xref: /freebsd/sys/kern/kern_event.c (revision 38c857d956d61b811fb2047bc980b90d64a072bf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
6  * Copyright (c) 2009 Apple, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_ktrace.h"
35 #include "opt_kqueue.h"
36 
37 #ifdef COMPAT_FREEBSD11
38 #define	_WANT_FREEBSD11_KEVENT
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/capsicum.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/rwlock.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/unistd.h>
52 #include <sys/file.h>
53 #include <sys/filedesc.h>
54 #include <sys/filio.h>
55 #include <sys/fcntl.h>
56 #include <sys/kthread.h>
57 #include <sys/selinfo.h>
58 #include <sys/queue.h>
59 #include <sys/event.h>
60 #include <sys/eventvar.h>
61 #include <sys/poll.h>
62 #include <sys/protosw.h>
63 #include <sys/resourcevar.h>
64 #include <sys/sigio.h>
65 #include <sys/signalvar.h>
66 #include <sys/socket.h>
67 #include <sys/socketvar.h>
68 #include <sys/stat.h>
69 #include <sys/sysctl.h>
70 #include <sys/sysproto.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/taskqueue.h>
73 #include <sys/uio.h>
74 #include <sys/user.h>
75 #ifdef KTRACE
76 #include <sys/ktrace.h>
77 #endif
78 #include <machine/atomic.h>
79 
80 #include <vm/uma.h>
81 
82 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
83 
84 /*
85  * This lock is used if multiple kq locks are required.  This possibly
86  * should be made into a per proc lock.
87  */
88 static struct mtx	kq_global;
89 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
90 #define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
91 	if (!haslck)				\
92 		mtx_lock(lck);			\
93 	haslck = 1;				\
94 } while (0)
95 #define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
96 	if (haslck)				\
97 		mtx_unlock(lck);			\
98 	haslck = 0;				\
99 } while (0)
100 
101 TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
102 
103 static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
104 static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
105 static int	kqueue_register(struct kqueue *kq, struct kevent *kev,
106 		    struct thread *td, int mflag);
107 static int	kqueue_acquire(struct file *fp, struct kqueue **kqp);
108 static void	kqueue_release(struct kqueue *kq, int locked);
109 static void	kqueue_destroy(struct kqueue *kq);
110 static void	kqueue_drain(struct kqueue *kq, struct thread *td);
111 static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
112 		    uintptr_t ident, int mflag);
113 static void	kqueue_task(void *arg, int pending);
114 static int	kqueue_scan(struct kqueue *kq, int maxevents,
115 		    struct kevent_copyops *k_ops,
116 		    const struct timespec *timeout,
117 		    struct kevent *keva, struct thread *td);
118 static void 	kqueue_wakeup(struct kqueue *kq);
119 static struct filterops *kqueue_fo_find(int filt);
120 static void	kqueue_fo_release(int filt);
121 struct g_kevent_args;
122 static int	kern_kevent_generic(struct thread *td,
123 		    struct g_kevent_args *uap,
124 		    struct kevent_copyops *k_ops, const char *struct_name);
125 
126 static fo_ioctl_t	kqueue_ioctl;
127 static fo_poll_t	kqueue_poll;
128 static fo_kqfilter_t	kqueue_kqfilter;
129 static fo_stat_t	kqueue_stat;
130 static fo_close_t	kqueue_close;
131 static fo_fill_kinfo_t	kqueue_fill_kinfo;
132 
133 static struct fileops kqueueops = {
134 	.fo_read = invfo_rdwr,
135 	.fo_write = invfo_rdwr,
136 	.fo_truncate = invfo_truncate,
137 	.fo_ioctl = kqueue_ioctl,
138 	.fo_poll = kqueue_poll,
139 	.fo_kqfilter = kqueue_kqfilter,
140 	.fo_stat = kqueue_stat,
141 	.fo_close = kqueue_close,
142 	.fo_chmod = invfo_chmod,
143 	.fo_chown = invfo_chown,
144 	.fo_sendfile = invfo_sendfile,
145 	.fo_fill_kinfo = kqueue_fill_kinfo,
146 };
147 
148 static int 	knote_attach(struct knote *kn, struct kqueue *kq);
149 static void 	knote_drop(struct knote *kn, struct thread *td);
150 static void 	knote_drop_detached(struct knote *kn, struct thread *td);
151 static void 	knote_enqueue(struct knote *kn);
152 static void 	knote_dequeue(struct knote *kn);
153 static void 	knote_init(void);
154 static struct 	knote *knote_alloc(int mflag);
155 static void 	knote_free(struct knote *kn);
156 
157 static void	filt_kqdetach(struct knote *kn);
158 static int	filt_kqueue(struct knote *kn, long hint);
159 static int	filt_procattach(struct knote *kn);
160 static void	filt_procdetach(struct knote *kn);
161 static int	filt_proc(struct knote *kn, long hint);
162 static int	filt_fileattach(struct knote *kn);
163 static void	filt_timerexpire(void *knx);
164 static void	filt_timerexpire_l(struct knote *kn, bool proc_locked);
165 static int	filt_timerattach(struct knote *kn);
166 static void	filt_timerdetach(struct knote *kn);
167 static void	filt_timerstart(struct knote *kn, sbintime_t to);
168 static void	filt_timertouch(struct knote *kn, struct kevent *kev,
169 		    u_long type);
170 static int	filt_timervalidate(struct knote *kn, sbintime_t *to);
171 static int	filt_timer(struct knote *kn, long hint);
172 static int	filt_userattach(struct knote *kn);
173 static void	filt_userdetach(struct knote *kn);
174 static int	filt_user(struct knote *kn, long hint);
175 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
176 		    u_long type);
177 
178 static struct filterops file_filtops = {
179 	.f_isfd = 1,
180 	.f_attach = filt_fileattach,
181 };
182 static struct filterops kqread_filtops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_kqdetach,
185 	.f_event = filt_kqueue,
186 };
187 /* XXX - move to kern_proc.c?  */
188 static struct filterops proc_filtops = {
189 	.f_isfd = 0,
190 	.f_attach = filt_procattach,
191 	.f_detach = filt_procdetach,
192 	.f_event = filt_proc,
193 };
194 static struct filterops timer_filtops = {
195 	.f_isfd = 0,
196 	.f_attach = filt_timerattach,
197 	.f_detach = filt_timerdetach,
198 	.f_event = filt_timer,
199 	.f_touch = filt_timertouch,
200 };
201 static struct filterops user_filtops = {
202 	.f_attach = filt_userattach,
203 	.f_detach = filt_userdetach,
204 	.f_event = filt_user,
205 	.f_touch = filt_usertouch,
206 };
207 
208 static uma_zone_t	knote_zone;
209 static unsigned int __exclusive_cache_line	kq_ncallouts;
210 static unsigned int 	kq_calloutmax = 4 * 1024;
211 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
212     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
213 
214 /* XXX - ensure not influx ? */
215 #define KNOTE_ACTIVATE(kn, islock) do { 				\
216 	if ((islock))							\
217 		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
218 	else								\
219 		KQ_LOCK((kn)->kn_kq);					\
220 	(kn)->kn_status |= KN_ACTIVE;					\
221 	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
222 		knote_enqueue((kn));					\
223 	if (!(islock))							\
224 		KQ_UNLOCK((kn)->kn_kq);					\
225 } while (0)
226 #define KQ_LOCK(kq) do {						\
