xref: /freebsd/sys/kern/kern_event.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
4  * Copyright (c) 2009 Apple, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_ktrace.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/malloc.h>
41 #include <sys/unistd.h>
42 #include <sys/file.h>
43 #include <sys/filedesc.h>
44 #include <sys/filio.h>
45 #include <sys/fcntl.h>
46 #include <sys/kthread.h>
47 #include <sys/selinfo.h>
48 #include <sys/queue.h>
49 #include <sys/event.h>
50 #include <sys/eventvar.h>
51 #include <sys/poll.h>
52 #include <sys/protosw.h>
53 #include <sys/sigio.h>
54 #include <sys/signalvar.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/stat.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/syscallsubr.h>
61 #include <sys/taskqueue.h>
62 #include <sys/uio.h>
63 #ifdef KTRACE
64 #include <sys/ktrace.h>
65 #endif
66 
67 #include <vm/uma.h>
68 
69 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
70 
71 /*
72  * This lock is used if multiple kq locks are required.  This possibly
73  * should be made into a per proc lock.
74  */
75 static struct mtx	kq_global;
76 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
77 #define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
78 	if (!haslck)				\
79 		mtx_lock(lck);			\
80 	haslck = 1;				\
81 } while (0)
82 #define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
83 	if (haslck)				\
84 		mtx_unlock(lck);			\
85 	haslck = 0;				\
86 } while (0)
87 
88 TASKQUEUE_DEFINE_THREAD(kqueue);
89 
90 static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
91 static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
92 static int	kqueue_register(struct kqueue *kq, struct kevent *kev,
93 		    struct thread *td, int waitok);
94 static int	kqueue_acquire(struct file *fp, struct kqueue **kqp);
95 static void	kqueue_release(struct kqueue *kq, int locked);
96 static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
97 		    uintptr_t ident, int waitok);
98 static void	kqueue_task(void *arg, int pending);
99 static int	kqueue_scan(struct kqueue *kq, int maxevents,
100 		    struct kevent_copyops *k_ops,
101 		    const struct timespec *timeout,
102 		    struct kevent *keva, struct thread *td);
103 static void 	kqueue_wakeup(struct kqueue *kq);
104 static struct filterops *kqueue_fo_find(int filt);
105 static void	kqueue_fo_release(int filt);
106 
107 static fo_rdwr_t	kqueue_read;
108 static fo_rdwr_t	kqueue_write;
109 static fo_truncate_t	kqueue_truncate;
110 static fo_ioctl_t	kqueue_ioctl;
111 static fo_poll_t	kqueue_poll;
112 static fo_kqfilter_t	kqueue_kqfilter;
113 static fo_stat_t	kqueue_stat;
114 static fo_close_t	kqueue_close;
115 
116 static struct fileops kqueueops = {
117 	.fo_read = kqueue_read,
118 	.fo_write = kqueue_write,
119 	.fo_truncate = kqueue_truncate,
120 	.fo_ioctl = kqueue_ioctl,
121 	.fo_poll = kqueue_poll,
122 	.fo_kqfilter = kqueue_kqfilter,
123 	.fo_stat = kqueue_stat,
124 	.fo_close = kqueue_close,
125 };
126 
127 static int 	knote_attach(struct knote *kn, struct kqueue *kq);
128 static void 	knote_drop(struct knote *kn, struct thread *td);
129 static void 	knote_enqueue(struct knote *kn);
130 static void 	knote_dequeue(struct knote *kn);
131 static void 	knote_init(void);
132 static struct 	knote *knote_alloc(int waitok);
133 static void 	knote_free(struct knote *kn);
134 
135 static void	filt_kqdetach(struct knote *kn);
136 static int	filt_kqueue(struct knote *kn, long hint);
137 static int	filt_procattach(struct knote *kn);
138 static void	filt_procdetach(struct knote *kn);
139 static int	filt_proc(struct knote *kn, long hint);
140 static int	filt_fileattach(struct knote *kn);
141 static void	filt_timerexpire(void *knx);
142 static int	filt_timerattach(struct knote *kn);
143 static void	filt_timerdetach(struct knote *kn);
144 static int	filt_timer(struct knote *kn, long hint);
145 static int	filt_userattach(struct knote *kn);
146 static void	filt_userdetach(struct knote *kn);
147 static int	filt_user(struct knote *kn, long hint);
148 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
149 		    u_long type);
150 
151 static struct filterops file_filtops = {
152 	.f_isfd = 1,
153 	.f_attach = filt_fileattach,
154 };
155 static struct filterops kqread_filtops = {
156 	.f_isfd = 1,
157 	.f_detach = filt_kqdetach,
158 	.f_event = filt_kqueue,
159 };
160 /* XXX - move to kern_proc.c?  */
161 static struct filterops proc_filtops = {
162 	.f_isfd = 0,
163 	.f_attach = filt_procattach,
164 	.f_detach = filt_procdetach,
165 	.f_event = filt_proc,
166 };
167 static struct filterops timer_filtops = {
168 	.f_isfd = 0,
169 	.f_attach = filt_timerattach,
170 	.f_detach = filt_timerdetach,
171 	.f_event = filt_timer,
172 };
173 static struct filterops user_filtops = {
174 	.f_attach = filt_userattach,
175 	.f_detach = filt_userdetach,
176 	.f_event = filt_user,
177 	.f_touch = filt_usertouch,
178 };
179 
180 static uma_zone_t	knote_zone;
181 static int 		kq_ncallouts = 0;
182 static int 		kq_calloutmax = (4 * 1024);
183 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
184     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
185 
186 /* XXX - ensure not KN_INFLUX?? */
187 #define KNOTE_ACTIVATE(kn, islock) do { 				\
188 	if ((islock))							\
189 		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
190 	else								\
191 		KQ_LOCK((kn)->kn_kq);					\
192 	(kn)->kn_status |= KN_ACTIVE;					\
193 	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
194 		knote_enqueue((kn));					\
195 	if (!(islock))							\
196 		KQ_UNLOCK((kn)->kn_kq);					\
197 } while(0)
198 #define KQ_LOCK(kq) do {						\
199 	mtx_lock(&(kq)->kq_lock);					\
200 } while (0)
201 #define KQ_FLUX_WAKEUP(kq) do {						\
202 	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
203 		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
204 		wakeup((kq));						\
205 	}								\
206 } while (0)
207 #define KQ_UNLOCK_FLUX(kq) do {						\
208 	KQ_FLUX_WAKEUP(kq);						\
209 	mtx_unlock(&(kq)->kq_lock);					\
210 } while (0)
211 #define KQ_UNLOCK(kq) do {						\
212 	mtx_unlock(&(kq)->kq_lock);					\
213 } while (0)
214 #define KQ_OWNED(kq) do {						\
215 	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
216 } while (0)
217 #define KQ_NOTOWNED(kq) do {						\
218 	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
219 } while (0)
220 #define KN_LIST_LOCK(kn) do {						\
221 	if (kn->kn_knlist != NULL)					\
222 		kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);	\
223 } while (0)
224 #define KN_LIST_UNLOCK(kn) do {						\
225 	if (kn->kn_knlist != NULL) 					\
226 		kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);	\
227 } while (0)
228 #define	KNL_ASSERT_LOCK(knl, islocked) do {				\
229 	if (islocked)							\
230 		KNL_ASSERT_LOCKED(knl);				\
231 	else								\
232 		KNL_ASSERT_UNLOCKED(knl);				\
233 } while (0)
234 #ifdef INVARIANTS
235 #define	KNL_ASSERT_LOCKED(knl) do {					\
236 	knl->kl_assert_locked((knl)->kl_lockarg);			\
237 } while (0)
238 #define	KNL_ASSERT_UNLOCKED(knl) do {					\
239 	knl->kl_assert_unlocked((knl)->kl_lockarg);			\
240 } while (0)
241 #else /* !INVARIANTS */
242 #define	KNL_ASSERT_LOCKED(knl) do {} while(0)
243 #define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
244 #endif /* INVARIANTS */
245 
246 #define	KN_HASHSIZE		64		/* XXX should be tunable */
247 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
248 
249 static int
250 filt_nullattach(struct knote *kn)
251 {
252 
253 	return (ENXIO);
254 };
255 
256 struct filterops null_filtops = {
257 	.f_isfd = 0,
258 	.f_attach = filt_nullattach,
259 };
260 
261 /* XXX - make SYSINIT to add these, and move into respective modules. */
262 extern struct filterops sig_filtops;
263 extern struct filterops fs_filtops;
264 
265 /*
266  * Table for for all system-defined filters.
