NOTE_PCTRLMASK;
427 
428 	/* If the user is interested in this event, record it. */
429 	if (kn->kn_sfflags & event)
430 		kn->kn_fflags |= event;
431 
432 	/* Process is gone, so flag the event as finished. */
433 	if (event == NOTE_EXIT) {
434 		if (!(kn->kn_status & KN_DETACHED))
435 			knlist_remove_inevent(&p->p_klist, kn);
436 		kn->kn_flags |= EV_EOF | EV_ONESHOT;
437 		kn->kn_ptr.p_proc = NULL;
438 		if (kn->kn_fflags & NOTE_EXIT)
439 			kn->kn_data = p->p_xstat;
440 		if (kn->kn_fflags == 0)
441 			kn->kn_flags |= EV_DROP;
442 		return (1);
443 	}
444 
445 	return (kn->kn_fflags != 0);
446 }
447 
448 /*
449  * Called when the process forked. It mostly does the same as the
450  * knote(), activating all knotes registered to be activated when the
451  * process forked. Additionally, for each knote attached to the
452  * parent, check whether user wants to track the new process. If so
453  * attach a new knote to it, and immediately report an event with the
454  * child's pid.
455  */
456 void
457 knote_fork(struct knlist *list, int pid)
458 {
459 	struct kqueue *kq;
460 	struct knote *kn;
461 	struct kevent kev;
462 	int error;
463 
464 	if (list == NULL)
465 		return;
466 	list->kl_lock(list->kl_lockarg);
467 
468 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
469 		/*
470 		 * XXX - Why do we skip the kn if it is _INFLUX?  Does this
471 		 * mean we will not properly wake up some notes?
472 		 */
473 		if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
474 			continue;
475 		kq = kn->kn_kq;
476 		KQ_LOCK(kq);
477 		if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
478 			KQ_UNLOCK(kq);
479 			continue;
480 		}
481 
482 		/*
483 		 * The same as knote(), activate the event.
484 		 */
485 		if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
486 			kn->kn_status |= KN_HASKQLOCK;
487 			if (kn->kn_fop->f_event(kn, NOTE_FORK))
488 				KNOTE_ACTIVATE(kn, 1);
489 			kn->kn_status &= ~KN_HASKQLOCK;
490 			KQ_UNLOCK(kq);
491 			continue;
492 		}
493 
494 		/*
495 		 * The NOTE_TRACK case. In addition to the activation
496 		 * of the event, we need to register new event to
497 		 * track the child. Drop the locks in preparation for
498 		 * the call to kqueue_register().
499 		 */
500 		kn->kn_status |= KN_INFLUX;
501 		KQ_UNLOCK(kq);
502 		list->kl_unlock(list->kl_lockarg);
503 
504 		/*
505 		 * Activate existing knote and register a knote with
506 		 * new process.
507 		 */
508 		kev.ident = pid;
509 		kev.filter = kn->kn_filter;
510 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
511 		kev.fflags = kn->kn_sfflags;
512 		kev.data = kn->kn_id;		/* parent */
513 		kev.udata = kn->kn_kevent.udata;/* preserve udata */
514 		error = kqueue_register(kq, &kev, NULL, 0);
515 		if (error)
516 			kn->kn_fflags |= NOTE_TRACKERR;
517 		if (kn->kn_fop->f_event(kn, NOTE_FORK))
518 			KNOTE_ACTIVATE(kn, 0);
519 		KQ_LOCK(kq);
520 		kn->kn_status &= ~KN_INFLUX;
521 		KQ_UNLOCK_FLUX(kq);
522 		list->kl_lock(list->kl_lockarg);
523 	}
524 	list->kl_unlock(list->kl_lockarg);
525 }
526 
527 /*
528  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
529  * interval timer support code.
530  */
531 
532 #define NOTE_TIMER_PRECMASK	(NOTE_SECONDS|NOTE_MSECONDS|NOTE_USECONDS| \
533 				NOTE_NSECONDS)
534 
535 static __inline sbintime_t
536 timer2sbintime(intptr_t data, int flags)
537 {
538 	sbintime_t modifier;
539 
540 	switch (flags & NOTE_TIMER_PRECMASK) {
541 	case NOTE_SECONDS:
542 		modifier = SBT_1S;
543 		break;
544 	case NOTE_MSECONDS: /* FALLTHROUGH */
545 	case 0:
546 		modifier = SBT_1MS;
547 		break;
548 	case NOTE_USECONDS:
549 		modifier = SBT_1US;
550 		break;
551 	case NOTE_NSECONDS:
552 		modifier = SBT_1NS;
553 		break;
554 	default:
555 		return (-1);
556 	}
557 
558 #ifdef __LP64__
559 	if (data > SBT_MAX / modifier)
560 		return (SBT_MAX);
561 #endif
562 	return (modifier * data);
563 }
564 
565 static void
566 filt_timerexpire(void *knx)
567 {
568 	struct callout *calloutp;
569 	struct knote *kn;
570 
571 	kn = knx;
572 	kn->kn_data++;
573 	KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
574 
575 	if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
576 		calloutp = (struct callout *)kn->kn_hook;
577 		*kn->kn_ptr.p_nexttime += timer2sbintime(kn->kn_sdata,
578 		    kn->kn_sfflags);
579 		callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0,
580 		    filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE);
581 	}
582 }
583 
584 /*
585  * data contains amount of time to sleep
586  */
587 static int
588 filt_timerattach(struct knote *kn)
589 {
590 	struct callout *calloutp;
591 	sbintime_t to;
592 	unsigned int ncallouts;
593 
594 	if ((intptr_t)kn->kn_sdata < 0)
595 		return (EINVAL);
596 	if ((intptr_t)kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
597 		kn->kn_sdata = 1;
598 	/* Only precision unit are supported in flags so far */
599 	if (kn->kn_sfflags & ~NOTE_TIMER_PRECMASK)
600 		return (EINVAL);
601 
602 	to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
603 	if (to < 0)
604 		return (EINVAL);
605 
606 	ncallouts = atomic_load_explicit(&kq_ncallouts, memory_order_relaxed);
607 	do {
608 		if (ncallouts >= kq_calloutmax)
609 			return (ENOMEM);
610 	} while (!atomic_compare_exchange_weak_explicit(&kq_ncallouts,
611 	    &ncallouts, ncallouts + 1, memory_order_relaxed,
612 	    memory_order_relaxed));
613 
614 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
615 	kn->kn_status &= ~KN_DETACHED;		/* knlist_add clears it */
616 	kn->kn_ptr.p_nexttime = malloc(sizeof(sbintime_t), M_KQUEUE, M_WAITOK);
617 	calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
618 	callout_init(calloutp, 1);
619 	kn->kn_hook = calloutp;
620 	*kn->kn_ptr.p_nexttime = to + sbinuptime();
621 	callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0,
622 	    filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE);
623 
624 	return (0);
625 }
626 
627 static void
628 filt_timerdetach(struct knote *kn)
629 {
630 	struct callout *calloutp;
631 	unsigned int old;
632 
633 	calloutp = (struct callout *)kn->kn_hook;
634 	callout_drain(calloutp);
635 	free(calloutp, M_KQUEUE);
636 	free(kn->kn_ptr.p_nexttime, M_KQUEUE);
637 	old = atomic_fetch_sub_explicit(&kq_ncallouts, 1, memory_order_relaxed);
638 	KASSERT(old > 0, ("Number of callouts cannot become negative"));
639 	kn->kn_status |= KN_DETACHED;	/* knlist_remove sets it */
640 }
641 
642 static int
643 filt_timer(struct knote *kn, long hint)
644 {
645 
646 	return (kn->kn_data != 0);
647 }
648 
649 static int
650 filt_userattach(struct knote *kn)
651 {
652 
653 	/*
654 	 * EVFILT_USER knotes are not attached to anything in the kernel.