227 	mtx_lock(&(kq)->kq_lock);					\
228 } while (0)
229 #define KQ_FLUX_WAKEUP(kq) do {						\
230 	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
231 		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
232 		wakeup((kq));						\
233 	}								\
234 } while (0)
235 #define KQ_UNLOCK_FLUX(kq) do {						\
236 	KQ_FLUX_WAKEUP(kq);						\
237 	mtx_unlock(&(kq)->kq_lock);					\
238 } while (0)
239 #define KQ_UNLOCK(kq) do {						\
240 	mtx_unlock(&(kq)->kq_lock);					\
241 } while (0)
242 #define KQ_OWNED(kq) do {						\
243 	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
244 } while (0)
245 #define KQ_NOTOWNED(kq) do {						\
246 	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
247 } while (0)
248 
249 static struct knlist *
250 kn_list_lock(struct knote *kn)
251 {
252 	struct knlist *knl;
253 
254 	knl = kn->kn_knlist;
255 	if (knl != NULL)
256 		knl->kl_lock(knl->kl_lockarg);
257 	return (knl);
258 }
259 
260 static void
261 kn_list_unlock(struct knlist *knl)
262 {
263 	bool do_free;
264 
265 	if (knl == NULL)
266 		return;
267 	do_free = knl->kl_autodestroy && knlist_empty(knl);
268 	knl->kl_unlock(knl->kl_lockarg);
269 	if (do_free) {
270 		knlist_destroy(knl);
271 		free(knl, M_KQUEUE);
272 	}
273 }
274 
275 static bool
276 kn_in_flux(struct knote *kn)
277 {
278 
279 	return (kn->kn_influx > 0);
280 }
281 
282 static void
283 kn_enter_flux(struct knote *kn)
284 {
285 
286 	KQ_OWNED(kn->kn_kq);
287 	MPASS(kn->kn_influx < INT_MAX);
288 	kn->kn_influx++;
289 }
290 
291 static bool
292 kn_leave_flux(struct knote *kn)
293 {
294 
295 	KQ_OWNED(kn->kn_kq);
296 	MPASS(kn->kn_influx > 0);
297 	kn->kn_influx--;
298 	return (kn->kn_influx == 0);
299 }
300 
301 #define	KNL_ASSERT_LOCK(knl, islocked) do {				\
302 	if (islocked)							\
303 		KNL_ASSERT_LOCKED(knl);				\
304 	else								\
305 		KNL_ASSERT_UNLOCKED(knl);				\
306 } while (0)
307 #ifdef INVARIANTS
308 #define	KNL_ASSERT_LOCKED(knl) do {					\
309 	knl->kl_assert_lock((knl)->kl_lockarg, LA_LOCKED);		\
310 } while (0)
311 #define	KNL_ASSERT_UNLOCKED(knl) do {					\
312 	knl->kl_assert_lock((knl)->kl_lockarg, LA_UNLOCKED);		\
313 } while (0)
314 #else /* !INVARIANTS */
315 #define	KNL_ASSERT_LOCKED(knl) do {} while (0)
316 #define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
317 #endif /* INVARIANTS */
318 
319 #ifndef	KN_HASHSIZE
320 #define	KN_HASHSIZE		64		/* XXX should be tunable */
321 #endif
322 
323 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
324 
325 static int
326 filt_nullattach(struct knote *kn)
327 {
328 
329 	return (ENXIO);
330 };
331 
332 struct filterops null_filtops = {
333 	.f_isfd = 0,
334 	.f_attach = filt_nullattach,
335 };
336 
337 /* XXX - make SYSINIT to add these, and move into respective modules. */
338 extern struct filterops sig_filtops;
339 extern struct filterops fs_filtops;
340 
341 /*
342  * Table for for all system-defined filters.
343  */
344 static struct mtx	filterops_lock;
345 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
346 	MTX_DEF);
347 static struct {
348 	struct filterops *for_fop;
349 	int for_nolock;
350 	int for_refcnt;
351 } sysfilt_ops[EVFILT_SYSCOUNT] = {
352 	{ &file_filtops, 1 },			/* EVFILT_READ */
353 	{ &file_filtops, 1 },			/* EVFILT_WRITE */
354 	{ &null_filtops },			/* EVFILT_AIO */
355 	{ &file_filtops, 1 },			/* EVFILT_VNODE */
356 	{ &proc_filtops, 1 },			/* EVFILT_PROC */
357 	{ &sig_filtops, 1 },			/* EVFILT_SIGNAL */
358 	{ &timer_filtops, 1 },			/* EVFILT_TIMER */
359 	{ &file_filtops, 1 },			/* EVFILT_PROCDESC */
360 	{ &fs_filtops, 1 },			/* EVFILT_FS */
361 	{ &null_filtops },			/* EVFILT_LIO */
362 	{ &user_filtops, 1 },			/* EVFILT_USER */
363 	{ &null_filtops },			/* EVFILT_SENDFILE */
364 	{ &file_filtops, 1 },                   /* EVFILT_EMPTY */
365 };
366 
367 /*
368  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
369  * method.
370  */
371 static int
372 filt_fileattach(struct knote *kn)
373 {
374 
375 	return (fo_kqfilter(kn->kn_fp, kn));
376 }
377 
378 /*ARGSUSED*/
379 static int
380 kqueue_kqfilter(struct file *fp, struct knote *kn)
381 {
382 	struct kqueue *kq = kn->kn_fp->f_data;
383 
384 	if (kn->kn_filter != EVFILT_READ)
385 		return (EINVAL);
386 
387 	kn->kn_status |= KN_KQUEUE;
388 	kn->kn_fop = &kqread_filtops;
389 	knlist_add(&kq->kq_sel.si_note, kn, 0);
390 
391 	return (0);
392 }
393 
394 static void
395 filt_kqdetach(struct knote *kn)
396 {
397 	struct kqueue *kq = kn->kn_fp->f_data;
398 
399 	knlist_remove(&kq->kq_sel.si_note, kn, 0);
400 }
401 
402 /*ARGSUSED*/
403 static int
404 filt_kqueue(struct knote *kn, long hint)
405 {
406 	struct kqueue *kq = kn->kn_fp->f_data;
407 
408 	kn->kn_data = kq->kq_count;
409 	return (kn->kn_data > 0);
410 }
411 
412 /* XXX - move to kern_proc.c?  */
413 static int
414 filt_procattach(struct knote *kn)
415 {
416 	struct proc *p;
417 	int error;
418 	bool exiting, immediate;
419 
420 	exiting = immediate = false;
421 	if (kn->kn_sfflags & NOTE_EXIT)
422 		p = pfind_any(kn->kn_id);
423 	else
424 		p = pfind(kn->kn_id);
425 	if (p == NULL)
426 		return (ESRCH);
427 	if (p->p_flag & P_WEXIT)
428 		exiting = true;
429 
430 	if ((error = p_cansee(curthread, p))) {
431 		PROC_UNLOCK(p);
432 		return (error);
433 	}
434 
435 	kn->kn_ptr.p_proc = p;
436 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
437 
438 	/*
439 	 * Internal flag indicating registration done by kernel for the
440 	 * purposes of getting a NOTE_CHILD notification.
441 	 */
442 	if (kn->kn_flags & EV_FLAG2) {
443 		kn->kn_flags &= ~EV_FLAG2;
444 		kn->kn_data = kn->kn_sdata;		/* ppid */
445 		kn->kn_fflags = NOTE_CHILD;
446 		kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
447 		immediate = true; /* Force immediate activation of child note. */
448 	}
449 	/*
450 	 * Internal flag indicating registration done by kernel (for other than
451 	 * NOTE_CHILD).
452 	 */
453 	if (kn->kn_flags & EV_FLAG1) {
454 		kn->kn_flags &= ~EV_FLAG1;
455 	}
456 
457 	knlist_add(p->p_klist, kn, 1);
458 
459 	/*
460 	 * Immediately activate any child notes or, in the case of a zombie
461 	 * target process, exit notes.  The latter is necessary to handle the
462 	 * case where the target process, e.g. a child, dies before the kevent
463 	 * is registered.
464 	 */
465 	if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
466 		KNOTE_ACTIVATE(kn, 0);
467 
468 	PROC_UNLOCK(p);
469 
470 	return (0);
471 }
472 
473 /*
474  * The knote may be attached to a different process, which may exit,
475  * leaving nothing for the knote to be attached to.  So when the process
476  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
477  * it will be deleted when read out.  However, as part of the knote deletion,
478  * this routine is called, so a check is needed to avoid actually performing
479  * a detach, because the original process does not exist any more.