267  */
268 static struct mtx	filterops_lock;
269 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
270 	MTX_DEF);
271 static struct {
272 	struct filterops *for_fop;
273 	int for_refcnt;
274 } sysfilt_ops[EVFILT_SYSCOUNT] = {
275 	{ &file_filtops },			/* EVFILT_READ */
276 	{ &file_filtops },			/* EVFILT_WRITE */
277 	{ &null_filtops },			/* EVFILT_AIO */
278 	{ &file_filtops },			/* EVFILT_VNODE */
279 	{ &proc_filtops },			/* EVFILT_PROC */
280 	{ &sig_filtops },			/* EVFILT_SIGNAL */
281 	{ &timer_filtops },			/* EVFILT_TIMER */
282 	{ &null_filtops },			/* former EVFILT_NETDEV */
283 	{ &fs_filtops },			/* EVFILT_FS */
284 	{ &null_filtops },			/* EVFILT_LIO */
285 	{ &user_filtops },			/* EVFILT_USER */
286 };
287 
288 /*
289  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
290  * method.
291  */
292 static int
293 filt_fileattach(struct knote *kn)
294 {
295 
296 	return (fo_kqfilter(kn->kn_fp, kn));
297 }
298 
299 /*ARGSUSED*/
300 static int
301 kqueue_kqfilter(struct file *fp, struct knote *kn)
302 {
303 	struct kqueue *kq = kn->kn_fp->f_data;
304 
305 	if (kn->kn_filter != EVFILT_READ)
306 		return (EINVAL);
307 
308 	kn->kn_status |= KN_KQUEUE;
309 	kn->kn_fop = &kqread_filtops;
310 	knlist_add(&kq->kq_sel.si_note, kn, 0);
311 
312 	return (0);
313 }
314 
315 static void
316 filt_kqdetach(struct knote *kn)
317 {
318 	struct kqueue *kq = kn->kn_fp->f_data;
319 
320 	knlist_remove(&kq->kq_sel.si_note, kn, 0);
321 }
322 
323 /*ARGSUSED*/
324 static int
325 filt_kqueue(struct knote *kn, long hint)
326 {
327 	struct kqueue *kq = kn->kn_fp->f_data;
328 
329 	kn->kn_data = kq->kq_count;
330 	return (kn->kn_data > 0);
331 }
332 
333 /* XXX - move to kern_proc.c?  */
334 static int
335 filt_procattach(struct knote *kn)
336 {
337 	struct proc *p;
338 	int immediate;
339 	int error;
340 
341 	immediate = 0;
342 	p = pfind(kn->kn_id);
343 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
344 		p = zpfind(kn->kn_id);
345 		immediate = 1;
346 	} else if (p != NULL && (p->p_flag & P_WEXIT)) {
347 		immediate = 1;
348 	}
349 
350 	if (p == NULL)
351 		return (ESRCH);
352 	if ((error = p_cansee(curthread, p))) {
353 		PROC_UNLOCK(p);
354 		return (error);
355 	}
356 
357 	kn->kn_ptr.p_proc = p;
358 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
359 
360 	/*
361 	 * internal flag indicating registration done by kernel
362 	 */
363 	if (kn->kn_flags & EV_FLAG1) {
364 		kn->kn_data = kn->kn_sdata;		/* ppid */
365 		kn->kn_fflags = NOTE_CHILD;
366 		kn->kn_flags &= ~EV_FLAG1;
367 	}
368 
369 	if (immediate == 0)
370 		knlist_add(&p->p_klist, kn, 1);
371 
372 	/*
373 	 * Immediately activate any exit notes if the target process is a
374 	 * zombie.  This is necessary to handle the case where the target
375 	 * process, e.g. a child, dies before the kevent is registered.
376 	 */
377 	if (immediate && filt_proc(kn, NOTE_EXIT))
378 		KNOTE_ACTIVATE(kn, 0);
379 
380 	PROC_UNLOCK(p);
381 
382 	return (0);
383 }
384 
385 /*
386  * The knote may be attached to a different process, which may exit,
387  * leaving nothing for the knote to be attached to.  So when the process
388  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
389  * it will be deleted when read out.  However, as part of the knote deletion,
390  * this routine is called, so a check is needed to avoid actually performing
391  * a detach, because the original process does not exist any more.
392  */
393 /* XXX - move to kern_proc.c?  */
394 static void
395 filt_procdetach(struct knote *kn)
396 {
397 	struct proc *p;
398 
399 	p = kn->kn_ptr.p_proc;
400 	knlist_remove(&p->p_klist, kn, 0);
401 	kn->kn_ptr.p_proc = NULL;
402 }
403 
404 /* XXX - move to kern_proc.c?  */
405 static int
406 filt_proc(struct knote *kn, long hint)
407 {
408 	struct proc *p = kn->kn_ptr.p_proc;
409 	u_int event;
410 
411 	/*
412 	 * mask off extra data
413 	 */
414 	event = (u_int)hint & NOTE_PCTRLMASK;
415 
416 	/*
417 	 * if the user is interested in this event, record it.
418 	 */
419 	if (kn->kn_sfflags & event)
420 		kn->kn_fflags |= event;
421 
422 	/*
423 	 * process is gone, so flag the event as finished.
424 	 */
425 	if (event == NOTE_EXIT) {
426 		if (!(kn->kn_status & KN_DETACHED))
427 			knlist_remove_inevent(&p->p_klist, kn);
428 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
429 		kn->kn_data = p->p_xstat;
430 		kn->kn_ptr.p_proc = NULL;
431 		return (1);
432 	}
433 
434 	return (kn->kn_fflags != 0);
435 }
436 
437 /*
438  * Called when the process forked. It mostly does the same as the
439  * knote(), activating all knotes registered to be activated when the
440  * process forked. Additionally, for each knote attached to the
441  * parent, check whether user wants to track the new process. If so
442  * attach a new knote to it, and immediately report an event with the
443  * child's pid.
444  */
445 void
446 knote_fork(struct knlist *list, int pid)
447 {
448 	struct kqueue *kq;
449 	struct knote *kn;
450 	struct kevent kev;
451 	int error;
452 
453 	if (list == NULL)
454 		return;
455 	list->kl_lock(list->kl_lockarg);
456 
457 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
458 		if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
459 			continue;
460 		kq = kn->kn_kq;
461 		KQ_LOCK(kq);
462 		if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
463 			KQ_UNLOCK(kq);
464 			continue;
465 		}
466 
467 		/*
468 		 * The same as knote(), activate the event.
469 		 */
470 		if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
471 			kn->kn_status |= KN_HASKQLOCK;
472 			if (kn->kn_fop->f_event(kn, NOTE_FORK | pid))
473 				KNOTE_ACTIVATE(kn, 1);
474 			kn->kn_status &= ~KN_HASKQLOCK;
475 			KQ_UNLOCK(kq);
476 			continue;
477 		}
478 
479 		/*
480 		 * The NOTE_TRACK case. In addition to the activation
481 		 * of the event, we need to register new event to
482 		 * track the child. Drop the locks in preparation for
483 		 * the call to kqueue_register().
484 		 */
485 		kn->kn_status |= KN_INFLUX;
486 		KQ_UNLOCK(kq);
487 		list->kl_unlock(list->kl_lockarg);
488 
489 		/*
490 		 * Activate existing knote and register a knote with
491 		 * new process.