655 	 */
656 	kn->kn_hook = NULL;
657 	if (kn->kn_fflags & NOTE_TRIGGER)
658 		kn->kn_hookid = 1;
659 	else
660 		kn->kn_hookid = 0;
661 	return (0);
662 }
663 
664 static void
665 filt_userdetach(__unused struct knote *kn)
666 {
667 
668 	/*
669 	 * EVFILT_USER knotes are not attached to anything in the kernel.
670 	 */
671 }
672 
673 static int
674 filt_user(struct knote *kn, __unused long hint)
675 {
676 
677 	return (kn->kn_hookid);
678 }
679 
680 static void
681 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
682 {
683 	u_int ffctrl;
684 
685 	switch (type) {
686 	case EVENT_REGISTER:
687 		if (kev->fflags & NOTE_TRIGGER)
688 			kn->kn_hookid = 1;
689 
690 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
691 		kev->fflags &= NOTE_FFLAGSMASK;
692 		switch (ffctrl) {
693 		case NOTE_FFNOP:
694 			break;
695 
696 		case NOTE_FFAND:
697 			kn->kn_sfflags &= kev->fflags;
698 			break;
699 
700 		case NOTE_FFOR:
701 			kn->kn_sfflags |= kev->fflags;
702 			break;
703 
704 		case NOTE_FFCOPY:
705 			kn->kn_sfflags = kev->fflags;
706 			break;
707 
708 		default:
709 			/* XXX Return error? */
710 			break;
711 		}
712 		kn->kn_sdata = kev->data;
713 		if (kev->flags & EV_CLEAR) {
714 			kn->kn_hookid = 0;
715 			kn->kn_data = 0;
716 			kn->kn_fflags = 0;
717 		}
718 		break;
719 
720         case EVENT_PROCESS:
721 		*kev = kn->kn_kevent;
722 		kev->fflags = kn->kn_sfflags;
723 		kev->data = kn->kn_sdata;
724 		if (kn->kn_flags & EV_CLEAR) {
725 			kn->kn_hookid = 0;
726 			kn->kn_data = 0;
727 			kn->kn_fflags = 0;
728 		}
729 		break;
730 
731 	default:
732 		panic("filt_usertouch() - invalid type (%ld)", type);
733 		break;
734 	}
735 }
736 
737 int
738 sys_kqueue(struct thread *td, struct kqueue_args *uap)
739 {
740 
741 	return (kern_kqueue(td, 0));
742 }
743 
744 int
745 kern_kqueue(struct thread *td, int flags)
746 {
747 	struct filedesc *fdp;
748 	struct kqueue *kq;
749 	struct file *fp;
750 	struct proc *p;
751 	struct ucred *cred;
752 	int fd, error;
753 
754 	p = td->td_proc;
755 	cred = td->td_ucred;
756 	crhold(cred);
757 	if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES))) {
758 		crfree(cred);
759 		return (ENOMEM);
760 	}
761 
762 	fdp = p->p_fd;
763 	error = falloc(td, &fp, &fd, flags);
764 	if (error)
765 		goto done2;
766 
767 	/* An extra reference on `fp' has been held for us by falloc(). */
768 	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
769 	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
770 	TAILQ_INIT(&kq->kq_head);
771 	kq->kq_fdp = fdp;
772 	kq->kq_cred = cred;
773 	knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
774 	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
775 
776 	FILEDESC_XLOCK(fdp);
777 	TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
778 	FILEDESC_XUNLOCK(fdp);
779 
780 	finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
781 	fdrop(fp, td);
782 
783 	td->td_retval[0] = fd;
784 done2:
785 	if (error != 0) {
786 		chgkqcnt(cred->cr_ruidinfo, -1, 0);
787 		crfree(cred);
788 	}
789 	return (error);
790 }
791 
792 #ifndef _SYS_SYSPROTO_H_
793 struct kevent_args {
794 	int	fd;
795 	const struct kevent *changelist;
796 	int	nchanges;
797 	struct	kevent *eventlist;
798 	int	nevents;
799 	const struct timespec *timeout;
800 };
801 #endif
802 int
803 sys_kevent(struct thread *td, struct kevent_args *uap)
804 {
805 	struct timespec ts, *tsp;
806 	struct kevent_copyops k_ops = { uap,
807 					kevent_copyout,
808 					kevent_copyin};
809 	int error;
810 #ifdef KTRACE
811 	struct uio ktruio;
812 	struct iovec ktriov;
813 	struct uio *ktruioin = NULL;
814 	struct uio *ktruioout = NULL;
815 #endif
816 
817 	if (uap->timeout != NULL) {
818 		error = copyin(uap->timeout, &ts, sizeof(ts));
819 		if (error)
820 			return (error);
821 		tsp = &ts;
822 	} else
823 		tsp = NULL;
824 
825 #ifdef KTRACE
826 	if (KTRPOINT(td, KTR_GENIO)) {
827 		ktriov.iov_base = uap->changelist;
828 		ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
829 		ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
830 		    .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
831 		    .uio_td = td };
832 		ktruioin = cloneuio(&ktruio);
833 		ktriov.iov_base = uap->eventlist;
834 		ktriov.iov_len = uap->nevents * sizeof(struct kevent);
835 		ktruioout = cloneuio(&ktruio);
836 	}
837 #endif
838 
839 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
840 	    &k_ops, tsp);
841 
842 #ifdef KTRACE
843 	if (ktruioin != NULL) {
844 		ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
845 		ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
846 		ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
847 		ktrgenio(uap->fd, UIO_READ, ktruioout, error);
848 	}
849 #endif
850 
851 	return (error);
852 }
853 
854 /*
855  * Copy 'count' items into the destination list pointed to by uap->eventlist.
856  */
857 static int
858 kevent_copyout(void *arg, struct kevent *kevp, int count)
859 {
860 	struct kevent_args *uap;
861 	int error;
862 
863 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
864 	uap = (struct kevent_args *)arg;
865 
866 	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
867 	if (error == 0)
868 		uap->eventlist += count;
869 	return (error);
870 }
871 
872 /*
873  * Copy 'count' items from the list pointed to by uap->changelist.