480  */
481 /* XXX - move to kern_proc.c?  */
482 static void
483 filt_procdetach(struct knote *kn)
484 {
485 
486 	knlist_remove(kn->kn_knlist, kn, 0);
487 	kn->kn_ptr.p_proc = NULL;
488 }
489 
490 /* XXX - move to kern_proc.c?  */
491 static int
492 filt_proc(struct knote *kn, long hint)
493 {
494 	struct proc *p;
495 	u_int event;
496 
497 	p = kn->kn_ptr.p_proc;
498 	if (p == NULL) /* already activated, from attach filter */
499 		return (0);
500 
501 	/* Mask off extra data. */
502 	event = (u_int)hint & NOTE_PCTRLMASK;
503 
504 	/* If the user is interested in this event, record it. */
505 	if (kn->kn_sfflags & event)
506 		kn->kn_fflags |= event;
507 
508 	/* Process is gone, so flag the event as finished. */
509 	if (event == NOTE_EXIT) {
510 		kn->kn_flags |= EV_EOF | EV_ONESHOT;
511 		kn->kn_ptr.p_proc = NULL;
512 		if (kn->kn_fflags & NOTE_EXIT)
513 			kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
514 		if (kn->kn_fflags == 0)
515 			kn->kn_flags |= EV_DROP;
516 		return (1);
517 	}
518 
519 	return (kn->kn_fflags != 0);
520 }
521 
522 /*
523  * Called when the process forked. It mostly does the same as the
524  * knote(), activating all knotes registered to be activated when the
525  * process forked. Additionally, for each knote attached to the
526  * parent, check whether user wants to track the new process. If so
527  * attach a new knote to it, and immediately report an event with the
528  * child's pid.
529  */
530 void
531 knote_fork(struct knlist *list, int pid)
532 {
533 	struct kqueue *kq;
534 	struct knote *kn;
535 	struct kevent kev;
536 	int error;
537 
538 	MPASS(list != NULL);
539 	KNL_ASSERT_LOCKED(list);
540 	if (SLIST_EMPTY(&list->kl_list))
541 		return;
542 
543 	memset(&kev, 0, sizeof(kev));
544 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
545 		kq = kn->kn_kq;
546 		KQ_LOCK(kq);
547 		if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
548 			KQ_UNLOCK(kq);
549 			continue;
550 		}
551 
552 		/*
553 		 * The same as knote(), activate the event.
554 		 */
555 		if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
556 			if (kn->kn_fop->f_event(kn, NOTE_FORK))
557 				KNOTE_ACTIVATE(kn, 1);
558 			KQ_UNLOCK(kq);
559 			continue;
560 		}
561 
562 		/*
563 		 * The NOTE_TRACK case. In addition to the activation
564 		 * of the event, we need to register new events to
565 		 * track the child. Drop the locks in preparation for
566 		 * the call to kqueue_register().
567 		 */
568 		kn_enter_flux(kn);
569 		KQ_UNLOCK(kq);
570 		list->kl_unlock(list->kl_lockarg);
571 
572 		/*
573 		 * Activate existing knote and register tracking knotes with
574 		 * new process.
575 		 *
576 		 * First register a knote to get just the child notice. This
577 		 * must be a separate note from a potential NOTE_EXIT
578 		 * notification since both NOTE_CHILD and NOTE_EXIT are defined
579 		 * to use the data field (in conflicting ways).
580 		 */
581 		kev.ident = pid;
582 		kev.filter = kn->kn_filter;
583 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
584 		    EV_FLAG2;
585 		kev.fflags = kn->kn_sfflags;
586 		kev.data = kn->kn_id;		/* parent */
587 		kev.udata = kn->kn_kevent.udata;/* preserve udata */
588 		error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
589 		if (error)
590 			kn->kn_fflags |= NOTE_TRACKERR;
591 
592 		/*
593 		 * Then register another knote to track other potential events
594 		 * from the new process.
595 		 */
596 		kev.ident = pid;
597 		kev.filter = kn->kn_filter;
598 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
599 		kev.fflags = kn->kn_sfflags;
600 		kev.data = kn->kn_id;		/* parent */
601 		kev.udata = kn->kn_kevent.udata;/* preserve udata */
602 		error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
603 		if (error)
604 			kn->kn_fflags |= NOTE_TRACKERR;
605 		if (kn->kn_fop->f_event(kn, NOTE_FORK))
606 			KNOTE_ACTIVATE(kn, 0);
607 		list->kl_lock(list->kl_lockarg);
608 		KQ_LOCK(kq);
609 		kn_leave_flux(kn);
610 		KQ_UNLOCK_FLUX(kq);
611 	}
612 }
613 
614 /*
615  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
616  * interval timer support code.
617  */
618 
619 #define NOTE_TIMER_PRECMASK						\
620     (NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
621 
622 static sbintime_t
623 timer2sbintime(int64_t data, int flags)
624 {
625 	int64_t secs;
626 
627         /*
628          * Macros for converting to the fractional second portion of an
629          * sbintime_t using 64bit multiplication to improve precision.
630          */
631 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
632 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
633 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
634 	switch (flags & NOTE_TIMER_PRECMASK) {
635 	case NOTE_SECONDS:
636 #ifdef __LP64__
637 		if (data > (SBT_MAX / SBT_1S))
638 			return (SBT_MAX);
639 #endif
640 		return ((sbintime_t)data << 32);
641 	case NOTE_MSECONDS: /* FALLTHROUGH */
642 	case 0:
643 		if (data >= 1000) {
644 			secs = data / 1000;
645 #ifdef __LP64__
646 			if (secs > (SBT_MAX / SBT_1S))
647 				return (SBT_MAX);
648 #endif
649 			return (secs << 32 | MS_TO_SBT(data % 1000));
650 		}
651 		return (MS_TO_SBT(data));
652 	case NOTE_USECONDS:
653 		if (data >= 1000000) {
654 			secs = data / 1000000;
655 #ifdef __LP64__
656 			if (secs > (SBT_MAX / SBT_1S))
657 				return (SBT_MAX);
658 #endif
659 			return (secs << 32 | US_TO_SBT(data % 1000000));
660 		}
661 		return (US_TO_SBT(data));
662 	case NOTE_NSECONDS:
663 		if (data >= 1000000000) {
664 			secs = data / 1000000000;
665 #ifdef __LP64__
666 			if (secs > (SBT_MAX / SBT_1S))
667 				return (SBT_MAX);
668 #endif
669 			return (secs << 32 | NS_TO_SBT(data % 1000000000));
670 		}
671 		return (NS_TO_SBT(data));
672 	default:
673 		break;
674 	}
675 	return (-1);
676 }
677 
678 struct kq_timer_cb_data {
679 	struct callout c;
680 	struct proc *p;
681 	struct knote *kn;
682 	int cpuid;
683 	int flags;
684 	TAILQ_ENTRY(kq_timer_cb_data) link;
685 	sbintime_t next;	/* next timer event fires at */
686 	sbintime_t to;		/* precalculated timer period, 0 for abs */
687 };
688 
689 #define	KQ_TIMER_CB_ENQUEUED	0x01
690 
691 static void
692 kqtimer_sched_callout(struct kq_timer_cb_data *kc)
693 {
694 	callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kc->kn,
695 	    kc->cpuid, C_ABSOLUTE);
696 }
697 
698 void
699 kqtimer_proc_continue(struct proc *p)
700 {
701 	struct kq_timer_cb_data *kc, *kc1;
702 	struct bintime bt;
703 	sbintime_t now;
704 
705 	PROC_LOCK_ASSERT(p, MA_OWNED);
706 
707 	getboottimebin(&bt);
708 	now = bttosbt(bt);
709 
710 	TAILQ_FOREACH_SAFE(kc, &p->p_kqtim_stop, link, kc1) {
711 		TAILQ_REMOVE(&p->p_kqtim_stop, kc, link);
712 		kc->flags &= ~KQ_TIMER_CB_ENQUEUED;
713 		if (kc->next <= now)
714 			filt_timerexpire_l(kc->kn, true);
715 		else
716 			kqtimer_sched_callout(kc);
717 	}
718 }
719 
720 static void
721 filt_timerexpire_l(struct knote *kn, bool proc_locked)
722 {
723 	struct kq_timer_cb_data *kc;
724 	struct proc *p;
725 	uint64_t delta;
726 	sbintime_t now;
727 
728 	kc = kn->kn_ptr.p_v;
729 
730 	if ((kn->kn_flags & EV_ONESHOT) != 0 || kc->to == 0) {
731 		kn->kn_data++;
732 		KNOTE_ACTIVATE(kn, 0);
733 		return;
734 	}
735 
736 	now = sbinuptime();
737 	if (now >= kc->next) {
738 		delta = (now - kc->next) / kc->to;
739 		if (delta == 0)
740 			delta = 1;
741 		kn->kn_data += delta;
742 		kc->next += (delta + 1) * kc->to;
743 		if (now >= kc->next)	/* overflow */
744 			kc->next = now + kc->to;
745 		KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
746 	}
747 
748 	/*
749 	 * Initial check for stopped kc->p is racy.  It is fine to
750 	 * miss the set of the stop flags, at worst we would schedule
751 	 * one more callout.  On the other hand, it is not fine to not
752 	 * schedule when we we missed clearing of the flags, we
753 	 * recheck them under the lock and observe consistent state.