492 		 */
493 		kev.ident = pid;
494 		kev.filter = kn->kn_filter;
495 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
496 		kev.fflags = kn->kn_sfflags;
497 		kev.data = kn->kn_id;		/* parent */
498 		kev.udata = kn->kn_kevent.udata;/* preserve udata */
499 		error = kqueue_register(kq, &kev, NULL, 0);
500 		if (kn->kn_fop->f_event(kn, NOTE_FORK | pid))
501 			KNOTE_ACTIVATE(kn, 0);
502 		if (error)
503 			kn->kn_fflags |= NOTE_TRACKERR;
504 		KQ_LOCK(kq);
505 		kn->kn_status &= ~KN_INFLUX;
506 		KQ_UNLOCK_FLUX(kq);
507 		list->kl_lock(list->kl_lockarg);
508 	}
509 	list->kl_unlock(list->kl_lockarg);
510 }
511 
512 static int
513 timertoticks(intptr_t data)
514 {
515 	struct timeval tv;
516 	int tticks;
517 
518 	tv.tv_sec = data / 1000;
519 	tv.tv_usec = (data % 1000) * 1000;
520 	tticks = tvtohz(&tv);
521 
522 	return tticks;
523 }
524 
525 /* XXX - move to kern_timeout.c? */
526 static void
527 filt_timerexpire(void *knx)
528 {
529 	struct knote *kn = knx;
530 	struct callout *calloutp;
531 
532 	kn->kn_data++;
533 	KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
534 
535 	if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
536 		calloutp = (struct callout *)kn->kn_hook;
537 		callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata),
538 		    filt_timerexpire, kn);
539 	}
540 }
541 
542 /*
543  * data contains amount of time to sleep, in milliseconds
544  */
545 /* XXX - move to kern_timeout.c? */
546 static int
547 filt_timerattach(struct knote *kn)
548 {
549 	struct callout *calloutp;
550 
551 	atomic_add_int(&kq_ncallouts, 1);
552 
553 	if (kq_ncallouts >= kq_calloutmax) {
554 		atomic_add_int(&kq_ncallouts, -1);
555 		return (ENOMEM);
556 	}
557 
558 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
559 	kn->kn_status &= ~KN_DETACHED;		/* knlist_add usually sets it */
560 	calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
561 	callout_init(calloutp, CALLOUT_MPSAFE);
562 	kn->kn_hook = calloutp;
563 	callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata),
564 	    filt_timerexpire, kn);
565 
566 	return (0);
567 }
568 
569 /* XXX - move to kern_timeout.c? */
570 static void
571 filt_timerdetach(struct knote *kn)
572 {
573 	struct callout *calloutp;
574 
575 	calloutp = (struct callout *)kn->kn_hook;
576 	callout_drain(calloutp);
577 	free(calloutp, M_KQUEUE);
578 	atomic_add_int(&kq_ncallouts, -1);
579 	kn->kn_status |= KN_DETACHED;	/* knlist_remove usually clears it */
580 }
581 
582 /* XXX - move to kern_timeout.c? */
583 static int
584 filt_timer(struct knote *kn, long hint)
585 {
586 
587 	return (kn->kn_data != 0);
588 }
589 
590 static int
591 filt_userattach(struct knote *kn)
592 {
593 
594 	/*
595 	 * EVFILT_USER knotes are not attached to anything in the kernel.
596 	 */
597 	kn->kn_hook = NULL;
598 	if (kn->kn_fflags & NOTE_TRIGGER)
599 		kn->kn_hookid = 1;
600 	else
601 		kn->kn_hookid = 0;
602 	return (0);
603 }
604 
605 static void
606 filt_userdetach(__unused struct knote *kn)
607 {
608 
609 	/*
610 	 * EVFILT_USER knotes are not attached to anything in the kernel.
611 	 */
612 }
613 
614 static int
615 filt_user(struct knote *kn, __unused long hint)
616 {
617 
618 	return (kn->kn_hookid);
619 }
620 
621 static void
622 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
623 {
624 	u_int ffctrl;
625 
626 	switch (type) {
627 	case EVENT_REGISTER:
628 		if (kev->fflags & NOTE_TRIGGER)
629 			kn->kn_hookid = 1;
630 
631 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
632 		kev->fflags &= NOTE_FFLAGSMASK;
633 		switch (ffctrl) {
634 		case NOTE_FFNOP:
635 			break;
636 
637 		case NOTE_FFAND:
638 			kn->kn_sfflags &= kev->fflags;
639 			break;
640 
641 		case NOTE_FFOR:
642 			kn->kn_sfflags |= kev->fflags;
643 			break;
644 
645 		case NOTE_FFCOPY:
646 			kn->kn_sfflags = kev->fflags;
647 			break;
648 
649 		default:
650 			/* XXX Return error? */
651 			break;
652 		}
653 		kn->kn_sdata = kev->data;
654 		if (kev->flags & EV_CLEAR) {
655 			kn->kn_hookid = 0;
656 			kn->kn_data = 0;
657 			kn->kn_fflags = 0;
658 		}
659 		break;
660 
661         case EVENT_PROCESS:
662 		*kev = kn->kn_kevent;
663 		kev->fflags = kn->kn_sfflags;
664 		kev->data = kn->kn_sdata;
665 		if (kn->kn_flags & EV_CLEAR) {
666 			kn->kn_hookid = 0;
667 			kn->kn_data = 0;
668 			kn->kn_fflags = 0;
669 		}
670 		break;
671 
672 	default:
673 		panic("filt_usertouch() - invalid type (%ld)", type);
674 		break;
675 	}
676 }
677 
678 int
679 kqueue(struct thread *td, struct kqueue_args *uap)
680 {
681 	struct filedesc *fdp;
682 	struct kqueue *kq;
683 	struct file *fp;
684 	int fd, error;
685 
686 	fdp = td->td_proc->p_fd;
687 	error = falloc(td, &fp, &fd);
688 	if (error)
689 		goto done2;
690 
691 	/* An extra reference on `nfp' has been held for us by falloc(). */
692 	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
693 	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
694 	TAILQ_INIT(&kq->kq_head);
695 	kq->kq_fdp = fdp;
696 	knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
697 	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
698 
699 	FILEDESC_XLOCK(fdp);
700 	SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
701 	FILEDESC_XUNLOCK(fdp);
702 
703 	finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
704 	fdrop(fp, td);
705 
706 	td->td_retval[0] = fd;
707 done2:
708 	return (error);
709 }
710 
711 #ifndef _SYS_SYSPROTO_H_
712 struct kevent_args {
713 	int	fd;
714 	const struct kevent *changelist;
715 	int	nchanges;
716 	struct	kevent *eventlist;
717 	int	nevents;
718 	const struct timespec *timeout;
719 };
720 #endif
721 int
722 kevent(struct thread *td, struct kevent_args *uap)
723 {
724 	struct timespec ts, *tsp;
725 	struct kevent_copyops k_ops = { uap,
726 					kevent_copyout,
727 					kevent_copyin};
728 	int error;
729 #ifdef KTRACE
730 	struct uio ktruio;
731 	struct iovec ktriov;
732 	struct uio *ktruioin = NULL;
733 	struct uio *ktruioout = NULL;
734 #endif
735 
736 	if (uap->timeout != NULL) {
737 		error = copyin(uap->timeout, &ts, sizeof(ts));
738 		if (error)
739 			return (error);
740 		tsp = &ts;
741 	} else
742 		tsp = NULL;
743 
744 #ifdef KTRACE
745 	if (KTRPOINT(td, KTR_GENIO)) {
746 		ktriov.iov_base = uap->changelist;
747 		ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
748 		ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
749 		    .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
750 		    .uio_td = td };
751 		ktruioin = cloneuio(&ktruio);
752 		ktriov.iov_base = uap->eventlist;
753 		ktriov.iov_len = uap->nevents * sizeof(struct kevent);
754 		ktruioout = cloneuio(&ktruio);
755 	}
756 #endif
757 
758 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
759 	    &k_ops, tsp);
760 
761 #ifdef KTRACE
762 	if (ktruioin != NULL) {
763 		ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
764 		ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
765 		ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
766 		ktrgenio(uap->fd, UIO_READ, ktruioout, error);
767 	}
768 #endif
769 
770 	return (error);
771 }
772 
773 /*
774  * Copy 'count' items into the destination list pointed to by uap->eventlist.
775  */
776 static int
777 kevent_copyout(void *arg, struct kevent *kevp, int count)
778 {
779 	struct kevent_args *uap;
780 	int error;
781 
782 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
783 	uap = (struct kevent_args *)arg;
784 
785 	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
786 	if (error == 0)
787 		uap->eventlist += count;
788 	return (error);
789 }
790 
791 /*
792  * Copy 'count' items from the list pointed to by uap->changelist.