874  */
875 static int
876 kevent_copyin(void *arg, struct kevent *kevp, int count)
877 {
878 	struct kevent_args *uap;
879 	int error;
880 
881 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
882 	uap = (struct kevent_args *)arg;
883 
884 	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
885 	if (error == 0)
886 		uap->changelist += count;
887 	return (error);
888 }
889 
890 int
891 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
892     struct kevent_copyops *k_ops, const struct timespec *timeout)
893 {
894 	cap_rights_t rights;
895 	struct file *fp;
896 	int error;
897 
898 	cap_rights_init(&rights);
899 	if (nchanges > 0)
900 		cap_rights_set(&rights, CAP_KQUEUE_CHANGE);
901 	if (nevents > 0)
902 		cap_rights_set(&rights, CAP_KQUEUE_EVENT);
903 	error = fget(td, fd, &rights, &fp);
904 	if (error != 0)
905 		return (error);
906 
907 	error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
908 	fdrop(fp, td);
909 
910 	return (error);
911 }
912 
913 int
914 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
915     struct kevent_copyops *k_ops, const struct timespec *timeout)
916 {
917 	struct kevent keva[KQ_NEVENTS];
918 	struct kevent *kevp, *changes;
919 	struct kqueue *kq;
920 	int i, n, nerrors, error;
921 
922 	error = kqueue_acquire(fp, &kq);
923 	if (error != 0)
924 		return (error);
925 
926 	nerrors = 0;
927 
928 	while (nchanges > 0) {
929 		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
930 		error = k_ops->k_copyin(k_ops->arg, keva, n);
931 		if (error)
932 			goto done;
933 		changes = keva;
934 		for (i = 0; i < n; i++) {
935 			kevp = &changes[i];
936 			if (!kevp->filter)
937 				continue;
938 			kevp->flags &= ~EV_SYSFLAGS;
939 			error = kqueue_register(kq, kevp, td, 1);
940 			if (error || (kevp->flags & EV_RECEIPT)) {
941 				if (nevents != 0) {
942 					kevp->flags = EV_ERROR;
943 					kevp->data = error;
944 					(void) k_ops->k_copyout(k_ops->arg,
945 					    kevp, 1);
946 					nevents--;
947 					nerrors++;
948 				} else {
949 					goto done;
950 				}
951 			}
952 		}
953 		nchanges -= n;
954 	}
955 	if (nerrors) {
956 		td->td_retval[0] = nerrors;
957 		error = 0;
958 		goto done;
959 	}
960 
961 	error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
962 done:
963 	kqueue_release(kq, 0);
964 	return (error);
965 }
966 
967 int
968 kqueue_add_filteropts(int filt, struct filterops *filtops)
969 {
970 	int error;
971 
972 	error = 0;
973 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
974 		printf(
975 "trying to add a filterop that is out of range: %d is beyond %d\n",
976 		    ~filt, EVFILT_SYSCOUNT);
977 		return EINVAL;
978 	}
979 	mtx_lock(&filterops_lock);
980 	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
981 	    sysfilt_ops[~filt].for_fop != NULL)
982 		error = EEXIST;
983 	else {
984 		sysfilt_ops[~filt].for_fop = filtops;
985 		sysfilt_ops[~filt].for_refcnt = 0;
986 	}
987 	mtx_unlock(&filterops_lock);
988 
989 	return (error);
990 }
991 
992 int
993 kqueue_del_filteropts(int filt)
994 {
995 	int error;
996 
997 	error = 0;
998 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
999 		return EINVAL;
1000 
1001 	mtx_lock(&filterops_lock);
1002 	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
1003 	    sysfilt_ops[~filt].for_fop == NULL)
1004 		error = EINVAL;
1005 	else if (sysfilt_ops[~filt].for_refcnt != 0)
1006 		error = EBUSY;
1007 	else {
1008 		sysfilt_ops[~filt].for_fop = &null_filtops;
1009 		sysfilt_ops[~filt].for_refcnt = 0;
1010 	}
1011 	mtx_unlock(&filterops_lock);
1012 
1013 	return error;
1014 }
1015 
1016 static struct filterops *
1017 kqueue_fo_find(int filt)
1018 {
1019 
1020 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1021 		return NULL;
1022 
1023 	if (sysfilt_ops[~filt].for_nolock)
1024 		return sysfilt_ops[~filt].for_fop;
1025 
1026 	mtx_lock(&filterops_lock);
1027 	sysfilt_ops[~filt].for_refcnt++;
1028 	if (sysfilt_ops[~filt].for_fop == NULL)
1029 		sysfilt_ops[~filt].for_fop = &null_filtops;
1030 	mtx_unlock(&filterops_lock);
1031 
1032 	return sysfilt_ops[~filt].for_fop;
1033 }
1034 
1035 static void
1036 kqueue_fo_release(int filt)
1037 {
1038 
1039 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1040 		return;
1041 
1042 	if (sysfilt_ops[~filt].for_nolock)
1043 		return;
1044 
1045 	mtx_lock(&filterops_lock);
1046 	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
1047 	    ("filter object refcount not valid on release"));
1048 	sysfilt_ops[~filt].for_refcnt--;
1049 	mtx_unlock(&filterops_lock);
1050 }
1051 
1052 /*
1053  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
1054  * influence if memory allocation should wait.  Make sure it is 0 if you
1055  * hold any mutexes.
1056  */
1057 static int
1058 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
1059 {
1060 	struct filterops *fops;
1061 	struct file *fp;
1062 	struct knote *kn, *tkn;
1063 	cap_rights_t rights;
1064 	int error, filt, event;
1065 	int haskqglobal, filedesc_unlock;
1066 
1067 	fp = NULL;
1068 	kn = NULL;
1069 	error = 0;
1070 	haskqglobal = 0;
1071 	filedesc_unlock = 0;
1072 
1073 	filt = kev->filter;
1074 	fops = kqueue_fo_find(filt);
1075 	if (fops == NULL)
1076 		return EINVAL;
1077 
1078 	if (kev->flags & EV_ADD)
1079 		tkn = knote_alloc(waitok);	/* prevent waiting with locks */
1080 	else
1081 		tkn = NULL;
1082 
1083 findkn:
1084 	if (fops->f_isfd) {
1085 		KASSERT(td != NULL, ("td is NULL"));
1086 		error = fget(td, kev->ident,
1087 		    cap_rights_init(&rights, CAP_EVENT), &fp);
1088 		if (error)
1089 			goto done;
1090 
1091 		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
1092 		    kev->ident, 0) != 0) {
1093 			/* try again */
1094 			fdrop(fp, td);
1095 			fp = NULL;
1096 			error = kqueue_expand(kq, fops, kev->ident, waitok);
1097 			if (error)
1098 				goto done;
1099 			goto findkn;
1100 		}
1101 
1102 		if (fp->f_type == DTYPE_KQUEUE) {
1103 			/*
1104 			 * if we add some inteligence about what we are doing,
1105 			 * we should be able to support events on ourselves.
1106 			 * We need to know when we are doing this to prevent
1107 			 * getting both the knlist lock and the kq lock since
1108 			 * they are the same thing.
1109 			 */
1110 			if (fp->f_data == kq) {
1111 				error = EINVAL;
1112 				goto done;
1113 			}
1114 
1115 			/*
1116 			 * Pre-lock the filedesc before the global
1117 			 * lock mutex, see the comment in
1118 			 * kqueue_close().
1119 			 */
1120 			FILEDESC_XLOCK(td->td_proc->p_fd);
1121 			filedesc_unlock = 1;
1122 			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1123 		}
1124 
1125 		KQ_LOCK(kq);
1126 		if (kev->ident < kq->kq_knlistsize) {
1127 			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
1128 				if (kev->filter == kn->kn_filter)
1129 					break;
1130 		}
1131 	} else {
1132 		if ((kev->flags & EV_ADD) == EV_ADD)
1133 			kqueue_expand(kq, fops, kev->ident, waitok);
1134 
1135 		KQ_LOCK(kq);
1136 		if (kq->kq_knhashmask != 0) {
1137 			struct klist *list;
1138 
1139 			list = &kq->kq_knhash[
1140 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1141 			SLIST_FOREACH(kn, list, kn_link)
1142 				if (kev->ident == kn->kn_id &&
1143 				    kev->filter == kn->kn_filter)
1144 					break;
1145 		}
1146 	}
1147 
1148 	/* knote is in the process of changing, wait for it to stablize. */
1149 	if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1150 		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1151 		if (filedesc_unlock) {
1152 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1153 			filedesc_unlock = 0;
1154 		}
1155 		kq->kq_state |= KQ_FLUXWAIT;
1156 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
1157 		if (fp != NULL) {
1158 			fdrop(fp, td);
1159 			fp = NULL;
1160 		}
1161 		goto findkn;
1162 	}
1163 
1164 	/*
1165 	 * kn now contains the matching knote, or NULL if no match
1166 	 */
1167 	if (kn == NULL) {
1168 		if (kev->flags & EV_ADD) {
1169 			kn = tkn;
1170 			tkn = NULL;
1171 			if (kn == NULL) {
1172 				KQ_UNLOCK(kq);
1173 				error = ENOMEM;
1174 				goto done;
1175 			}
1176 			kn->kn_fp = fp;
1177 			kn->kn_kq = kq;
1178 			kn->kn_fop = fops;
1179 			/*
1180 			 * apply reference counts to knote structure, and
1181 			 * do not release it at the end of this routine.