754 	 */
755 	p = kc->p;
756 	if (P_SHOULDSTOP(p) || P_KILLED(p)) {
757 		if (!proc_locked)
758 			PROC_LOCK(p);
759 		if (P_SHOULDSTOP(p) || P_KILLED(p)) {
760 			if ((kc->flags & KQ_TIMER_CB_ENQUEUED) == 0) {
761 				kc->flags |= KQ_TIMER_CB_ENQUEUED;
762 				TAILQ_INSERT_TAIL(&p->p_kqtim_stop, kc, link);
763 			}
764 			if (!proc_locked)
765 				PROC_UNLOCK(p);
766 			return;
767 		}
768 		if (!proc_locked)
769 			PROC_UNLOCK(p);
770 	}
771 	kqtimer_sched_callout(kc);
772 }
773 
774 static void
775 filt_timerexpire(void *knx)
776 {
777 	filt_timerexpire_l(knx, false);
778 }
779 
780 /*
781  * data contains amount of time to sleep
782  */
783 static int
784 filt_timervalidate(struct knote *kn, sbintime_t *to)
785 {
786 	struct bintime bt;
787 	sbintime_t sbt;
788 
789 	if (kn->kn_sdata < 0)
790 		return (EINVAL);
791 	if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
792 		kn->kn_sdata = 1;
793 	/*
794 	 * The only fflags values supported are the timer unit
795 	 * (precision) and the absolute time indicator.
796 	 */
797 	if ((kn->kn_sfflags & ~(NOTE_TIMER_PRECMASK | NOTE_ABSTIME)) != 0)
798 		return (EINVAL);
799 
800 	*to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
801 	if (*to < 0)
802 		return (EINVAL);
803 	if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
804 		getboottimebin(&bt);
805 		sbt = bttosbt(bt);
806 		*to = MAX(0, *to - sbt);
807 	}
808 	return (0);
809 }
810 
811 static int
812 filt_timerattach(struct knote *kn)
813 {
814 	struct kq_timer_cb_data *kc;
815 	sbintime_t to;
816 	int error;
817 
818 	to = -1;
819 	error = filt_timervalidate(kn, &to);
820 	if (error != 0)
821 		return (error);
822 	KASSERT((kn->kn_flags & EV_ONESHOT) != 0 || to > 0,
823 	    ("%s: periodic timer has a calculated zero timeout", __func__));
824 	KASSERT(to >= 0,
825 	    ("%s: timer has a calculated negative timeout", __func__));
826 
827 	if (atomic_fetchadd_int(&kq_ncallouts, 1) + 1 > kq_calloutmax) {
828 		atomic_subtract_int(&kq_ncallouts, 1);
829 		return (ENOMEM);
830 	}
831 
832 	if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
833 		kn->kn_flags |= EV_CLEAR;	/* automatically set */
834 	kn->kn_status &= ~KN_DETACHED;		/* knlist_add clears it */
835 	kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
836 	kc->kn = kn;
837 	kc->p = curproc;
838 	kc->cpuid = PCPU_GET(cpuid);
839 	kc->flags = 0;
840 	callout_init(&kc->c, 1);
841 	filt_timerstart(kn, to);
842 
843 	return (0);
844 }
845 
846 static void
847 filt_timerstart(struct knote *kn, sbintime_t to)
848 {
849 	struct kq_timer_cb_data *kc;
850 
851 	kc = kn->kn_ptr.p_v;
852 	if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
853 		kc->next = to;
854 		kc->to = 0;
855 	} else {
856 		kc->next = to + sbinuptime();
857 		kc->to = to;
858 	}
859 	kqtimer_sched_callout(kc);
860 }
861 
862 static void
863 filt_timerdetach(struct knote *kn)
864 {
865 	struct kq_timer_cb_data *kc;
866 	unsigned int old __unused;
867 	bool pending;
868 
869 	kc = kn->kn_ptr.p_v;
870 	do {
871 		callout_drain(&kc->c);
872 
873 		/*
874 		 * kqtimer_proc_continue() might have rescheduled this callout.
875 		 * Double-check, using the process mutex as an interlock.
876 		 */
877 		PROC_LOCK(kc->p);
878 		if ((kc->flags & KQ_TIMER_CB_ENQUEUED) != 0) {
879 			kc->flags &= ~KQ_TIMER_CB_ENQUEUED;
880 			TAILQ_REMOVE(&kc->p->p_kqtim_stop, kc, link);
881 		}
882 		pending = callout_pending(&kc->c);
883 		PROC_UNLOCK(kc->p);
884 	} while (pending);
885 	free(kc, M_KQUEUE);
886 	old = atomic_fetchadd_int(&kq_ncallouts, -1);
887 	KASSERT(old > 0, ("Number of callouts cannot become negative"));
888 	kn->kn_status |= KN_DETACHED;	/* knlist_remove sets it */
889 }
890 
891 static void
892 filt_timertouch(struct knote *kn, struct kevent *kev, u_long type)
893 {
894 	struct kq_timer_cb_data *kc;
895 	struct kqueue *kq;
896 	sbintime_t to;
897 	int error;
898 
899 	switch (type) {
900 	case EVENT_REGISTER:
901 		/* Handle re-added timers that update data/fflags */
902 		if (kev->flags & EV_ADD) {
903 			kc = kn->kn_ptr.p_v;
904 
905 			/* Drain any existing callout. */
906 			callout_drain(&kc->c);
907 
908 			/* Throw away any existing undelivered record
909 			 * of the timer expiration. This is done under
910 			 * the presumption that if a process is
911 			 * re-adding this timer with new parameters,
912 			 * it is no longer interested in what may have
913 			 * happened under the old parameters. If it is
914 			 * interested, it can wait for the expiration,
915 			 * delete the old timer definition, and then
916 			 * add the new one.
917 			 *
918 			 * This has to be done while the kq is locked:
919 			 *   - if enqueued, dequeue
920 			 *   - make it no longer active
921 			 *   - clear the count of expiration events
922 			 */
923 			kq = kn->kn_kq;
924 			KQ_LOCK(kq);
925 			if (kn->kn_status & KN_QUEUED)
926 				knote_dequeue(kn);
927 
928 			kn->kn_status &= ~KN_ACTIVE;
929 			kn->kn_data = 0;
930 			KQ_UNLOCK(kq);
931 
932 			/* Reschedule timer based on new data/fflags */
933 			kn->kn_sfflags = kev->fflags;
934 			kn->kn_sdata = kev->data;
935 			error = filt_timervalidate(kn, &to);
936 			if (error != 0) {
937 			  	kn->kn_flags |= EV_ERROR;
938 				kn->kn_data = error;
939 			} else
940 			  	filt_timerstart(kn, to);
941 		}
942 		break;
943 
944         case EVENT_PROCESS:
945 		*kev = kn->kn_kevent;
946 		if (kn->kn_flags & EV_CLEAR) {
947 			kn->kn_data = 0;
948 			kn->kn_fflags = 0;
949 		}
950 		break;
951 
952 	default:
953 		panic("filt_timertouch() - invalid type (%ld)", type);
954 		break;
955 	}
956 }
957 
958 static int
959 filt_timer(struct knote *kn, long hint)
960 {
961 
962 	return (kn->kn_data != 0);
963 }
964 
965 static int
966 filt_userattach(struct knote *kn)
967 {
968 
969 	/*
970 	 * EVFILT_USER knotes are not attached to anything in the kernel.