793  */
794 static int
795 kevent_copyin(void *arg, struct kevent *kevp, int count)
796 {
797 	struct kevent_args *uap;
798 	int error;
799 
800 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
801 	uap = (struct kevent_args *)arg;
802 
803 	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
804 	if (error == 0)
805 		uap->changelist += count;
806 	return (error);
807 }
808 
809 int
810 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
811     struct kevent_copyops *k_ops, const struct timespec *timeout)
812 {
813 	struct kevent keva[KQ_NEVENTS];
814 	struct kevent *kevp, *changes;
815 	struct kqueue *kq;
816 	struct file *fp;
817 	int i, n, nerrors, error;
818 
819 	if ((error = fget(td, fd, &fp)) != 0)
820 		return (error);
821 	if ((error = kqueue_acquire(fp, &kq)) != 0)
822 		goto done_norel;
823 
824 	nerrors = 0;
825 
826 	while (nchanges > 0) {
827 		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
828 		error = k_ops->k_copyin(k_ops->arg, keva, n);
829 		if (error)
830 			goto done;
831 		changes = keva;
832 		for (i = 0; i < n; i++) {
833 			kevp = &changes[i];
834 			if (!kevp->filter)
835 				continue;
836 			kevp->flags &= ~EV_SYSFLAGS;
837 			error = kqueue_register(kq, kevp, td, 1);
838 			if (error || (kevp->flags & EV_RECEIPT)) {
839 				if (nevents != 0) {
840 					kevp->flags = EV_ERROR;
841 					kevp->data = error;
842 					(void) k_ops->k_copyout(k_ops->arg,
843 					    kevp, 1);
844 					nevents--;
845 					nerrors++;
846 				} else {
847 					goto done;
848 				}
849 			}
850 		}
851 		nchanges -= n;
852 	}
853 	if (nerrors) {
854 		td->td_retval[0] = nerrors;
855 		error = 0;
856 		goto done;
857 	}
858 
859 	error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
860 done:
861 	kqueue_release(kq, 0);
862 done_norel:
863 	fdrop(fp, td);
864 	return (error);
865 }
866 
867 int
868 kqueue_add_filteropts(int filt, struct filterops *filtops)
869 {
870 	int error;
871 
872 	error = 0;
873 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
874 		printf(
875 "trying to add a filterop that is out of range: %d is beyond %d\n",
876 		    ~filt, EVFILT_SYSCOUNT);
877 		return EINVAL;
878 	}
879 	mtx_lock(&filterops_lock);
880 	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
881 	    sysfilt_ops[~filt].for_fop != NULL)
882 		error = EEXIST;
883 	else {
884 		sysfilt_ops[~filt].for_fop = filtops;
885 		sysfilt_ops[~filt].for_refcnt = 0;
886 	}
887 	mtx_unlock(&filterops_lock);
888 
889 	return (error);
890 }
891 
892 int
893 kqueue_del_filteropts(int filt)
894 {
895 	int error;
896 
897 	error = 0;
898 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
899 		return EINVAL;
900 
901 	mtx_lock(&filterops_lock);
902 	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
903 	    sysfilt_ops[~filt].for_fop == NULL)
904 		error = EINVAL;
905 	else if (sysfilt_ops[~filt].for_refcnt != 0)
906 		error = EBUSY;
907 	else {
908 		sysfilt_ops[~filt].for_fop = &null_filtops;
909 		sysfilt_ops[~filt].for_refcnt = 0;
910 	}
911 	mtx_unlock(&filterops_lock);
912 
913 	return error;
914 }
915 
916 static struct filterops *
917 kqueue_fo_find(int filt)
918 {
919 
920 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
921 		return NULL;
922 
923 	mtx_lock(&filterops_lock);
924 	sysfilt_ops[~filt].for_refcnt++;
925 	if (sysfilt_ops[~filt].for_fop == NULL)
926 		sysfilt_ops[~filt].for_fop = &null_filtops;
927 	mtx_unlock(&filterops_lock);
928 
929 	return sysfilt_ops[~filt].for_fop;
930 }
931 
932 static void
933 kqueue_fo_release(int filt)
934 {
935 
936 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
937 		return;
938 
939 	mtx_lock(&filterops_lock);
940 	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
941 	    ("filter object refcount not valid on release"));
942 	sysfilt_ops[~filt].for_refcnt--;
943 	mtx_unlock(&filterops_lock);
944 }
945 
946 /*
947  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
948  * influence if memory allocation should wait.  Make sure it is 0 if you
949  * hold any mutexes.
950  */
951 static int
952 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
953 {
954 	struct filterops *fops;
955 	struct file *fp;
956 	struct knote *kn, *tkn;
957 	int error, filt, event;
958 	int haskqglobal;
959 
960 	fp = NULL;
961 	kn = NULL;
962 	error = 0;
963 	haskqglobal = 0;
964 
965 	filt = kev->filter;
966 	fops = kqueue_fo_find(filt);
967 	if (fops == NULL)
968 		return EINVAL;
969 
970 	tkn = knote_alloc(waitok);		/* prevent waiting with locks */
971 
972 findkn:
973 	if (fops->f_isfd) {
974 		KASSERT(td != NULL, ("td is NULL"));
975 		error = fget(td, kev->ident, &fp);
976 		if (error)
977 			goto done;
978 
979 		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
980 		    kev->ident, 0) != 0) {
981 			/* try again */
982 			fdrop(fp, td);
983 			fp = NULL;
984 			error = kqueue_expand(kq, fops, kev->ident, waitok);
985 			if (error)
986 				goto done;
987 			goto findkn;
988 		}
989 
990 		if (fp->f_type == DTYPE_KQUEUE) {
991 			/*
992 			 * if we add some inteligence about what we are doing,
993 			 * we should be able to support events on ourselves.
994 			 * We need to know when we are doing this to prevent
995 			 * getting both the knlist lock and the kq lock since
996 			 * they are the same thing.
997 			 */
998 			if (fp->f_data == kq) {
999 				error = EINVAL;
1000 				goto done;
1001 			}
1002 
1003 			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1004 		}
1005 
1006 		KQ_LOCK(kq);
1007 		if (kev->ident < kq->kq_knlistsize) {
1008 			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
1009 				if (kev->filter == kn->kn_filter)
1010 					break;
1011 		}
1012 	} else {
1013 		if ((kev->flags & EV_ADD) == EV_ADD)
1014 			kqueue_expand(kq, fops, kev->ident, waitok);
1015 
1016 		KQ_LOCK(kq);
1017 		if (kq->kq_knhashmask != 0) {
1018 			struct klist *list;
1019 
1020 			list = &kq->kq_knhash[
1021 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1022 			SLIST_FOREACH(kn, list, kn_link)
1023 				if (kev->ident == kn->kn_id &&
1024 				    kev->filter == kn->kn_filter)
1025 					break;
1026 		}
1027 	}
1028 
1029 	/* knote is in the process of changing, wait for it to stablize. */
1030 	if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1031 		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1032 		kq->kq_state |= KQ_FLUXWAIT;
1033 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
1034 		if (fp != NULL) {
1035 			fdrop(fp, td);
1036 			fp = NULL;
1037 		}
1038 		goto findkn;
1039 	}
1040 
1041 	/*
1042 	 * kn now contains the matching knote, or NULL if no match
1043 	 */
1044 	if (kn == NULL) {
1045 		if (kev->flags & EV_ADD) {
1046 			kn = tkn;
1047 			tkn = NULL;
1048 			if (kn == NULL) {
1049 				KQ_UNLOCK(kq);
1050 				error = ENOMEM;
1051 				goto done;
1052 			}
1053 			kn->kn_fp = fp;
1054 			kn->kn_kq = kq;
1055 			kn->kn_fop = fops;
1056 			/*
1057 			 * apply reference counts to knote structure, and
1058 			 * do not release it at the end of this routine.
1059 			 */
1060 			fops = NULL;
1061 			fp = NULL;
1062 
1063 			kn->kn_sfflags = kev->fflags;
1064 			kn->kn_sdata = kev->data;
1065 			kev->fflags = 0;
1066 			kev->data = 0;
1067 			kn->kn_kevent = *kev;
1068 			kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
1069 			    EV_ENABLE | EV_DISABLE);
1070 			kn->kn_status = KN_INFLUX|KN_DETACHED;
1071 
1072 			error = knote_attach(kn, kq);
1073 			KQ_UNLOCK(kq);
1074 			if (error != 0) {
1075 				tkn = kn;
1076 				goto done;
1077 			}
1078 
1079 			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
1080 				knote_drop(kn, td);
1081 				goto done;
1082 			}
1083 			KN_LIST_LOCK(kn);
1084 			goto done_ev_add;
1085 		} else {
1086 			/* No matching knote and the EV_ADD flag is not set. */
1087 			KQ_UNLOCK(kq);
1088 			error = ENOENT;
1089 			goto done;
1090 		}
1091 	}
1092 
1093 	if (kev->flags & EV_DELETE) {
1094 		kn->kn_status |= KN_INFLUX;
1095 		KQ_UNLOCK(kq);
1096 		if (!(kn->kn_status & KN_DETACHED))
1097 			kn->kn_fop->f_detach(kn);
1098 		knote_drop(kn, td);
1099 		goto done;
1100 	}
1101 
1102 	/*
1103 	 * The user may change some filter values after the initial EV_ADD,
1104 	 * but doing so will not reset any filter which has already been
1105 	 * triggered.
1106 	 */
1107 	kn->kn_status |= KN_INFLUX;
1108 	KQ_UNLOCK(kq);
1109 	KN_LIST_LOCK(kn);
1110 	kn->kn_kevent.udata = kev->udata;
1111 	if (!fops->f_isfd && fops->f_touch != NULL) {
1112 		fops->f_touch(kn, kev, EVENT_REGISTER);
1113 	} else {
1114 		kn->kn_sfflags = kev->fflags;
1115 		kn->kn_sdata = kev->data;
1116 	}
1117 
1118 	/*
1119 	 * We can get here with kn->kn_knlist == NULL.  This can happen when
1120 	 * the initial attach event decides that the event is "completed"
1121 	 * already.  i.e. filt_procattach is called on a zombie process.  It
1122 	 * will call filt_proc which will remove it from the list, and NULL
1123 	 * kn_knlist.