1182 			 */
1183 			fops = NULL;
1184 			fp = NULL;
1185 
1186 			kn->kn_sfflags = kev->fflags;
1187 			kn->kn_sdata = kev->data;
1188 			kev->fflags = 0;
1189 			kev->data = 0;
1190 			kn->kn_kevent = *kev;
1191 			kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
1192 			    EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
1193 			kn->kn_status = KN_INFLUX|KN_DETACHED;
1194 
1195 			error = knote_attach(kn, kq);
1196 			KQ_UNLOCK(kq);
1197 			if (error != 0) {
1198 				tkn = kn;
1199 				goto done;
1200 			}
1201 
1202 			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
1203 				knote_drop(kn, td);
1204 				goto done;
1205 			}
1206 			KN_LIST_LOCK(kn);
1207 			goto done_ev_add;
1208 		} else {
1209 			/* No matching knote and the EV_ADD flag is not set. */
1210 			KQ_UNLOCK(kq);
1211 			error = ENOENT;
1212 			goto done;
1213 		}
1214 	}
1215 
1216 	if (kev->flags & EV_DELETE) {
1217 		kn->kn_status |= KN_INFLUX;
1218 		KQ_UNLOCK(kq);
1219 		if (!(kn->kn_status & KN_DETACHED))
1220 			kn->kn_fop->f_detach(kn);
1221 		knote_drop(kn, td);
1222 		goto done;
1223 	}
1224 
1225 	if (kev->flags & EV_FORCEONESHOT) {
1226 		kn->kn_flags |= EV_ONESHOT;
1227 		KNOTE_ACTIVATE(kn, 1);
1228 	}
1229 
1230 	/*
1231 	 * The user may change some filter values after the initial EV_ADD,
1232 	 * but doing so will not reset any filter which has already been
1233 	 * triggered.
1234 	 */
1235 	kn->kn_status |= KN_INFLUX | KN_SCAN;
1236 	KQ_UNLOCK(kq);
1237 	KN_LIST_LOCK(kn);
1238 	kn->kn_kevent.udata = kev->udata;
1239 	if (!fops->f_isfd && fops->f_touch != NULL) {
1240 		fops->f_touch(kn, kev, EVENT_REGISTER);
1241 	} else {
1242 		kn->kn_sfflags = kev->fflags;
1243 		kn->kn_sdata = kev->data;
1244 	}
1245 
1246 	/*
1247 	 * We can get here with kn->kn_knlist == NULL.  This can happen when
1248 	 * the initial attach event decides that the event is "completed"
1249 	 * already.  i.e. filt_procattach is called on a zombie process.  It
1250 	 * will call filt_proc which will remove it from the list, and NULL
1251 	 * kn_knlist.
1252 	 */
1253 done_ev_add:
1254 	if ((kev->flags & EV_DISABLE) &&
1255 	    ((kn->kn_status & KN_DISABLED) == 0)) {
1256 		kn->kn_status |= KN_DISABLED;
1257 	}
1258 
1259 	if ((kn->kn_status & KN_DISABLED) == 0)
1260 		event = kn->kn_fop->f_event(kn, 0);
1261 	else
1262 		event = 0;
1263 	KQ_LOCK(kq);
1264 	if (event)
1265 		KNOTE_ACTIVATE(kn, 1);
1266 	kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
1267 	KN_LIST_UNLOCK(kn);
1268 
1269 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1270 		kn->kn_status &= ~KN_DISABLED;
1271 		if ((kn->kn_status & KN_ACTIVE) &&
1272 		    ((kn->kn_status & KN_QUEUED) == 0))
1273 			knote_enqueue(kn);
1274 	}
1275 	KQ_UNLOCK_FLUX(kq);
1276 
1277 done:
1278 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1279 	if (filedesc_unlock)
1280 		FILEDESC_XUNLOCK(td->td_proc->p_fd);
1281 	if (fp != NULL)
1282 		fdrop(fp, td);
1283 	if (tkn != NULL)
1284 		knote_free(tkn);
1285 	if (fops != NULL)
1286 		kqueue_fo_release(filt);
1287 	return (error);
1288 }
1289 
1290 static int
1291 kqueue_acquire(struct file *fp, struct kqueue **kqp)
1292 {
1293 	int error;
1294 	struct kqueue *kq;
1295 
1296 	error = 0;
1297 
1298 	kq = fp->f_data;
1299 	if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1300 		return (EBADF);
1301 	*kqp = kq;
1302 	KQ_LOCK(kq);
1303 	if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1304 		KQ_UNLOCK(kq);
1305 		return (EBADF);
1306 	}
1307 	kq->kq_refcnt++;
1308 	KQ_UNLOCK(kq);
1309 
1310 	return error;
1311 }
1312 
1313 static void
1314 kqueue_release(struct kqueue *kq, int locked)
1315 {
1316 	if (locked)
1317 		KQ_OWNED(kq);
1318 	else
1319 		KQ_LOCK(kq);
1320 	kq->kq_refcnt--;
1321 	if (kq->kq_refcnt == 1)
1322 		wakeup(&kq->kq_refcnt);
1323 	if (!locked)
1324 		KQ_UNLOCK(kq);
1325 }
1326 
1327 static void
1328 kqueue_schedtask(struct kqueue *kq)
1329 {
1330 
1331 	KQ_OWNED(kq);
1332 	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1333 	    ("scheduling kqueue task while draining"));
1334 
1335 	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1336 		taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
1337 		kq->kq_state |= KQ_TASKSCHED;
1338 	}
1339 }
1340 
1341 /*
1342  * Expand the kq to make sure we have storage for fops/ident pair.
1343  *
1344  * Return 0 on success (or no work necessary), return errno on failure.
1345  *
1346  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
1347  * If kqueue_register is called from a non-fd context, there usually/should
1348  * be no locks held.
1349  */
1350 static int
1351 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1352 	int waitok)
1353 {
1354 	struct klist *list, *tmp_knhash, *to_free;
1355 	u_long tmp_knhashmask;
1356 	int size;
1357 	int fd;
1358 	int mflag = waitok ? M_WAITOK : M_NOWAIT;
1359 
1360 	KQ_NOTOWNED(kq);
1361 
1362 	to_free = NULL;
1363 	if (fops->f_isfd) {
1364 		fd = ident;
1365 		if (kq->kq_knlistsize <= fd) {
1366 			size = kq->kq_knlistsize;
1367 			while (size <= fd)
1368 				size += KQEXTENT;
1369 			list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
1370 			if (list == NULL)
1371 				return ENOMEM;
1372 			KQ_LOCK(kq);
1373 			if (kq->kq_knlistsize > fd) {
1374 				to_free = list;
1375 				list = NULL;
1376 			} else {
1377 				if (kq->kq_knlist != NULL) {
1378 					bcopy(kq->kq_knlist, list,
1379 					    kq->kq_knlistsize * sizeof(*list));
1380 					to_free = kq->kq_knlist;
1381 					kq->kq_knlist = NULL;
1382 				}
1383 				bzero((caddr_t)list +
1384 				    kq->kq_knlistsize * sizeof(*list),
1385 				    (size - kq->kq_knlistsize) * sizeof(*list));
1386 				kq->kq_knlistsize = size;
1387 				kq->kq_knlist = list;
1388 			}
1389 			KQ_UNLOCK(kq);
1390 		}
1391 	} else {
1392 		if (kq->kq_knhashmask == 0) {
1393 			tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1394 			    &tmp_knhashmask);
1395 			if (tmp_knhash == NULL)
1396 				return ENOMEM;
1397 			KQ_LOCK(kq);
1398 			if (kq->kq_knhashmask == 0) {
1399 				kq->kq_knhash = tmp_knhash;
1400 				kq->kq_knhashmask = tmp_knhashmask;
1401 			} else {
1402 				to_free = tmp_knhash;
1403 			}
1404 			KQ_UNLOCK(kq);
1405 		}
1406 	}
1407 	free(to_free, M_KQUEUE);
1408 
1409 	KQ_NOTOWNED(kq);
1410 	return 0;
1411 }
1412 
1413 static void
1414 kqueue_task(void *arg, int pending)
1415 {
1416 	struct kqueue *kq;
1417 	int haskqglobal;
1418 
1419 	haskqglobal = 0;
1420 	kq = arg;
1421 
1422 	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1423 	KQ_LOCK(kq);
1424 
1425 	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1426 
1427 	kq->kq_state &= ~KQ_TASKSCHED;
1428 	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1429 		wakeup(&kq->kq_state);
1430 	}
1431 	KQ_UNLOCK(kq);
1432 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1433 }
1434 
1435 /*
1436  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1437  * We treat KN_MARKER knotes as if they are INFLUX.