971 	 */
972 	kn->kn_hook = NULL;
973 	if (kn->kn_fflags & NOTE_TRIGGER)
974 		kn->kn_hookid = 1;
975 	else
976 		kn->kn_hookid = 0;
977 	return (0);
978 }
979 
980 static void
981 filt_userdetach(__unused struct knote *kn)
982 {
983 
984 	/*
985 	 * EVFILT_USER knotes are not attached to anything in the kernel.
986 	 */
987 }
988 
989 static int
990 filt_user(struct knote *kn, __unused long hint)
991 {
992 
993 	return (kn->kn_hookid);
994 }
995 
996 static void
997 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
998 {
999 	u_int ffctrl;
1000 
1001 	switch (type) {
1002 	case EVENT_REGISTER:
1003 		if (kev->fflags & NOTE_TRIGGER)
1004 			kn->kn_hookid = 1;
1005 
1006 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1007 		kev->fflags &= NOTE_FFLAGSMASK;
1008 		switch (ffctrl) {
1009 		case NOTE_FFNOP:
1010 			break;
1011 
1012 		case NOTE_FFAND:
1013 			kn->kn_sfflags &= kev->fflags;
1014 			break;
1015 
1016 		case NOTE_FFOR:
1017 			kn->kn_sfflags |= kev->fflags;
1018 			break;
1019 
1020 		case NOTE_FFCOPY:
1021 			kn->kn_sfflags = kev->fflags;
1022 			break;
1023 
1024 		default:
1025 			/* XXX Return error? */
1026 			break;
1027 		}
1028 		kn->kn_sdata = kev->data;
1029 		if (kev->flags & EV_CLEAR) {
1030 			kn->kn_hookid = 0;
1031 			kn->kn_data = 0;
1032 			kn->kn_fflags = 0;
1033 		}
1034 		break;
1035 
1036         case EVENT_PROCESS:
1037 		*kev = kn->kn_kevent;
1038 		kev->fflags = kn->kn_sfflags;
1039 		kev->data = kn->kn_sdata;
1040 		if (kn->kn_flags & EV_CLEAR) {
1041 			kn->kn_hookid = 0;
1042 			kn->kn_data = 0;
1043 			kn->kn_fflags = 0;
1044 		}
1045 		break;
1046 
1047 	default:
1048 		panic("filt_usertouch() - invalid type (%ld)", type);
1049 		break;
1050 	}
1051 }
1052 
1053 int
1054 sys_kqueue(struct thread *td, struct kqueue_args *uap)
1055 {
1056 
1057 	return (kern_kqueue(td, 0, NULL));
1058 }
1059 
1060 static void
1061 kqueue_init(struct kqueue *kq)
1062 {
1063 
1064 	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
1065 	TAILQ_INIT(&kq->kq_head);
1066 	knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
1067 	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
1068 }
1069 
1070 int
1071 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
1072 {
1073 	struct filedesc *fdp;
1074 	struct kqueue *kq;
1075 	struct file *fp;
1076 	struct ucred *cred;
1077 	int fd, error;
1078 
1079 	fdp = td->td_proc->p_fd;
1080 	cred = td->td_ucred;
1081 	if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
1082 		return (ENOMEM);
1083 
1084 	error = falloc_caps(td, &fp, &fd, flags, fcaps);
1085 	if (error != 0) {
1086 		chgkqcnt(cred->cr_ruidinfo, -1, 0);
1087 		return (error);
1088 	}
1089 
1090 	/* An extra reference on `fp' has been held for us by falloc(). */
1091 	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
1092 	kqueue_init(kq);
1093 	kq->kq_fdp = fdp;
1094 	kq->kq_cred = crhold(cred);
1095 
1096 	FILEDESC_XLOCK(fdp);
1097 	TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
1098 	FILEDESC_XUNLOCK(fdp);
1099 
1100 	finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
1101 	fdrop(fp, td);
1102 
1103 	td->td_retval[0] = fd;
1104 	return (0);
1105 }
1106 
1107 struct g_kevent_args {
1108 	int	fd;
1109 	void	*changelist;
1110 	int	nchanges;
1111 	void	*eventlist;
1112 	int	nevents;
1113 	const struct timespec *timeout;
1114 };
1115 
1116 int
1117 sys_kevent(struct thread *td, struct kevent_args *uap)
1118 {
1119 	struct kevent_copyops k_ops = {
1120 		.arg = uap,
1121 		.k_copyout = kevent_copyout,
1122 		.k_copyin = kevent_copyin,
1123 		.kevent_size = sizeof(struct kevent),
1124 	};
1125 	struct g_kevent_args gk_args = {
1126 		.fd = uap->fd,
1127 		.changelist = uap->changelist,
1128 		.nchanges = uap->nchanges,
1129 		.eventlist = uap->eventlist,
1130 		.nevents = uap->nevents,
1131 		.timeout = uap->timeout,
1132 	};
1133 
1134 	return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent"));
1135 }
1136 
1137 static int
1138 kern_kevent_generic(struct thread *td, struct g_kevent_args *uap,
1139     struct kevent_copyops *k_ops, const char *struct_name)
1140 {
1141 	struct timespec ts, *tsp;
1142 #ifdef KTRACE
1143 	struct kevent *eventlist = uap->eventlist;
1144 #endif
1145 	int error;
1146 
1147 	if (uap->timeout != NULL) {
1148 		error = copyin(uap->timeout, &ts, sizeof(ts));
1149 		if (error)
1150 			return (error);
1151 		tsp = &ts;
1152 	} else
1153 		tsp = NULL;
1154 
1155 #ifdef KTRACE
1156 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
1157 		ktrstructarray(struct_name, UIO_USERSPACE, uap->changelist,
1158 		    uap->nchanges, k_ops->kevent_size);
1159 #endif
1160 
1161 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
1162 	    k_ops, tsp);
1163 
1164 #ifdef KTRACE
1165 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
1166 		ktrstructarray(struct_name, UIO_USERSPACE, eventlist,
1167 		    td->td_retval[0], k_ops->kevent_size);
1168 #endif
1169 
1170 	return (error);
1171 }
1172 
1173 /*
1174  * Copy 'count' items into the destination list pointed to by uap->eventlist.
1175  */
1176 static int
1177 kevent_copyout(void *arg, struct kevent *kevp, int count)
1178 {
1179 	struct kevent_args *uap;
1180 	int error;
1181 
1182 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1183 	uap = (struct kevent_args *)arg;
1184 
1185 	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
1186 	if (error == 0)
1187 		uap->eventlist += count;
1188 	return (error);
1189 }
1190 
1191 /*
1192  * Copy 'count' items from the list pointed to by uap->changelist.
1193  */
1194 static int
1195 kevent_copyin(void *arg, struct kevent *kevp, int count)
1196 {
1197 	struct kevent_args *uap;
1198 	int error;
1199 
1200 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1201 	uap = (struct kevent_args *)arg;
1202 
1203 	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
1204 	if (error == 0)
1205 		uap->changelist += count;
1206 	return (error);
1207 }
1208 
1209 #ifdef COMPAT_FREEBSD11
1210 static int
1211 kevent11_copyout(void *arg, struct kevent *kevp, int count)
1212 {
1213 	struct freebsd11_kevent_args *uap;
1214 	struct kevent_freebsd11 kev11;
1215 	int error, i;
1216 
1217 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1218 	uap = (struct freebsd11_kevent_args *)arg;
1219 
1220 	for (i = 0; i < count; i++) {
1221 		kev11.ident = kevp->ident;
1222 		kev11.filter = kevp->filter;
1223 		kev11.flags = kevp->flags;
1224 		kev11.fflags = kevp->fflags;
1225 		kev11.data = kevp->data;
1226 		kev11.udata = kevp->udata;
1227 		error = copyout(&kev11, uap->eventlist, sizeof(kev11));
1228 		if (error != 0)
1229 			break;
1230 		uap->eventlist++;
1231 		kevp++;
1232 	}
1233 	return (error);
1234 }
1235 
1236 /*
1237  * Copy 'count' items from the list pointed to by uap->changelist.