1124 	 */
1125 done_ev_add:
1126 	event = kn->kn_fop->f_event(kn, 0);
1127 	KQ_LOCK(kq);
1128 	if (event)
1129 		KNOTE_ACTIVATE(kn, 1);
1130 	kn->kn_status &= ~KN_INFLUX;
1131 	KN_LIST_UNLOCK(kn);
1132 
1133 	if ((kev->flags & EV_DISABLE) &&
1134 	    ((kn->kn_status & KN_DISABLED) == 0)) {
1135 		kn->kn_status |= KN_DISABLED;
1136 	}
1137 
1138 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1139 		kn->kn_status &= ~KN_DISABLED;
1140 		if ((kn->kn_status & KN_ACTIVE) &&
1141 		    ((kn->kn_status & KN_QUEUED) == 0))
1142 			knote_enqueue(kn);
1143 	}
1144 	KQ_UNLOCK_FLUX(kq);
1145 
1146 done:
1147 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1148 	if (fp != NULL)
1149 		fdrop(fp, td);
1150 	if (tkn != NULL)
1151 		knote_free(tkn);
1152 	if (fops != NULL)
1153 		kqueue_fo_release(filt);
1154 	return (error);
1155 }
1156 
1157 static int
1158 kqueue_acquire(struct file *fp, struct kqueue **kqp)
1159 {
1160 	int error;
1161 	struct kqueue *kq;
1162 
1163 	error = 0;
1164 
1165 	kq = fp->f_data;
1166 	if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1167 		return (EBADF);
1168 	*kqp = kq;
1169 	KQ_LOCK(kq);
1170 	if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1171 		KQ_UNLOCK(kq);
1172 		return (EBADF);
1173 	}
1174 	kq->kq_refcnt++;
1175 	KQ_UNLOCK(kq);
1176 
1177 	return error;
1178 }
1179 
1180 static void
1181 kqueue_release(struct kqueue *kq, int locked)
1182 {
1183 	if (locked)
1184 		KQ_OWNED(kq);
1185 	else
1186 		KQ_LOCK(kq);
1187 	kq->kq_refcnt--;
1188 	if (kq->kq_refcnt == 1)
1189 		wakeup(&kq->kq_refcnt);
1190 	if (!locked)
1191 		KQ_UNLOCK(kq);
1192 }
1193 
1194 static void
1195 kqueue_schedtask(struct kqueue *kq)
1196 {
1197 
1198 	KQ_OWNED(kq);
1199 	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1200 	    ("scheduling kqueue task while draining"));
1201 
1202 	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1203 		taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
1204 		kq->kq_state |= KQ_TASKSCHED;
1205 	}
1206 }
1207 
1208 /*
1209  * Expand the kq to make sure we have storage for fops/ident pair.
1210  *
1211  * Return 0 on success (or no work necessary), return errno on failure.
1212  *
1213  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
1214  * If kqueue_register is called from a non-fd context, there usually/should
1215  * be no locks held.
1216  */
1217 static int
1218 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1219 	int waitok)
1220 {
1221 	struct klist *list, *tmp_knhash;
1222 	u_long tmp_knhashmask;
1223 	int size;
1224 	int fd;
1225 	int mflag = waitok ? M_WAITOK : M_NOWAIT;
1226 
1227 	KQ_NOTOWNED(kq);
1228 
1229 	if (fops->f_isfd) {
1230 		fd = ident;
1231 		if (kq->kq_knlistsize <= fd) {
1232 			size = kq->kq_knlistsize;
1233 			while (size <= fd)
1234 				size += KQEXTENT;
1235 			list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
1236 			if (list == NULL)
1237 				return ENOMEM;
1238 			KQ_LOCK(kq);
1239 			if (kq->kq_knlistsize > fd) {
1240 				free(list, M_KQUEUE);
1241 				list = NULL;
1242 			} else {
1243 				if (kq->kq_knlist != NULL) {
1244 					bcopy(kq->kq_knlist, list,
1245 					    kq->kq_knlistsize * sizeof(*list));
1246 					free(kq->kq_knlist, M_KQUEUE);
1247 					kq->kq_knlist = NULL;
1248 				}
1249 				bzero((caddr_t)list +
1250 				    kq->kq_knlistsize * sizeof(*list),
1251 				    (size - kq->kq_knlistsize) * sizeof(*list));
1252 				kq->kq_knlistsize = size;
1253 				kq->kq_knlist = list;
1254 			}
1255 			KQ_UNLOCK(kq);
1256 		}
1257 	} else {
1258 		if (kq->kq_knhashmask == 0) {
1259 			tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1260 			    &tmp_knhashmask);
1261 			if (tmp_knhash == NULL)
1262 				return ENOMEM;
1263 			KQ_LOCK(kq);
1264 			if (kq->kq_knhashmask == 0) {
1265 				kq->kq_knhash = tmp_knhash;
1266 				kq->kq_knhashmask = tmp_knhashmask;
1267 			} else {
1268 				free(tmp_knhash, M_KQUEUE);
1269 			}
1270 			KQ_UNLOCK(kq);
1271 		}
1272 	}
1273 
1274 	KQ_NOTOWNED(kq);
1275 	return 0;
1276 }
1277 
1278 static void
1279 kqueue_task(void *arg, int pending)
1280 {
1281 	struct kqueue *kq;
1282 	int haskqglobal;
1283 
1284 	haskqglobal = 0;
1285 	kq = arg;
1286 
1287 	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1288 	KQ_LOCK(kq);
1289 
1290 	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1291 
1292 	kq->kq_state &= ~KQ_TASKSCHED;
1293 	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1294 		wakeup(&kq->kq_state);
1295 	}
1296 	KQ_UNLOCK(kq);
1297 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1298 }
1299 
1300 /*
1301  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1302  * We treat KN_MARKER knotes as if they are INFLUX.
1303  */
1304 static int
1305 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1306     const struct timespec *tsp, struct kevent *keva, struct thread *td)
1307 {
1308 	struct kevent *kevp;
1309 	struct timeval atv, rtv, ttv;
1310 	struct knote *kn, *marker;
1311 	int count, timeout, nkev, error, influx;
1312 	int haskqglobal, touch;
1313 
1314 	count = maxevents;
1315 	nkev = 0;
1316 	error = 0;
1317 	haskqglobal = 0;
1318 
1319 	if (maxevents == 0)
1320 		goto done_nl;
1321 
1322 	if (tsp != NULL) {
1323 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
1324 		if (itimerfix(&atv)) {
1325 			error = EINVAL;
1326 			goto done_nl;
1327 		}
1328 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1329 			timeout = -1;
1330 		else
1331 			timeout = atv.tv_sec > 24 * 60 * 60 ?
1332 			    24 * 60 * 60 * hz : tvtohz(&atv);
1333 		getmicrouptime(&rtv);
1334 		timevaladd(&atv, &rtv);
1335 	} else {
1336 		atv.tv_sec = 0;
1337 		atv.tv_usec = 0;
1338 		timeout = 0;
1339 	}
1340 	marker = knote_alloc(1);
1341 	if (marker == NULL) {
1342 		error = ENOMEM;
1343 		goto done_nl;
1344 	}
1345 	marker->kn_status = KN_MARKER;
1346 	KQ_LOCK(kq);
1347 	goto start;
1348 
1349 retry:
1350 	if (atv.tv_sec || atv.tv_usec) {
1351 		getmicrouptime(&rtv);
1352 		if (timevalcmp(&rtv, &atv, >=))
1353 			goto done;
1354 		ttv = atv;
1355 		timevalsub(&ttv, &rtv);
1356 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
1357 			24 * 60 * 60 * hz : tvtohz(&ttv);
1358 	}
1359 
1360 start:
1361 	kevp = keva;
1362 	if (kq->kq_count == 0) {
1363 		if (timeout < 0) {
1364 			error = EWOULDBLOCK;
1365 		} else {
1366 			kq->kq_state |= KQ_SLEEP;
1367 			error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH,
1368 			    "kqread", timeout);
1369 		}
1370 		if (error == 0)
1371 			goto retry;
1372 		/* don't restart after signals... */
1373 		if (error == ERESTART)
1374 			error = EINTR;
1375 		else if (error == EWOULDBLOCK)
1376 			error = 0;
1377 		goto done;
1378 	}
1379 
1380 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1381 	influx = 0;
1382 	while (count) {
1383 		KQ_OWNED(kq);
1384 		kn = TAILQ_FIRST(&kq->kq_head);
1385 
1386 		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1387 		    (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1388 			if (influx) {
1389 				influx = 0;
1390 				KQ_FLUX_WAKEUP(kq);
1391 			}
1392 			kq->kq_state |= KQ_FLUXWAIT;
1393 			error = msleep(kq, &kq->kq_lock, PSOCK,
1394 			    "kqflxwt", 0);
1395 			continue;
1396 		}
1397 
1398 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1399 		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1400 			kn->kn_status &= ~KN_QUEUED;
1401 			kq->kq_count--;
1402 			continue;
1403 		}
1404 		if (kn == marker) {
1405 			KQ_FLUX_WAKEUP(kq);
1406 			if (count == maxevents)
1407 				goto retry;
1408 			goto done;
1409 		}
1410 		KASSERT((kn->kn_status & KN_INFLUX) == 0,
1411 		    ("KN_INFLUX set when not suppose to be"));
1412 
1413 		if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1414 			kn->kn_status &= ~KN_QUEUED;
1415 			kn->kn_status |= KN_INFLUX;
1416 			kq->kq_count--;
1417 			KQ_UNLOCK(kq);
1418 			/*
1419 			 * We don't need to lock the list since we've marked
1420 			 * it _INFLUX.