1438  */
1439 static int
1440 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1441     const struct timespec *tsp, struct kevent *keva, struct thread *td)
1442 {
1443 	struct kevent *kevp;
1444 	struct knote *kn, *marker;
1445 	sbintime_t asbt, rsbt;
1446 	int count, error, haskqglobal, influx, nkev, touch;
1447 
1448 	count = maxevents;
1449 	nkev = 0;
1450 	error = 0;
1451 	haskqglobal = 0;
1452 
1453 	if (maxevents == 0)
1454 		goto done_nl;
1455 
1456 	rsbt = 0;
1457 	if (tsp != NULL) {
1458 		if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
1459 		    tsp->tv_nsec >= 1000000000) {
1460 			error = EINVAL;
1461 			goto done_nl;
1462 		}
1463 		if (timespecisset(tsp)) {
1464 			if (tsp->tv_sec <= INT32_MAX) {
1465 				rsbt = tstosbt(*tsp);
1466 				if (TIMESEL(&asbt, rsbt))
1467 					asbt += tc_tick_sbt;
1468 				if (asbt <= SBT_MAX - rsbt)
1469 					asbt += rsbt;
1470 				else
1471 					asbt = 0;
1472 				rsbt >>= tc_precexp;
1473 			} else
1474 				asbt = 0;
1475 		} else
1476 			asbt = -1;
1477 	} else
1478 		asbt = 0;
1479 	marker = knote_alloc(1);
1480 	if (marker == NULL) {
1481 		error = ENOMEM;
1482 		goto done_nl;
1483 	}
1484 	marker->kn_status = KN_MARKER;
1485 	KQ_LOCK(kq);
1486 
1487 retry:
1488 	kevp = keva;
1489 	if (kq->kq_count == 0) {
1490 		if (asbt == -1) {
1491 			error = EWOULDBLOCK;
1492 		} else {
1493 			kq->kq_state |= KQ_SLEEP;
1494 			error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
1495 			    "kqread", asbt, rsbt, C_ABSOLUTE);
1496 		}
1497 		if (error == 0)
1498 			goto retry;
1499 		/* don't restart after signals... */
1500 		if (error == ERESTART)
1501 			error = EINTR;
1502 		else if (error == EWOULDBLOCK)
1503 			error = 0;
1504 		goto done;
1505 	}
1506 
1507 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1508 	influx = 0;
1509 	while (count) {
1510 		KQ_OWNED(kq);
1511 		kn = TAILQ_FIRST(&kq->kq_head);
1512 
1513 		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1514 		    (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1515 			if (influx) {
1516 				influx = 0;
1517 				KQ_FLUX_WAKEUP(kq);
1518 			}
1519 			kq->kq_state |= KQ_FLUXWAIT;
1520 			error = msleep(kq, &kq->kq_lock, PSOCK,
1521 			    "kqflxwt", 0);
1522 			continue;
1523 		}
1524 
1525 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1526 		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1527 			kn->kn_status &= ~KN_QUEUED;
1528 			kq->kq_count--;
1529 			continue;
1530 		}
1531 		if (kn == marker) {
1532 			KQ_FLUX_WAKEUP(kq);
1533 			if (count == maxevents)
1534 				goto retry;
1535 			goto done;
1536 		}
1537 		KASSERT((kn->kn_status & KN_INFLUX) == 0,
1538 		    ("KN_INFLUX set when not suppose to be"));
1539 
1540 		if ((kn->kn_flags & EV_DROP) == EV_DROP) {
1541 			kn->kn_status &= ~KN_QUEUED;
1542 			kn->kn_status |= KN_INFLUX;
1543 			kq->kq_count--;
1544 			KQ_UNLOCK(kq);
1545 			/*
1546 			 * We don't need to lock the list since we've marked
1547 			 * it _INFLUX.
1548 			 */
1549 			if (!(kn->kn_status & KN_DETACHED))
1550 				kn->kn_fop->f_detach(kn);
1551 			knote_drop(kn, td);
1552 			KQ_LOCK(kq);
1553 			continue;
1554 		} else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1555 			kn->kn_status &= ~KN_QUEUED;
1556 			kn->kn_status |= KN_INFLUX;
1557 			kq->kq_count--;
1558 			KQ_UNLOCK(kq);
1559 			/*
1560 			 * We don't need to lock the list since we've marked
1561 			 * it _INFLUX.
1562 			 */
1563 			*kevp = kn->kn_kevent;
1564 			if (!(kn->kn_status & KN_DETACHED))
1565 				kn->kn_fop->f_detach(kn);
1566 			knote_drop(kn, td);
1567 			KQ_LOCK(kq);
1568 			kn = NULL;
1569 		} else {
1570 			kn->kn_status |= KN_INFLUX | KN_SCAN;
1571 			KQ_UNLOCK(kq);
1572 			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1573 				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1574 			KN_LIST_LOCK(kn);
1575 			if (kn->kn_fop->f_event(kn, 0) == 0) {
1576 				KQ_LOCK(kq);
1577 				KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1578 				kn->kn_status &=
1579 				    ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX |
1580 				    KN_SCAN);
1581 				kq->kq_count--;
1582 				KN_LIST_UNLOCK(kn);
1583 				influx = 1;
1584 				continue;
1585 			}
1586 			touch = (!kn->kn_fop->f_isfd &&
1587 			    kn->kn_fop->f_touch != NULL);
1588 			if (touch)
1589 				kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
1590 			else
1591 				*kevp = kn->kn_kevent;
1592 			KQ_LOCK(kq);
1593 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1594 			if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
1595 				/*
1596 				 * Manually clear knotes who weren't
1597 				 * 'touch'ed.
1598 				 */
1599 				if (touch == 0 && kn->kn_flags & EV_CLEAR) {
1600 					kn->kn_data = 0;
1601 					kn->kn_fflags = 0;
1602 				}
1603 				if (kn->kn_flags & EV_DISPATCH)
1604 					kn->kn_status |= KN_DISABLED;
1605 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1606 				kq->kq_count--;
1607 			} else
1608 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1609 
1610 			kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
1611 			KN_LIST_UNLOCK(kn);
1612 			influx = 1;
1613 		}
1614 
1615 		/* we are returning a copy to the user */
1616 		kevp++;
1617 		nkev++;
1618 		count--;
1619 
1620 		if (nkev == KQ_NEVENTS) {
1621 			influx = 0;
1622 			KQ_UNLOCK_FLUX(kq);
1623 			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1624 			nkev = 0;
1625 			kevp = keva;
1626 			KQ_LOCK(kq);
1627 			if (error)
1628 				break;
1629 		}
1630 	}
1631 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1632 done:
1633 	KQ_OWNED(kq);
1634 	KQ_UNLOCK_FLUX(kq);
1635 	knote_free(marker);
1636 done_nl:
1637 	KQ_NOTOWNED(kq);
1638 	if (nkev != 0)
1639 		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1640 	td->td_retval[0] = maxevents - count;
1641 	return (error);
1642 }
1643 
1644 /*ARGSUSED*/
1645 static int
1646 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
1647 	struct ucred *active_cred, struct thread *td)
1648 {
1649 	/*
1650 	 * Enabling sigio causes two major problems:
1651 	 * 1) infinite recursion:
1652 	 * Synopsys: kevent is being used to track signals and have FIOASYNC
1653 	 * set.  On receipt of a signal this will cause a kqueue to recurse
1654 	 * into itself over and over.  Sending the sigio causes the kqueue
1655 	 * to become ready, which in turn posts sigio again, forever.