1238  */
1239 static int
1240 kevent11_copyin(void *arg, struct kevent *kevp, int count)
1241 {
1242 	struct freebsd11_kevent_args *uap;
1243 	struct kevent_freebsd11 kev11;
1244 	int error, i;
1245 
1246 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1247 	uap = (struct freebsd11_kevent_args *)arg;
1248 
1249 	for (i = 0; i < count; i++) {
1250 		error = copyin(uap->changelist, &kev11, sizeof(kev11));
1251 		if (error != 0)
1252 			break;
1253 		kevp->ident = kev11.ident;
1254 		kevp->filter = kev11.filter;
1255 		kevp->flags = kev11.flags;
1256 		kevp->fflags = kev11.fflags;
1257 		kevp->data = (uintptr_t)kev11.data;
1258 		kevp->udata = kev11.udata;
1259 		bzero(&kevp->ext, sizeof(kevp->ext));
1260 		uap->changelist++;
1261 		kevp++;
1262 	}
1263 	return (error);
1264 }
1265 
1266 int
1267 freebsd11_kevent(struct thread *td, struct freebsd11_kevent_args *uap)
1268 {
1269 	struct kevent_copyops k_ops = {
1270 		.arg = uap,
1271 		.k_copyout = kevent11_copyout,
1272 		.k_copyin = kevent11_copyin,
1273 		.kevent_size = sizeof(struct kevent_freebsd11),
1274 	};
1275 	struct g_kevent_args gk_args = {
1276 		.fd = uap->fd,
1277 		.changelist = uap->changelist,
1278 		.nchanges = uap->nchanges,
1279 		.eventlist = uap->eventlist,
1280 		.nevents = uap->nevents,
1281 		.timeout = uap->timeout,
1282 	};
1283 
1284 	return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent_freebsd11"));
1285 }
1286 #endif
1287 
1288 int
1289 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
1290     struct kevent_copyops *k_ops, const struct timespec *timeout)
1291 {
1292 	cap_rights_t rights;
1293 	struct file *fp;
1294 	int error;
1295 
1296 	cap_rights_init_zero(&rights);
1297 	if (nchanges > 0)
1298 		cap_rights_set_one(&rights, CAP_KQUEUE_CHANGE);
1299 	if (nevents > 0)
1300 		cap_rights_set_one(&rights, CAP_KQUEUE_EVENT);
1301 	error = fget(td, fd, &rights, &fp);
1302 	if (error != 0)
1303 		return (error);
1304 
1305 	error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
1306 	fdrop(fp, td);
1307 
1308 	return (error);
1309 }
1310 
1311 static int
1312 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
1313     struct kevent_copyops *k_ops, const struct timespec *timeout)
1314 {
1315 	struct kevent keva[KQ_NEVENTS];
1316 	struct kevent *kevp, *changes;
1317 	int i, n, nerrors, error;
1318 
1319 	if (nchanges < 0)
1320 		return (EINVAL);
1321 
1322 	nerrors = 0;
1323 	while (nchanges > 0) {
1324 		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
1325 		error = k_ops->k_copyin(k_ops->arg, keva, n);
1326 		if (error)
1327 			return (error);
1328 		changes = keva;
1329 		for (i = 0; i < n; i++) {
1330 			kevp = &changes[i];
1331 			if (!kevp->filter)
1332 				continue;
1333 			kevp->flags &= ~EV_SYSFLAGS;
1334 			error = kqueue_register(kq, kevp, td, M_WAITOK);
1335 			if (error || (kevp->flags & EV_RECEIPT)) {
1336 				if (nevents == 0)
1337 					return (error);
1338 				kevp->flags = EV_ERROR;
1339 				kevp->data = error;
1340 				(void)k_ops->k_copyout(k_ops->arg, kevp, 1);
1341 				nevents--;
1342 				nerrors++;
1343 			}
1344 		}
1345 		nchanges -= n;
1346 	}
1347 	if (nerrors) {
1348 		td->td_retval[0] = nerrors;
1349 		return (0);
1350 	}
1351 
1352 	return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
1353 }
1354 
1355 int
1356 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
1357     struct kevent_copyops *k_ops, const struct timespec *timeout)
1358 {
1359 	struct kqueue *kq;
1360 	int error;
1361 
1362 	error = kqueue_acquire(fp, &kq);
1363 	if (error != 0)
1364 		return (error);
1365 	error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
1366 	kqueue_release(kq, 0);
1367 	return (error);
1368 }
1369 
1370 /*
1371  * Performs a kevent() call on a temporarily created kqueue. This can be
1372  * used to perform one-shot polling, similar to poll() and select().
1373  */
1374 int
1375 kern_kevent_anonymous(struct thread *td, int nevents,
1376     struct kevent_copyops *k_ops)
1377 {
1378 	struct kqueue kq = {};
1379 	int error;
1380 
1381 	kqueue_init(&kq);
1382 	kq.kq_refcnt = 1;
1383 	error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
1384 	kqueue_drain(&kq, td);
1385 	kqueue_destroy(&kq);
1386 	return (error);
1387 }
1388 
1389 int
1390 kqueue_add_filteropts(int filt, struct filterops *filtops)
1391 {
1392 	int error;
1393 
1394 	error = 0;
1395 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
1396 		printf(
1397 "trying to add a filterop that is out of range: %d is beyond %d\n",
1398 		    ~filt, EVFILT_SYSCOUNT);
1399 		return EINVAL;
1400 	}
1401 	mtx_lock(&filterops_lock);
1402 	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
1403 	    sysfilt_ops[~filt].for_fop != NULL)
1404 		error = EEXIST;
1405 	else {
1406 		sysfilt_ops[~filt].for_fop = filtops;
1407 		sysfilt_ops[~filt].for_refcnt = 0;
1408 	}
1409 	mtx_unlock(&filterops_lock);
1410 
1411 	return (error);
1412 }
1413 
1414 int
1415 kqueue_del_filteropts(int filt)
1416 {
1417 	int error;
1418 
1419 	error = 0;
1420 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1421 		return EINVAL;
1422 
1423 	mtx_lock(&filterops_lock);
1424 	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
1425 	    sysfilt_ops[~filt].for_fop == NULL)
1426 		error = EINVAL;
1427 	else if (sysfilt_ops[~filt].for_refcnt != 0)
1428 		error = EBUSY;
1429 	else {
1430 		sysfilt_ops[~filt].for_fop = &null_filtops;
1431 		sysfilt_ops[~filt].for_refcnt = 0;
1432 	}
1433 	mtx_unlock(&filterops_lock);
1434 
1435 	return error;
1436 }
1437 
1438 static struct filterops *
1439 kqueue_fo_find(int filt)
1440 {
1441 
1442 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1443 		return NULL;
1444 
1445 	if (sysfilt_ops[~filt].for_nolock)
1446 		return sysfilt_ops[~filt].for_fop;
1447 
1448 	mtx_lock(&filterops_lock);
1449 	sysfilt_ops[~filt].for_refcnt++;
1450 	if (sysfilt_ops[~filt].for_fop == NULL)
1451 		sysfilt_ops[~filt].for_fop = &null_filtops;
1452 	mtx_unlock(&filterops_lock);
1453 
1454 	return sysfilt_ops[~filt].for_fop;
1455 }
1456 
1457 static void
1458 kqueue_fo_release(int filt)
1459 {
1460 
1461 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1462 		return;
1463 
1464 	if (sysfilt_ops[~filt].for_nolock)
1465 		return;
1466 
1467 	mtx_lock(&filterops_lock);
1468 	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
1469 	    ("filter object refcount not valid on release"));
1470 	sysfilt_ops[~filt].for_refcnt--;
1471 	mtx_unlock(&filterops_lock);
1472 }
1473 
1474 /*
1475  * A ref to kq (obtained via kqueue_acquire) must be held.
1476  */
1477 static int
1478 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td,
1479     int mflag)
1480 {
1481 	struct filterops *fops;
1482 	struct file *fp;
1483 	struct knote *kn, *tkn;
1484 	struct knlist *knl;
1485 	int error, filt, event;
1486 	int haskqglobal, filedesc_unlock;
1487 
1488 	if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
1489 		return (EINVAL);
1490 
1491 	fp = NULL;
1492 	kn = NULL;
1493 	knl = NULL;
1494 	error = 0;
1495 	haskqglobal = 0;
1496 	filedesc_unlock = 0;
1497 
1498 	filt = kev->filter;
1499 	fops = kqueue_fo_find(filt);
1500 	if (fops == NULL)
1501 		return EINVAL;
1502 
1503 	if (kev->flags & EV_ADD) {
1504 		/* Reject an invalid flag pair early */
1505 		if (kev->flags & EV_KEEPUDATA) {
1506 			tkn = NULL;
1507 			error = EINVAL;
1508 			goto done;
1509 		}
1510 
1511 		/*
1512 		 * Prevent waiting with locks.  Non-sleepable
1513 		 * allocation failures are handled in the loop, only
1514 		 * if the spare knote appears to be actually required.