1421 			 */
1422 			*kevp = kn->kn_kevent;
1423 			if (!(kn->kn_status & KN_DETACHED))
1424 				kn->kn_fop->f_detach(kn);
1425 			knote_drop(kn, td);
1426 			KQ_LOCK(kq);
1427 			kn = NULL;
1428 		} else {
1429 			kn->kn_status |= KN_INFLUX;
1430 			KQ_UNLOCK(kq);
1431 			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1432 				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1433 			KN_LIST_LOCK(kn);
1434 			if (kn->kn_fop->f_event(kn, 0) == 0) {
1435 				KQ_LOCK(kq);
1436 				KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1437 				kn->kn_status &=
1438 				    ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX);
1439 				kq->kq_count--;
1440 				KN_LIST_UNLOCK(kn);
1441 				influx = 1;
1442 				continue;
1443 			}
1444 			touch = (!kn->kn_fop->f_isfd &&
1445 			    kn->kn_fop->f_touch != NULL);
1446 			if (touch)
1447 				kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
1448 			else
1449 				*kevp = kn->kn_kevent;
1450 			KQ_LOCK(kq);
1451 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1452 			if (kn->kn_flags & (EV_CLEAR |  EV_DISPATCH)) {
1453 				/*
1454 				 * Manually clear knotes who weren't
1455 				 * 'touch'ed.
1456 				 */
1457 				if (touch == 0 && kn->kn_flags & EV_CLEAR) {
1458 					kn->kn_data = 0;
1459 					kn->kn_fflags = 0;
1460 				}
1461 				if (kn->kn_flags & EV_DISPATCH)
1462 					kn->kn_status |= KN_DISABLED;
1463 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1464 				kq->kq_count--;
1465 			} else
1466 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1467 
1468 			kn->kn_status &= ~(KN_INFLUX);
1469 			KN_LIST_UNLOCK(kn);
1470 			influx = 1;
1471 		}
1472 
1473 		/* we are returning a copy to the user */
1474 		kevp++;
1475 		nkev++;
1476 		count--;
1477 
1478 		if (nkev == KQ_NEVENTS) {
1479 			influx = 0;
1480 			KQ_UNLOCK_FLUX(kq);
1481 			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1482 			nkev = 0;
1483 			kevp = keva;
1484 			KQ_LOCK(kq);
1485 			if (error)
1486 				break;
1487 		}
1488 	}
1489 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1490 done:
1491 	KQ_OWNED(kq);
1492 	KQ_UNLOCK_FLUX(kq);
1493 	knote_free(marker);
1494 done_nl:
1495 	KQ_NOTOWNED(kq);
1496 	if (nkev != 0)
1497 		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1498 	td->td_retval[0] = maxevents - count;
1499 	return (error);
1500 }
1501 
1502 /*
1503  * XXX
1504  * This could be expanded to call kqueue_scan, if desired.
1505  */
1506 /*ARGSUSED*/
1507 static int
1508 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1509 	int flags, struct thread *td)
1510 {
1511 	return (ENXIO);
1512 }
1513 
1514 /*ARGSUSED*/
1515 static int
1516 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1517 	 int flags, struct thread *td)
1518 {
1519 	return (ENXIO);
1520 }
1521 
1522 /*ARGSUSED*/
1523 static int
1524 kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1525 	struct thread *td)
1526 {
1527 
1528 	return (EINVAL);
1529 }
1530 
1531 /*ARGSUSED*/
1532 static int
1533 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
1534 	struct ucred *active_cred, struct thread *td)
1535 {
1536 	/*
1537 	 * Enabling sigio causes two major problems:
1538 	 * 1) infinite recursion:
1539 	 * Synopsys: kevent is being used to track signals and have FIOASYNC
1540 	 * set.  On receipt of a signal this will cause a kqueue to recurse
1541 	 * into itself over and over.  Sending the sigio causes the kqueue
1542 	 * to become ready, which in turn posts sigio again, forever.
1543 	 * Solution: this can be solved by setting a flag in the kqueue that
1544 	 * we have a SIGIO in progress.
1545 	 * 2) locking problems:
1546 	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
1547 	 * us above the proc and pgrp locks.
1548 	 * Solution: Post a signal using an async mechanism, being sure to
1549 	 * record a generation count in the delivery so that we do not deliver
1550 	 * a signal to the wrong process.
1551 	 *
1552 	 * Note, these two mechanisms are somewhat mutually exclusive!
1553 	 */
1554 #if 0
1555 	struct kqueue *kq;
1556 
1557 	kq = fp->f_data;
1558 	switch (cmd) {
1559 	case FIOASYNC:
1560 		if (*(int *)data) {
1561 			kq->kq_state |= KQ_ASYNC;
1562 		} else {
1563 			kq->kq_state &= ~KQ_ASYNC;
1564 		}
1565 		return (0);
1566 
1567 	case FIOSETOWN:
1568 		return (fsetown(*(int *)data, &kq->kq_sigio));
1569 
1570 	case FIOGETOWN:
1571 		*(int *)data = fgetown(&kq->kq_sigio);
1572 		return (0);
1573 	}
1574 #endif
1575 
1576 	return (ENOTTY);
1577 }
1578 
1579 /*ARGSUSED*/
1580 static int
1581 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
1582 	struct thread *td)
1583 {
1584 	struct kqueue *kq;
1585 	int revents = 0;
1586 	int error;
1587 
1588 	if ((error = kqueue_acquire(fp, &kq)))
1589 		return POLLERR;
1590 
1591 	KQ_LOCK(kq);
1592 	if (events & (POLLIN | POLLRDNORM)) {
1593 		if (kq->kq_count) {
1594 			revents |= events & (POLLIN | POLLRDNORM);
1595 		} else {
1596 			selrecord(td, &kq->kq_sel);
1597 			if (SEL_WAITING(&kq->kq_sel))
1598 				kq->kq_state |= KQ_SEL;
1599 		}
1600 	}
1601 	kqueue_release(kq, 1);
1602 	KQ_UNLOCK(kq);
1603 	return (revents);
1604 }
1605 
1606 /*ARGSUSED*/
1607 static int
1608 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1609 	struct thread *td)
1610 {
1611 
1612 	bzero((void *)st, sizeof *st);
1613 	/*
1614 	 * We no longer return kq_count because the unlocked value is useless.
1615 	 * If you spent all this time getting the count, why not spend your
1616 	 * syscall better by calling kevent?
1617 	 *
1618 	 * XXX - This is needed for libc_r.