1656 	 * Solution: this can be solved by setting a flag in the kqueue that
1657 	 * we have a SIGIO in progress.
1658 	 * 2) locking problems:
1659 	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
1660 	 * us above the proc and pgrp locks.
1661 	 * Solution: Post a signal using an async mechanism, being sure to
1662 	 * record a generation count in the delivery so that we do not deliver
1663 	 * a signal to the wrong process.
1664 	 *
1665 	 * Note, these two mechanisms are somewhat mutually exclusive!
1666 	 */
1667 #if 0
1668 	struct kqueue *kq;
1669 
1670 	kq = fp->f_data;
1671 	switch (cmd) {
1672 	case FIOASYNC:
1673 		if (*(int *)data) {
1674 			kq->kq_state |= KQ_ASYNC;
1675 		} else {
1676 			kq->kq_state &= ~KQ_ASYNC;
1677 		}
1678 		return (0);
1679 
1680 	case FIOSETOWN:
1681 		return (fsetown(*(int *)data, &kq->kq_sigio));
1682 
1683 	case FIOGETOWN:
1684 		*(int *)data = fgetown(&kq->kq_sigio);
1685 		return (0);
1686 	}
1687 #endif
1688 
1689 	return (ENOTTY);
1690 }
1691 
1692 /*ARGSUSED*/
1693 static int
1694 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
1695 	struct thread *td)
1696 {
1697 	struct kqueue *kq;
1698 	int revents = 0;
1699 	int error;
1700 
1701 	if ((error = kqueue_acquire(fp, &kq)))
1702 		return POLLERR;
1703 
1704 	KQ_LOCK(kq);
1705 	if (events & (POLLIN | POLLRDNORM)) {
1706 		if (kq->kq_count) {
1707 			revents |= events & (POLLIN | POLLRDNORM);
1708 		} else {
1709 			selrecord(td, &kq->kq_sel);
1710 			if (SEL_WAITING(&kq->kq_sel))
1711 				kq->kq_state |= KQ_SEL;
1712 		}
1713 	}
1714 	kqueue_release(kq, 1);
1715 	KQ_UNLOCK(kq);
1716 	return (revents);
1717 }
1718 
1719 /*ARGSUSED*/
1720 static int
1721 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1722 	struct thread *td)
1723 {
1724 
1725 	bzero((void *)st, sizeof *st);
1726 	/*
1727 	 * We no longer return kq_count because the unlocked value is useless.
1728 	 * If you spent all this time getting the count, why not spend your
1729 	 * syscall better by calling kevent?
1730 	 *
1731 	 * XXX - This is needed for libc_r.
1732 	 */
1733 	st->st_mode = S_IFIFO;
1734 	return (0);
1735 }
1736 
1737 /*ARGSUSED*/
1738 static int
1739 kqueue_close(struct file *fp, struct thread *td)
1740 {
1741 	struct kqueue *kq = fp->f_data;
1742 	struct filedesc *fdp;
1743 	struct knote *kn;
1744 	int i;
1745 	int error;
1746 	int filedesc_unlock;
1747 
1748 	if ((error = kqueue_acquire(fp, &kq)))
1749 		return error;
1750 
1751 	filedesc_unlock = 0;
1752 	KQ_LOCK(kq);
1753 
1754 	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
1755 	    ("kqueue already closing"));
1756 	kq->kq_state |= KQ_CLOSING;
1757 	if (kq->kq_refcnt > 1)
1758 		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
1759 
1760 	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
1761 	fdp = kq->kq_fdp;
1762 
1763 	KASSERT(knlist_empty(&kq->kq_sel.si_note),
1764 	    ("kqueue's knlist not empty"));
1765 
1766 	for (i = 0; i < kq->kq_knlistsize; i++) {
1767 		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
1768 			if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1769 				kq->kq_state |= KQ_FLUXWAIT;
1770 				msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
1771 				continue;
1772 			}
1773 			kn->kn_status |= KN_INFLUX;
1774 			KQ_UNLOCK(kq);
1775 			if (!(kn->kn_status & KN_DETACHED))
1776 				kn->kn_fop->f_detach(kn);
1777 			knote_drop(kn, td);
1778 			KQ_LOCK(kq);
1779 		}
1780 	}
1781 	if (kq->kq_knhashmask != 0) {
1782 		for (i = 0; i <= kq->kq_knhashmask; i++) {
1783 			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
1784 				if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1785 					kq->kq_state |= KQ_FLUXWAIT;
1786 					msleep(kq, &kq->kq_lock, PSOCK,
1787 					       "kqclo2", 0);
1788 					continue;
1789 				}
1790 				kn->kn_status |= KN_INFLUX;
1791 				KQ_UNLOCK(kq);
1792 				if (!(kn->kn_status & KN_DETACHED))
1793 					kn->kn_fop->f_detach(kn);
1794 				knote_drop(kn, td);
1795 				KQ_LOCK(kq);
1796 			}
1797 		}
1798 	}
1799 
1800 	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
1801 		kq->kq_state |= KQ_TASKDRAIN;
1802 		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
1803 	}
1804 
1805 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1806 		selwakeuppri(&kq->kq_sel, PSOCK);
1807 		if (!SEL_WAITING(&kq->kq_sel))
1808 			kq->kq_state &= ~KQ_SEL;
1809 	}
1810 
1811 	KQ_UNLOCK(kq);
1812 
1813 	/*
1814 	 * We could be called due to the knote_drop() doing fdrop(),
1815 	 * called from kqueue_register().  In this case the global
1816 	 * lock is owned, and filedesc sx is locked before, to not
1817 	 * take the sleepable lock after non-sleepable.
1818 	 */
1819 	if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
1820 		FILEDESC_XLOCK(fdp);
1821 		filedesc_unlock = 1;
1822 	} else
1823 		filedesc_unlock = 0;
1824 	TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
1825 	if (filedesc_unlock)
1826 		FILEDESC_XUNLOCK(fdp);
1827 
1828 	seldrain(&kq->kq_sel);
1829 	knlist_destroy(&kq->kq_sel.si_note);
1830 	mtx_destroy(&kq->kq_lock);
1831 	kq->kq_fdp = NULL;
1832 
1833 	if (kq->kq_knhash != NULL)
1834 		free(kq->kq_knhash, M_KQUEUE);
1835 	if (kq->kq_knlist != NULL)
1836 		free(kq->kq_knlist, M_KQUEUE);
1837 
1838 	funsetown(&kq->kq_sigio);
1839 	chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
1840 	crfree(kq->kq_cred);
1841 	free(kq, M_KQUEUE);
1842 	fp->f_data = NULL;
1843 
1844 	return (0);
1845 }
1846 
1847 static int
1848 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1849 {
1850 
1851 	kif->kf_type = KF_TYPE_KQUEUE;
1852 	return (0);
1853 }
1854 
1855 static void
1856 kqueue_wakeup(struct kqueue *kq)
1857 {
1858 	KQ_OWNED(kq);
1859 
1860 	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
1861 		kq->kq_state &= ~KQ_SLEEP;
1862 		wakeup(kq);
1863 	}
1864 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1865 		selwakeuppri(&kq->kq_sel, PSOCK);
1866 		if (!SEL_WAITING(&kq->kq_sel))
1867 			kq->kq_state &= ~KQ_SEL;
1868 	}
1869 	if (!knlist_empty(&kq->kq_sel.si_note))
1870 		kqueue_schedtask(kq);
1871 	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
1872 		pgsigio(&kq->kq_sigio, SIGIO, 0);
1873 	}
1874 }
1875 
1876 /*
1877  * Walk down a list of knotes, activating them if their event has triggered.
1878  *
1879  * There is a possibility to optimize in the case of one kq watching another.
1880  * Instead of scheduling a task to wake it up, you could pass enough state
1881  * down the chain to make up the parent kqueue.  Make this code functional
1882  * first.