1515 		 */
1516 		tkn = knote_alloc(mflag);
1517 	} else {
1518 		tkn = NULL;
1519 	}
1520 
1521 findkn:
1522 	if (fops->f_isfd) {
1523 		KASSERT(td != NULL, ("td is NULL"));
1524 		if (kev->ident > INT_MAX)
1525 			error = EBADF;
1526 		else
1527 			error = fget(td, kev->ident, &cap_event_rights, &fp);
1528 		if (error)
1529 			goto done;
1530 
1531 		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
1532 		    kev->ident, M_NOWAIT) != 0) {
1533 			/* try again */
1534 			fdrop(fp, td);
1535 			fp = NULL;
1536 			error = kqueue_expand(kq, fops, kev->ident, mflag);
1537 			if (error)
1538 				goto done;
1539 			goto findkn;
1540 		}
1541 
1542 		if (fp->f_type == DTYPE_KQUEUE) {
1543 			/*
1544 			 * If we add some intelligence about what we are doing,
1545 			 * we should be able to support events on ourselves.
1546 			 * We need to know when we are doing this to prevent
1547 			 * getting both the knlist lock and the kq lock since
1548 			 * they are the same thing.
1549 			 */
1550 			if (fp->f_data == kq) {
1551 				error = EINVAL;
1552 				goto done;
1553 			}
1554 
1555 			/*
1556 			 * Pre-lock the filedesc before the global
1557 			 * lock mutex, see the comment in
1558 			 * kqueue_close().
1559 			 */
1560 			FILEDESC_XLOCK(td->td_proc->p_fd);
1561 			filedesc_unlock = 1;
1562 			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1563 		}
1564 
1565 		KQ_LOCK(kq);
1566 		if (kev->ident < kq->kq_knlistsize) {
1567 			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
1568 				if (kev->filter == kn->kn_filter)
1569 					break;
1570 		}
1571 	} else {
1572 		if ((kev->flags & EV_ADD) == EV_ADD) {
1573 			error = kqueue_expand(kq, fops, kev->ident, mflag);
1574 			if (error != 0)
1575 				goto done;
1576 		}
1577 
1578 		KQ_LOCK(kq);
1579 
1580 		/*
1581 		 * If possible, find an existing knote to use for this kevent.
1582 		 */
1583 		if (kev->filter == EVFILT_PROC &&
1584 		    (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
1585 			/* This is an internal creation of a process tracking
1586 			 * note. Don't attempt to coalesce this with an
1587 			 * existing note.
1588 			 */
1589 			;
1590 		} else if (kq->kq_knhashmask != 0) {
1591 			struct klist *list;
1592 
1593 			list = &kq->kq_knhash[
1594 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1595 			SLIST_FOREACH(kn, list, kn_link)
1596 				if (kev->ident == kn->kn_id &&
1597 				    kev->filter == kn->kn_filter)
1598 					break;
1599 		}
1600 	}
1601 
1602 	/* knote is in the process of changing, wait for it to stabilize. */
1603 	if (kn != NULL && kn_in_flux(kn)) {
1604 		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1605 		if (filedesc_unlock) {
1606 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1607 			filedesc_unlock = 0;
1608 		}
1609 		kq->kq_state |= KQ_FLUXWAIT;
1610 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
1611 		if (fp != NULL) {
1612 			fdrop(fp, td);
1613 			fp = NULL;
1614 		}
1615 		goto findkn;
1616 	}
1617 
1618 	/*
1619 	 * kn now contains the matching knote, or NULL if no match
1620 	 */
1621 	if (kn == NULL) {
1622 		if (kev->flags & EV_ADD) {
1623 			kn = tkn;
1624 			tkn = NULL;
1625 			if (kn == NULL) {
1626 				KQ_UNLOCK(kq);
1627 				error = ENOMEM;
1628 				goto done;
1629 			}
1630 			kn->kn_fp = fp;
1631 			kn->kn_kq = kq;
1632 			kn->kn_fop = fops;
1633 			/*
1634 			 * apply reference counts to knote structure, and
1635 			 * do not release it at the end of this routine.
1636 			 */
1637 			fops = NULL;
1638 			fp = NULL;
1639 
1640 			kn->kn_sfflags = kev->fflags;
1641 			kn->kn_sdata = kev->data;
1642 			kev->fflags = 0;
1643 			kev->data = 0;
1644 			kn->kn_kevent = *kev;
1645 			kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
1646 			    EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
1647 			kn->kn_status = KN_DETACHED;
1648 			if ((kev->flags & EV_DISABLE) != 0)
1649 				kn->kn_status |= KN_DISABLED;
1650 			kn_enter_flux(kn);
1651 
1652 			error = knote_attach(kn, kq);
1653 			KQ_UNLOCK(kq);
1654 			if (error != 0) {
1655 				tkn = kn;
1656 				goto done;
1657 			}
1658 
1659 			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
1660 				knote_drop_detached(kn, td);
1661 				goto done;
1662 			}
1663 			knl = kn_list_lock(kn);
1664 			goto done_ev_add;
1665 		} else {
1666 			/* No matching knote and the EV_ADD flag is not set. */
1667 			KQ_UNLOCK(kq);
1668 			error = ENOENT;
1669 			goto done;
1670 		}
1671 	}
1672 
1673 	if (kev->flags & EV_DELETE) {
1674 		kn_enter_flux(kn);
1675 		KQ_UNLOCK(kq);
1676 		knote_drop(kn, td);
1677 		goto done;
1678 	}
1679 
1680 	if (kev->flags & EV_FORCEONESHOT) {
1681 		kn->kn_flags |= EV_ONESHOT;
1682 		KNOTE_ACTIVATE(kn, 1);
1683 	}
1684 
1685 	if ((kev->flags & EV_ENABLE) != 0)
1686 		kn->kn_status &= ~KN_DISABLED;
1687 	else if ((kev->flags & EV_DISABLE) != 0)
1688 		kn->kn_status |= KN_DISABLED;
1689 
1690 	/*
1691 	 * The user may change some filter values after the initial EV_ADD,
1692 	 * but doing so will not reset any filter which has already been
1693 	 * triggered.
1694 	 */
1695 	kn->kn_status |= KN_SCAN;
1696 	kn_enter_flux(kn);
1697 	KQ_UNLOCK(kq);
1698 	knl = kn_list_lock(kn);
1699 	if ((kev->flags & EV_KEEPUDATA) == 0)
1700 		kn->kn_kevent.udata = kev->udata;
1701 	if (!fops->f_isfd && fops->f_touch != NULL) {
1702 		fops->f_touch(kn, kev, EVENT_REGISTER);
1703 	} else {
1704 		kn->kn_sfflags = kev->fflags;
1705 		kn->kn_sdata = kev->data;
1706 	}
1707 
1708 done_ev_add:
1709 	/*
1710 	 * We can get here with kn->kn_knlist == NULL.  This can happen when
1711 	 * the initial attach event decides that the event is "completed"
1712 	 * already, e.g., filt_procattach() is called on a zombie process.  It
1713 	 * will call filt_proc() which will remove it from the list, and NULL
1714 	 * kn_knlist.
1715 	 *
1716 	 * KN_DISABLED will be stable while the knote is in flux, so the
1717 	 * unlocked read will not race with an update.