1619 	 */
1620 	st->st_mode = S_IFIFO;
1621 	return (0);
1622 }
1623 
1624 /*ARGSUSED*/
1625 static int
1626 kqueue_close(struct file *fp, struct thread *td)
1627 {
1628 	struct kqueue *kq = fp->f_data;
1629 	struct filedesc *fdp;
1630 	struct knote *kn;
1631 	int i;
1632 	int error;
1633 
1634 	if ((error = kqueue_acquire(fp, &kq)))
1635 		return error;
1636 
1637 	KQ_LOCK(kq);
1638 
1639 	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
1640 	    ("kqueue already closing"));
1641 	kq->kq_state |= KQ_CLOSING;
1642 	if (kq->kq_refcnt > 1)
1643 		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
1644 
1645 	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
1646 	fdp = kq->kq_fdp;
1647 
1648 	KASSERT(knlist_empty(&kq->kq_sel.si_note),
1649 	    ("kqueue's knlist not empty"));
1650 
1651 	for (i = 0; i < kq->kq_knlistsize; i++) {
1652 		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
1653 			if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1654 				kq->kq_state |= KQ_FLUXWAIT;
1655 				msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
1656 				continue;
1657 			}
1658 			kn->kn_status |= KN_INFLUX;
1659 			KQ_UNLOCK(kq);
1660 			if (!(kn->kn_status & KN_DETACHED))
1661 				kn->kn_fop->f_detach(kn);
1662 			knote_drop(kn, td);
1663 			KQ_LOCK(kq);
1664 		}
1665 	}
1666 	if (kq->kq_knhashmask != 0) {
1667 		for (i = 0; i <= kq->kq_knhashmask; i++) {
1668 			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
1669 				if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1670 					kq->kq_state |= KQ_FLUXWAIT;
1671 					msleep(kq, &kq->kq_lock, PSOCK,
1672 					       "kqclo2", 0);
1673 					continue;
1674 				}
1675 				kn->kn_status |= KN_INFLUX;
1676 				KQ_UNLOCK(kq);
1677 				if (!(kn->kn_status & KN_DETACHED))
1678 					kn->kn_fop->f_detach(kn);
1679 				knote_drop(kn, td);
1680 				KQ_LOCK(kq);
1681 			}
1682 		}
1683 	}
1684 
1685 	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
1686 		kq->kq_state |= KQ_TASKDRAIN;
1687 		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
1688 	}
1689 
1690 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1691 		selwakeuppri(&kq->kq_sel, PSOCK);
1692 		if (!SEL_WAITING(&kq->kq_sel))
1693 			kq->kq_state &= ~KQ_SEL;
1694 	}
1695 
1696 	KQ_UNLOCK(kq);
1697 
1698 	FILEDESC_XLOCK(fdp);
1699 	SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list);
1700 	FILEDESC_XUNLOCK(fdp);
1701 
1702 	knlist_destroy(&kq->kq_sel.si_note);
1703 	mtx_destroy(&kq->kq_lock);
1704 	kq->kq_fdp = NULL;
1705 
1706 	if (kq->kq_knhash != NULL)
1707 		free(kq->kq_knhash, M_KQUEUE);
1708 	if (kq->kq_knlist != NULL)
1709 		free(kq->kq_knlist, M_KQUEUE);
1710 
1711 	funsetown(&kq->kq_sigio);
1712 	free(kq, M_KQUEUE);
1713 	fp->f_data = NULL;
1714 
1715 	return (0);
1716 }
1717 
1718 static void
1719 kqueue_wakeup(struct kqueue *kq)
1720 {
1721 	KQ_OWNED(kq);
1722 
1723 	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
1724 		kq->kq_state &= ~KQ_SLEEP;
1725 		wakeup(kq);
1726 	}
1727 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1728 		selwakeuppri(&kq->kq_sel, PSOCK);
1729 		if (!SEL_WAITING(&kq->kq_sel))
1730 			kq->kq_state &= ~KQ_SEL;
1731 	}
1732 	if (!knlist_empty(&kq->kq_sel.si_note))
1733 		kqueue_schedtask(kq);
1734 	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
1735 		pgsigio(&kq->kq_sigio, SIGIO, 0);
1736 	}
1737 }
1738 
1739 /*
1740  * Walk down a list of knotes, activating them if their event has triggered.
1741  *
1742  * There is a possibility to optimize in the case of one kq watching another.
1743  * Instead of scheduling a task to wake it up, you could pass enough state
1744  * down the chain to make up the parent kqueue.  Make this code functional
1745  * first.
1746  */
1747 void
1748 knote(struct knlist *list, long hint, int lockflags)
1749 {
1750 	struct kqueue *kq;
1751 	struct knote *kn;
1752 	int error;
1753 
1754 	if (list == NULL)
1755 		return;
1756 
1757 	KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
1758 
1759 	if ((lockflags & KNF_LISTLOCKED) == 0)
1760 		list->kl_lock(list->kl_lockarg);
1761 
1762 	/*
1763 	 * If we unlock the list lock (and set KN_INFLUX), we can eliminate
1764 	 * the kqueue scheduling, but this will introduce four
1765 	 * lock/unlock's for each knote to test.  If we do, continue to use
1766 	 * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
1767 	 * only safe if you want to remove the current item, which we are
1768 	 * not doing.
1769 	 */
1770 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
1771 		kq = kn->kn_kq;
1772 		if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
1773 			KQ_LOCK(kq);
1774 			if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1775 				KQ_UNLOCK(kq);
1776 			} else if ((lockflags & KNF_NOKQLOCK) != 0) {
1777 				kn->kn_status |= KN_INFLUX;
1778 				KQ_UNLOCK(kq);
1779 				error = kn->kn_fop->f_event(kn, hint);
1780 				KQ_LOCK(kq);
1781 				kn->kn_status &= ~KN_INFLUX;
1782 				if (error)
1783 					KNOTE_ACTIVATE(kn, 1);
1784 				KQ_UNLOCK_FLUX(kq);
1785 			} else {
1786 				kn->kn_status |= KN_HASKQLOCK;
1787 				if (kn->kn_fop->f_event(kn, hint))
1788 					KNOTE_ACTIVATE(kn, 1);
1789 				kn->kn_status &= ~KN_HASKQLOCK;
1790 				KQ_UNLOCK(kq);
1791 			}
1792 		}
1793 		kq = NULL;
1794 	}
1795 	if ((lockflags & KNF_LISTLOCKED) == 0)
1796 		list->kl_unlock(list->kl_lockarg);
1797 }
1798 
1799 /*
1800  * add a knote to a knlist
1801  */
1802 void
1803 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
1804 {
1805 	KNL_ASSERT_LOCK(knl, islocked);
1806 	KQ_NOTOWNED(kn->kn_kq);
1807 	KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
1808 	    (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
1809 	if (!islocked)
1810 		knl->kl_lock(knl->kl_lockarg);
1811 	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
1812 	if (!islocked)
1813 		knl->kl_unlock(knl->kl_lockarg);
1814 	KQ_LOCK(kn->kn_kq);
1815 	kn->kn_knlist = knl;
1816 	kn->kn_status &= ~KN_DETACHED;
1817 	KQ_UNLOCK(kn->kn_kq);
1818 }
1819 
1820 static void
1821 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
1822 {
1823 	KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
1824 	KNL_ASSERT_LOCK(knl, knlislocked);
1825 	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
1826 	if (!kqislocked)
1827 		KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
1828     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
1829 	if (!knlislocked)
1830 		knl->kl_lock(knl->kl_lockarg);
1831 	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
1832 	kn->kn_knlist = NULL;
1833 	if (!knlislocked)
1834 		knl->kl_unlock(knl->kl_lockarg);
1835 	if (!kqislocked)
1836 		KQ_LOCK(kn->kn_kq);
1837 	kn->kn_status |= KN_DETACHED;
1838 	if (!kqislocked)
1839 		KQ_UNLOCK(kn->kn_kq);
1840 }
1841 
1842 /*
1843  * remove all knotes from a specified klist
1844  */
1845 void
1846 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
1847 {
1848 
1849 	knlist_remove_kq(knl, kn, islocked, 0);
1850 }
1851 
1852 /*
1853  * remove knote from a specified klist while in f_event handler.
1854  */
1855 void
1856 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
1857 {
1858 
1859 	knlist_remove_kq(knl, kn, 1,
1860 	    (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
1861 }
1862 
1863 int
1864 knlist_empty(struct knlist *knl)
1865 {
1866 	KNL_ASSERT_LOCKED(knl);
1867 	return SLIST_EMPTY(&knl->kl_list);
1868 }
1869 
1870 static struct mtx	knlist_lock;
1871 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
1872 	MTX_DEF);
1873 static void knlist_mtx_lock(void *arg);
1874 static void knlist_mtx_unlock(void *arg);
1875 
1876 static void
1877 knlist_mtx_lock(void *arg)
1878 {
1879 	mtx_lock((struct mtx *)arg);
1880 }
1881 
1882 static void
1883 knlist_mtx_unlock(void *arg)
1884 {
1885 	mtx_unlock((struct mtx *)arg);
1886 }
1887 
1888 static void
1889 knlist_mtx_assert_locked(void *arg)
1890 {
1891 	mtx_assert((struct mtx *)arg, MA_OWNED);
1892 }
1893 
1894 static void
1895 knlist_mtx_assert_unlocked(void *arg)
1896 {
1897 	mtx_assert((struct mtx *)arg, MA_NOTOWNED);
1898 }
1899 
1900 void
1901 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
1902     void (*kl_unlock)(void *),
1903     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
1904 {
1905 
1906 	if (lock == NULL)
1907 		knl->kl_lockarg = &knlist_lock;
1908 	else
1909 		knl->kl_lockarg = lock;
1910 
1911 	if (kl_lock == NULL)
1912 		knl->kl_lock = knlist_mtx_lock;
1913 	else
1914 		knl->kl_lock = kl_lock;
1915 	if (kl_unlock == NULL)
1916 		knl->kl_unlock = knlist_mtx_unlock;
1917 	else
1918 		knl->kl_unlock = kl_unlock;
1919 	if (kl_assert_locked == NULL)
1920 		knl->kl_assert_locked = knlist_mtx_assert_locked;
1921 	else
1922 		knl->kl_assert_locked = kl_assert_locked;
1923 	if (kl_assert_unlocked == NULL)
1924 		knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
1925 	else
1926 		knl->kl_assert_unlocked = kl_assert_unlocked;
1927 
1928 	SLIST_INIT(&knl->kl_list);
1929 }
1930 
1931 void
1932 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
1933 {
1934 
1935 	knlist_init(knl, lock, NULL, NULL, NULL, NULL);
1936 }
1937 
1938 void
1939 knlist_destroy(struct knlist *knl)
1940 {
1941 
1942 #ifdef INVARIANTS
1943 	/*
1944 	 * if we run across this error, we need to find the offending
1945 	 * driver and have it call knlist_clear.