1883  */
1884 void
1885 knote(struct knlist *list, long hint, int lockflags)
1886 {
1887 	struct kqueue *kq;
1888 	struct knote *kn;
1889 	int error;
1890 
1891 	if (list == NULL)
1892 		return;
1893 
1894 	KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
1895 
1896 	if ((lockflags & KNF_LISTLOCKED) == 0)
1897 		list->kl_lock(list->kl_lockarg);
1898 
1899 	/*
1900 	 * If we unlock the list lock (and set KN_INFLUX), we can eliminate
1901 	 * the kqueue scheduling, but this will introduce four
1902 	 * lock/unlock's for each knote to test.  If we do, continue to use
1903 	 * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
1904 	 * only safe if you want to remove the current item, which we are
1905 	 * not doing.
1906 	 */
1907 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
1908 		kq = kn->kn_kq;
1909 		KQ_LOCK(kq);
1910 		if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
1911 			/*
1912 			 * Do not process the influx notes, except for
1913 			 * the influx coming from the kq unlock in the
1914 			 * kqueue_scan().  In the later case, we do
1915 			 * not interfere with the scan, since the code
1916 			 * fragment in kqueue_scan() locks the knlist,
1917 			 * and cannot proceed until we finished.
1918 			 */
1919 			KQ_UNLOCK(kq);
1920 		} else if ((lockflags & KNF_NOKQLOCK) != 0) {
1921 			kn->kn_status |= KN_INFLUX;
1922 			KQ_UNLOCK(kq);
1923 			error = kn->kn_fop->f_event(kn, hint);
1924 			KQ_LOCK(kq);
1925 			kn->kn_status &= ~KN_INFLUX;
1926 			if (error)
1927 				KNOTE_ACTIVATE(kn, 1);
1928 			KQ_UNLOCK_FLUX(kq);
1929 		} else {
1930 			kn->kn_status |= KN_HASKQLOCK;
1931 			if (kn->kn_fop->f_event(kn, hint))
1932 				KNOTE_ACTIVATE(kn, 1);
1933 			kn->kn_status &= ~KN_HASKQLOCK;
1934 			KQ_UNLOCK(kq);
1935 		}
1936 	}
1937 	if ((lockflags & KNF_LISTLOCKED) == 0)
1938 		list->kl_unlock(list->kl_lockarg);
1939 }
1940 
1941 /*
1942  * add a knote to a knlist
1943  */
1944 void
1945 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
1946 {
1947 	KNL_ASSERT_LOCK(knl, islocked);
1948 	KQ_NOTOWNED(kn->kn_kq);
1949 	KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
1950 	    (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
1951 	if (!islocked)
1952 		knl->kl_lock(knl->kl_lockarg);
1953 	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
1954 	if (!islocked)
1955 		knl->kl_unlock(knl->kl_lockarg);
1956 	KQ_LOCK(kn->kn_kq);
1957 	kn->kn_knlist = knl;
1958 	kn->kn_status &= ~KN_DETACHED;
1959 	KQ_UNLOCK(kn->kn_kq);
1960 }
1961 
1962 static void
1963 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
1964 {
1965 	KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
1966 	KNL_ASSERT_LOCK(knl, knlislocked);
1967 	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
1968 	if (!kqislocked)
1969 		KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
1970     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
1971 	if (!knlislocked)
1972 		knl->kl_lock(knl->kl_lockarg);
1973 	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
1974 	kn->kn_knlist = NULL;
1975 	if (!knlislocked)
1976 		knl->kl_unlock(knl->kl_lockarg);
1977 	if (!kqislocked)
1978 		KQ_LOCK(kn->kn_kq);
1979 	kn->kn_status |= KN_DETACHED;
1980 	if (!kqislocked)
1981 		KQ_UNLOCK(kn->kn_kq);
1982 }
1983 
1984 /*
1985  * remove knote from the specified knlist
1986  */
1987 void
1988 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
1989 {
1990 
1991 	knlist_remove_kq(knl, kn, islocked, 0);
1992 }
1993 
1994 /*
1995  * remove knote from the specified knlist while in f_event handler.
1996  */
1997 void
1998 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
1999 {
2000 
2001 	knlist_remove_kq(knl, kn, 1,
2002 	    (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
2003 }
2004 
2005 int
2006 knlist_empty(struct knlist *knl)
2007 {
2008 
2009 	KNL_ASSERT_LOCKED(knl);
2010 	return SLIST_EMPTY(&knl->kl_list);
2011 }
2012 
2013 static struct mtx	knlist_lock;
2014 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
2015 	MTX_DEF);
2016 static void knlist_mtx_lock(void *arg);
2017 static void knlist_mtx_unlock(void *arg);
2018 
2019 static void
2020 knlist_mtx_lock(void *arg)
2021 {
2022 
2023 	mtx_lock((struct mtx *)arg);
2024 }
2025 
2026 static void
2027 knlist_mtx_unlock(void *arg)
2028 {
2029 
2030 	mtx_unlock((struct mtx *)arg);
2031 }
2032 
2033 static void
2034 knlist_mtx_assert_locked(void *arg)
2035 {
2036 
2037 	mtx_assert((struct mtx *)arg, MA_OWNED);
2038 }
2039 
2040 static void
2041 knlist_mtx_assert_unlocked(void *arg)
2042 {
2043 
2044 	mtx_assert((struct mtx *)arg, MA_NOTOWNED);
2045 }
2046 
2047 static void
2048 knlist_rw_rlock(void *arg)
2049 {
2050 
2051 	rw_rlock((struct rwlock *)arg);
2052 }
2053 
2054 static void
2055 knlist_rw_runlock(void *arg)
2056 {
2057 
2058 	rw_runlock((struct rwlock *)arg);
2059 }
2060 
2061 static void
2062 knlist_rw_assert_locked(void *arg)
2063 {
2064 
2065 	rw_assert((struct rwlock *)arg, RA_LOCKED);
2066 }
2067 
2068 static void
2069 knlist_rw_assert_unlocked(void *arg)
2070 {
2071 
2072 	rw_assert((struct rwlock *)arg, RA_UNLOCKED);
2073 }
2074 
2075 void
2076 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
2077     void (*kl_unlock)(void *),
2078     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
2079 {
2080 
2081 	if (lock == NULL)
2082 		knl->kl_lockarg = &knlist_lock;
2083 	else
2084 		knl->kl_lockarg = lock;
2085 
2086 	if (kl_lock == NULL)
2087 		knl->kl_lock = knlist_mtx_lock;
2088 	else
2089 		knl->kl_lock = kl_lock;
2090 	if (kl_unlock == NULL)
2091 		knl->kl_unlock = knlist_mtx_unlock;
2092 	else
2093 		knl->kl_unlock = kl_unlock;
2094 	if (kl_assert_locked == NULL)
2095 		knl->kl_assert_locked = knlist_mtx_assert_locked;
2096 	else
2097 		knl->kl_assert_locked = kl_assert_locked;
2098 	if (kl_assert_unlocked == NULL)
2099 		knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
2100 	else
2101 		knl->kl_assert_unlocked = kl_assert_unlocked;
2102 
2103 	SLIST_INIT(&knl->kl_list);
2104 }
2105 
2106 void
2107 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
2108 {
2109 
2110 	knlist_init(knl, lock, NULL, NULL, NULL, NULL);
2111 }
2112 
2113 void
2114 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
2115 {
2116 
2117 	knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
2118 	    knlist_rw_assert_locked, knlist_rw_assert_unlocked);
2119 }
2120 
2121 void
2122 knlist_destroy(struct knlist *knl)
2123 {
2124 
2125 #ifdef INVARIANTS
2126 	/*
2127 	 * if we run across this error, we need to find the offending
2128 	 * driver and have it call knlist_clear or knlist_delete.
2129 	 */
2130 	if (!SLIST_EMPTY(&knl->kl_list))
2131 		printf("WARNING: destroying knlist w/ knotes on it!\n");
2132 #endif
2133 
2134 	knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
2135 	SLIST_INIT(&knl->kl_list);
2136 }
2137 
2138 /*
2139  * Even if we are locked, we may need to drop the lock to allow any influx
2140  * knotes time to "settle".
2141  */
2142 void
2143 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
2144 {
2145 	struct knote *kn, *kn2;
2146 	struct kqueue *kq;
2147 
2148 	if (islocked)
2149 		KNL_ASSERT_LOCKED(knl);
2150 	else {
2151 		KNL_ASSERT_UNLOCKED(knl);
2152 again:		/* need to reacquire lock since we have dropped it */
2153 		knl->kl_lock(knl->kl_lockarg);
2154 	}
2155 
2156 	SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
2157 		kq = kn->kn_kq;
2158 		KQ_LOCK(kq);
2159 		if ((kn->kn_status & KN_INFLUX)) {
2160 			KQ_UNLOCK(kq);
2161 			continue;
2162 		}
2163 		knlist_remove_kq(knl, kn, 1, 1);
2164 		if (killkn) {
2165 			kn->kn_status |= KN_INFLUX | KN_DETACHED;
2166 			KQ_UNLOCK(kq);
2167 			knote_drop(kn, td);
2168 		} else {
2169 			/* Make sure cleared knotes disappear soon */
2170 			kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2171 			KQ_UNLOCK(kq);
2172 		}
2173 		kq = NULL;
2174 	}
2175 
2176 	if (!SLIST_EMPTY(&knl->kl_list)) {
2177 		/* there are still KN_INFLUX remaining */
2178 		kn = SLIST_FIRST(&knl->kl_list);
2179 		kq = kn->kn_kq;
2180 		KQ_LOCK(kq);
2181 		KASSERT(kn->kn_status & KN_INFLUX,
2182 		    ("knote removed w/o list lock"));
2183 		knl->kl_unlock(knl->kl_lockarg);
2184 		kq->kq_state |= KQ_FLUXWAIT;
2185 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
2186 		kq = NULL;
2187 		goto again;
2188 	}
2189 
2190 	if (islocked)
2191 		KNL_ASSERT_LOCKED(knl);
2192 	else {
2193 		knl->kl_unlock(knl->kl_lockarg);
2194 		KNL_ASSERT_UNLOCKED(knl);
2195 	}
2196 }
2197 
2198 /*
2199  * Remove all knotes referencing a specified fd must be called with FILEDESC
2200  * lock.  This prevents a race where a new fd comes along and occupies the
2201  * entry and we attach a knote to the fd.
2202  */
2203 void
2204 knote_fdclose(struct thread *td, int fd)
2205 {
2206 	struct filedesc *fdp = td->td_proc->p_fd;
2207 	struct kqueue *kq;
2208 	struct knote *kn;
2209 	int influx;
2210 
2211 	FILEDESC_XLOCK_ASSERT(fdp);
2212 
2213 	/*
2214 	 * We shouldn't have to worry about new kevents appearing on fd
2215 	 * since filedesc is locked.
2216 	 */
2217 	TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
2218 		KQ_LOCK(kq);
2219 
2220 again:
2221 		influx = 0;
2222 		while (kq->kq_knlistsize > fd &&
2223 		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
2224 			if (kn->kn_status & KN_INFLUX) {
2225 				/* someone else might be waiting on our knote */
2226 				if (influx)
2227 					wakeup(kq);
2228 				kq->kq_state |= KQ_FLUXWAIT;
2229 				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2230 				goto again;
2231 			}
2232 			kn->kn_status |= KN_INFLUX;
2233 			KQ_UNLOCK(kq);
2234 			if (!(kn->kn_status & KN_DETACHED))
2235 				kn->kn_fop->f_detach(kn);
2236 			knote_drop(kn, td);
2237 			influx = 1;
2238 			KQ_LOCK(kq);
2239 		}
2240 		KQ_UNLOCK_FLUX(kq);
2241 	}
2242 }
2243 
2244 static int
2245 knote_attach(struct knote *kn, struct kqueue *kq)
2246 {
2247 	struct klist *list;
2248 
2249 	KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
2250 	KQ_OWNED(kq);
2251 
2252 	if (kn->kn_fop->f_isfd) {
2253 		if (kn->kn_id >= kq->kq_knlistsize)
2254 			return ENOMEM;
2255 		list = &kq->kq_knlist[kn->kn_id];
2256 	} else {
2257 		if (kq->kq_knhash == NULL)
2258 			return ENOMEM;
2259 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2260 	}
2261 
2262 	SLIST_INSERT_HEAD(list, kn, kn_link);
2263 
2264 	return 0;
2265 }
2266 
2267 /*
2268  * knote must already have been detached using the f_detach method.
2269  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
2270  * to prevent other removal.
2271  */
2272 static void
2273 knote_drop(struct knote *kn, struct thread *td)
2274 {
2275 	struct kqueue *kq;
2276 	struct klist *list;
2277 
2278 	kq = kn->kn_kq;
2279 
2280 	KQ_NOTOWNED(kq);
2281 	KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
2282 	    ("knote_drop called without KN_INFLUX set in kn_status"));
2283 
2284 	KQ_LOCK(kq);
2285 	if (kn->kn_fop->f_isfd)
2286 		list = &kq->kq_knlist[kn->kn_id];
2287 	else
2288 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2289 
2290 	if (!SLIST_EMPTY(list))
2291 		SLIST_REMOVE(list, kn, knote, kn_link);
2292 	if (kn->kn_status & KN_QUEUED)
2293 		knote_dequeue(kn);
2294 	KQ_UNLOCK_FLUX(kq);
2295 
2296 	if (kn->kn_fop->f_isfd) {
2297 		fdrop(kn->kn_fp, td);
2298 		kn->kn_fp = NULL;
2299 	}
2300 	kqueue_fo_release(kn->kn_kevent.filter);
2301 	kn->kn_fop = NULL;
2302 	knote_free(kn);
2303 }
2304 
2305 static void
2306 knote_enqueue(struct knote *kn)
2307 {
2308 	struct kqueue *kq = kn->kn_kq;
2309 
2310 	KQ_OWNED(kn->kn_kq);
2311 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2312 
2313 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2314 	kn->kn_status |= KN_QUEUED;
2315 	kq->kq_count++;
2316 	kqueue_wakeup(kq);
2317 }
2318 
2319 static void
2320 knote_dequeue(struct knote *kn)
2321 {
2322 	struct kqueue *kq = kn->kn_kq;
2323 
2324 	KQ_OWNED(kn->kn_kq);
2325 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2326 
2327 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2328 	kn->kn_status &= ~KN_QUEUED;
2329 	kq->kq_count--;
2330 }
2331 
2332 static void
2333 knote_init(void)
2334 {
2335 
2336 	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
2337 	    NULL, NULL, UMA_ALIGN_PTR, 0);
2338 }
2339 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
2340 
2341 static struct knote *
2342 knote_alloc(int waitok)
2343 {
2344 	return ((struct knote *)uma_zalloc(knote_zone,
2345 	    (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
2346 }
2347 
2348 static void
2349 knote_free(struct knote *kn)
2350 {
2351 	if (kn != NULL)
2352 		uma_zfree(knote_zone, kn);
2353 }
2354 
2355 /*
2356  * Register the kev w/ the kq specified by fd.
2357  */
2358 int
2359 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
2360 {
2361 	struct kqueue *kq;
2362 	struct file *fp;
2363 	cap_rights_t rights;
2364 	int error;
2365 
2366 	error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp);
2367 	if (error != 0)
2368 		return (error);
2369 	if ((error = kqueue_acquire(fp, &kq)) != 0)
2370 		goto noacquire;
2371 
2372 	error = kqueue_register(kq, kev, td, waitok);
2373 
2374 	kqueue_release(kq, 0);
2375 
2376 noacquire:
2377 	fdrop(fp, td);
2378 
2379 	return error;
2380 }
2381