1946 	 */
1947 	if (!SLIST_EMPTY(&knl->kl_list))
1948 		printf("WARNING: destroying knlist w/ knotes on it!\n");
1949 #endif
1950 
1951 	knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
1952 	SLIST_INIT(&knl->kl_list);
1953 }
1954 
1955 /*
1956  * Even if we are locked, we may need to drop the lock to allow any influx
1957  * knotes time to "settle".
1958  */
1959 void
1960 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
1961 {
1962 	struct knote *kn, *kn2;
1963 	struct kqueue *kq;
1964 
1965 	if (islocked)
1966 		KNL_ASSERT_LOCKED(knl);
1967 	else {
1968 		KNL_ASSERT_UNLOCKED(knl);
1969 again:		/* need to reacquire lock since we have dropped it */
1970 		knl->kl_lock(knl->kl_lockarg);
1971 	}
1972 
1973 	SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
1974 		kq = kn->kn_kq;
1975 		KQ_LOCK(kq);
1976 		if ((kn->kn_status & KN_INFLUX)) {
1977 			KQ_UNLOCK(kq);
1978 			continue;
1979 		}
1980 		knlist_remove_kq(knl, kn, 1, 1);
1981 		if (killkn) {
1982 			kn->kn_status |= KN_INFLUX | KN_DETACHED;
1983 			KQ_UNLOCK(kq);
1984 			knote_drop(kn, td);
1985 		} else {
1986 			/* Make sure cleared knotes disappear soon */
1987 			kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1988 			KQ_UNLOCK(kq);
1989 		}
1990 		kq = NULL;
1991 	}
1992 
1993 	if (!SLIST_EMPTY(&knl->kl_list)) {
1994 		/* there are still KN_INFLUX remaining */
1995 		kn = SLIST_FIRST(&knl->kl_list);
1996 		kq = kn->kn_kq;
1997 		KQ_LOCK(kq);
1998 		KASSERT(kn->kn_status & KN_INFLUX,
1999 		    ("knote removed w/o list lock"));
2000 		knl->kl_unlock(knl->kl_lockarg);
2001 		kq->kq_state |= KQ_FLUXWAIT;
2002 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
2003 		kq = NULL;
2004 		goto again;
2005 	}
2006 
2007 	if (islocked)
2008 		KNL_ASSERT_LOCKED(knl);
2009 	else {
2010 		knl->kl_unlock(knl->kl_lockarg);
2011 		KNL_ASSERT_UNLOCKED(knl);
2012 	}
2013 }
2014 
2015 /*
2016  * Remove all knotes referencing a specified fd must be called with FILEDESC
2017  * lock.  This prevents a race where a new fd comes along and occupies the
2018  * entry and we attach a knote to the fd.
2019  */
2020 void
2021 knote_fdclose(struct thread *td, int fd)
2022 {
2023 	struct filedesc *fdp = td->td_proc->p_fd;
2024 	struct kqueue *kq;
2025 	struct knote *kn;
2026 	int influx;
2027 
2028 	FILEDESC_XLOCK_ASSERT(fdp);
2029 
2030 	/*
2031 	 * We shouldn't have to worry about new kevents appearing on fd
2032 	 * since filedesc is locked.
2033 	 */
2034 	SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
2035 		KQ_LOCK(kq);
2036 
2037 again:
2038 		influx = 0;
2039 		while (kq->kq_knlistsize > fd &&
2040 		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
2041 			if (kn->kn_status & KN_INFLUX) {
2042 				/* someone else might be waiting on our knote */
2043 				if (influx)
2044 					wakeup(kq);
2045 				kq->kq_state |= KQ_FLUXWAIT;
2046 				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2047 				goto again;
2048 			}
2049 			kn->kn_status |= KN_INFLUX;
2050 			KQ_UNLOCK(kq);
2051 			if (!(kn->kn_status & KN_DETACHED))
2052 				kn->kn_fop->f_detach(kn);
2053 			knote_drop(kn, td);
2054 			influx = 1;
2055 			KQ_LOCK(kq);
2056 		}
2057 		KQ_UNLOCK_FLUX(kq);
2058 	}
2059 }
2060 
2061 static int
2062 knote_attach(struct knote *kn, struct kqueue *kq)
2063 {
2064 	struct klist *list;
2065 
2066 	KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
2067 	KQ_OWNED(kq);
2068 
2069 	if (kn->kn_fop->f_isfd) {
2070 		if (kn->kn_id >= kq->kq_knlistsize)
2071 			return ENOMEM;
2072 		list = &kq->kq_knlist[kn->kn_id];
2073 	} else {
2074 		if (kq->kq_knhash == NULL)
2075 			return ENOMEM;
2076 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2077 	}
2078 
2079 	SLIST_INSERT_HEAD(list, kn, kn_link);
2080 
2081 	return 0;
2082 }
2083 
2084 /*
2085  * knote must already have been detached using the f_detach method.
2086  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
2087  * to prevent other removal.
2088  */
2089 static void
2090 knote_drop(struct knote *kn, struct thread *td)
2091 {
2092 	struct kqueue *kq;
2093 	struct klist *list;
2094 
2095 	kq = kn->kn_kq;
2096 
2097 	KQ_NOTOWNED(kq);
2098 	KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
2099 	    ("knote_drop called without KN_INFLUX set in kn_status"));
2100 
2101 	KQ_LOCK(kq);
2102 	if (kn->kn_fop->f_isfd)
2103 		list = &kq->kq_knlist[kn->kn_id];
2104 	else
2105 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2106 
2107 	if (!SLIST_EMPTY(list))
2108 		SLIST_REMOVE(list, kn, knote, kn_link);
2109 	if (kn->kn_status & KN_QUEUED)
2110 		knote_dequeue(kn);
2111 	KQ_UNLOCK_FLUX(kq);
2112 
2113 	if (kn->kn_fop->f_isfd) {
2114 		fdrop(kn->kn_fp, td);
2115 		kn->kn_fp = NULL;
2116 	}
2117 	kqueue_fo_release(kn->kn_kevent.filter);
2118 	kn->kn_fop = NULL;
2119 	knote_free(kn);
2120 }
2121 
2122 static void
2123 knote_enqueue(struct knote *kn)
2124 {
2125 	struct kqueue *kq = kn->kn_kq;
2126 
2127 	KQ_OWNED(kn->kn_kq);
2128 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2129 
2130 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2131 	kn->kn_status |= KN_QUEUED;
2132 	kq->kq_count++;
2133 	kqueue_wakeup(kq);
2134 }
2135 
2136 static void
2137 knote_dequeue(struct knote *kn)
2138 {
2139 	struct kqueue *kq = kn->kn_kq;
2140 
2141 	KQ_OWNED(kn->kn_kq);
2142 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2143 
2144 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2145 	kn->kn_status &= ~KN_QUEUED;
2146 	kq->kq_count--;
2147 }
2148 
2149 static void
2150 knote_init(void)
2151 {
2152 
2153 	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
2154 	    NULL, NULL, UMA_ALIGN_PTR, 0);
2155 }
2156 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
2157 
2158 static struct knote *
2159 knote_alloc(int waitok)
2160 {
2161 	return ((struct knote *)uma_zalloc(knote_zone,
2162 	    (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
2163 }
2164 
2165 static void
2166 knote_free(struct knote *kn)
2167 {
2168 	if (kn != NULL)
2169 		uma_zfree(knote_zone, kn);
2170 }
2171 
2172 /*
2173  * Register the kev w/ the kq specified by fd.
2174  */
2175 int
2176 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
2177 {
2178 	struct kqueue *kq;
2179 	struct file *fp;
2180 	int error;
2181 
2182 	if ((error = fget(td, fd, &fp)) != 0)
2183 		return (error);
2184 	if ((error = kqueue_acquire(fp, &kq)) != 0)
2185 		goto noacquire;
2186 
2187 	error = kqueue_register(kq, kev, td, waitok);
2188 
2189 	kqueue_release(kq, 0);
2190 
2191 noacquire:
2192 	fdrop(fp, td);
2193 
2194 	return error;
2195 }
2196