1718 	 */
1719 	if ((kn->kn_status & KN_DISABLED) == 0)
1720 		event = kn->kn_fop->f_event(kn, 0);
1721 	else
1722 		event = 0;
1723 
1724 	KQ_LOCK(kq);
1725 	if (event)
1726 		kn->kn_status |= KN_ACTIVE;
1727 	if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
1728 	    KN_ACTIVE)
1729 		knote_enqueue(kn);
1730 	kn->kn_status &= ~KN_SCAN;
1731 	kn_leave_flux(kn);
1732 	kn_list_unlock(knl);
1733 	KQ_UNLOCK_FLUX(kq);
1734 
1735 done:
1736 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1737 	if (filedesc_unlock)
1738 		FILEDESC_XUNLOCK(td->td_proc->p_fd);
1739 	if (fp != NULL)
1740 		fdrop(fp, td);
1741 	knote_free(tkn);
1742 	if (fops != NULL)
1743 		kqueue_fo_release(filt);
1744 	return (error);
1745 }
1746 
1747 static int
1748 kqueue_acquire(struct file *fp, struct kqueue **kqp)
1749 {
1750 	int error;
1751 	struct kqueue *kq;
1752 
1753 	error = 0;
1754 
1755 	kq = fp->f_data;
1756 	if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1757 		return (EBADF);
1758 	*kqp = kq;
1759 	KQ_LOCK(kq);
1760 	if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1761 		KQ_UNLOCK(kq);
1762 		return (EBADF);
1763 	}
1764 	kq->kq_refcnt++;
1765 	KQ_UNLOCK(kq);
1766 
1767 	return error;
1768 }
1769 
1770 static void
1771 kqueue_release(struct kqueue *kq, int locked)
1772 {
1773 	if (locked)
1774 		KQ_OWNED(kq);
1775 	else
1776 		KQ_LOCK(kq);
1777 	kq->kq_refcnt--;
1778 	if (kq->kq_refcnt == 1)
1779 		wakeup(&kq->kq_refcnt);
1780 	if (!locked)
1781 		KQ_UNLOCK(kq);
1782 }
1783 
1784 void
1785 kqueue_drain_schedtask(void)
1786 {
1787 	taskqueue_quiesce(taskqueue_kqueue_ctx);
1788 }
1789 
1790 static void
1791 kqueue_schedtask(struct kqueue *kq)
1792 {
1793 	struct thread *td;
1794 
1795 	KQ_OWNED(kq);
1796 	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1797 	    ("scheduling kqueue task while draining"));
1798 
1799 	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1800 		taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
1801 		kq->kq_state |= KQ_TASKSCHED;
1802 		td = curthread;
1803 		thread_lock(td);
1804 		td->td_flags |= TDF_ASTPENDING | TDF_KQTICKLED;
1805 		thread_unlock(td);
1806 	}
1807 }
1808 
1809 /*
1810  * Expand the kq to make sure we have storage for fops/ident pair.
1811  *
1812  * Return 0 on success (or no work necessary), return errno on failure.
1813  */
1814 static int
1815 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1816     int mflag)
1817 {
1818 	struct klist *list, *tmp_knhash, *to_free;
1819 	u_long tmp_knhashmask;
1820 	int error, fd, size;
1821 
1822 	KQ_NOTOWNED(kq);
1823 
1824 	error = 0;
1825 	to_free = NULL;
1826 	if (fops->f_isfd) {
1827 		fd = ident;
1828 		if (kq->kq_knlistsize <= fd) {
1829 			size = kq->kq_knlistsize;
1830 			while (size <= fd)
1831 				size += KQEXTENT;
1832 			list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
1833 			if (list == NULL)
1834 				return ENOMEM;
1835 			KQ_LOCK(kq);
1836 			if ((kq->kq_state & KQ_CLOSING) != 0) {
1837 				to_free = list;
1838 				error = EBADF;
1839 			} else if (kq->kq_knlistsize > fd) {
1840 				to_free = list;
1841 			} else {
1842 				if (kq->kq_knlist != NULL) {
1843 					bcopy(kq->kq_knlist, list,
1844 					    kq->kq_knlistsize * sizeof(*list));
1845 					to_free = kq->kq_knlist;
1846 					kq->kq_knlist = NULL;
1847 				}
1848 				bzero((caddr_t)list +
1849 				    kq->kq_knlistsize * sizeof(*list),
1850 				    (size - kq->kq_knlistsize) * sizeof(*list));
1851 				kq->kq_knlistsize = size;
1852 				kq->kq_knlist = list;
1853 			}
1854 			KQ_UNLOCK(kq);
1855 		}
1856 	} else {
1857 		if (kq->kq_knhashmask == 0) {
1858 			tmp_knhash = hashinit_flags(KN_HASHSIZE, M_KQUEUE,
1859 			    &tmp_knhashmask, (mflag & M_WAITOK) != 0 ?
1860 			    HASH_WAITOK : HASH_NOWAIT);
1861 			if (tmp_knhash == NULL)
1862 				return (ENOMEM);
1863 			KQ_LOCK(kq);
1864 			if ((kq->kq_state & KQ_CLOSING) != 0) {
1865 				to_free = tmp_knhash;
1866 				error = EBADF;
1867 			} else if (kq->kq_knhashmask == 0) {
1868 				kq->kq_knhash = tmp_knhash;
1869 				kq->kq_knhashmask = tmp_knhashmask;
1870 			} else {
1871 				to_free = tmp_knhash;
1872 			}
1873 			KQ_UNLOCK(kq);
1874 		}
1875 	}
1876 	free(to_free, M_KQUEUE);
1877 
1878 	KQ_NOTOWNED(kq);
1879 	return (error);
1880 }
1881 
1882 static void
1883 kqueue_task(void *arg, int pending)
1884 {
1885 	struct kqueue *kq;
1886 	int haskqglobal;
1887 
1888 	haskqglobal = 0;
1889 	kq = arg;
1890 
1891 	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1892 	KQ_LOCK(kq);
1893 
1894 	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1895 
1896 	kq->kq_state &= ~KQ_TASKSCHED;
1897 	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1898 		wakeup(&kq->kq_state);
1899 	}
1900 	KQ_UNLOCK(kq);
1901 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1902 }
1903 
1904 /*
1905  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1906  * We treat KN_MARKER knotes as if they are in flux.
1907  */
1908 static int
1909 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1910     const struct timespec *tsp, struct kevent *keva, struct thread *td)
1911 {
1912 	struct kevent *kevp;
1913 	struct knote *kn, *marker;
1914 	struct knlist *knl;
1915 	sbintime_t asbt, rsbt;
1916 	int count, error, haskqglobal, influx, nkev, touch;
1917 
1918 	count = maxevents;
1919 	nkev = 0;
1920 	error = 0;
1921 	haskqglobal = 0;
1922 
1923 	if (maxevents == 0)
1924 		goto done_nl;
1925 	if (maxevents < 0) {
1926 		error = EINVAL;
1927 		goto done_nl;
1928 	}
1929 
1930 	rsbt = 0;
1931 	if (tsp != NULL) {
1932 		if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
1933 		    tsp->tv_nsec >= 1000000000) {
1934 			error = EINVAL;
1935 			goto done_nl;
1936 		}
1937 		if (timespecisset(tsp)) {
1938 			if (tsp->tv_sec <= INT32_MAX) {
1939 				rsbt = tstosbt(*tsp);
1940 				if (TIMESEL(&asbt, rsbt))
1941 					asbt += tc_tick_sbt;
1942 				if (asbt <= SBT_MAX - rsbt)
1943 					asbt += rsbt;
1944 				else
1945 					asbt = 0;
1946 				rsbt >>= tc_precexp;
1947 			} else
1948 				asbt = 0;
1949 		} else
1950 			asbt = -1;
1951 	} else
1952 		asbt = 0;
1953 	marker = knote_alloc(M_WAITOK);
1954 	marker->kn_status = KN_MARKER;
1955 	KQ_LOCK(kq);
1956 
1957 retry:
1958 	kevp = keva;
1959 	if (kq->kq_count == 0) {
1960 		if (asbt == -1) {
1961 			error = EWOULDBLOCK;
1962 		} else {
1963 			kq->kq_state |= KQ_SLEEP;
1964 			error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
1965 			    "kqread", asbt, rsbt, C_ABSOLUTE);
1966 		}
1967 		if (error == 0)
1968 			goto retry;
1969 		/* don't restart after signals... */
1970 		if (error == ERESTART)
1971 			error = EINTR;
1972 		else if (error == EWOULDBLOCK)
1973 			error = 0;
1974 		goto done;
1975 	}
1976 
1977 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1978 	influx = 0;
1979 	while (count) {
1980 		KQ_OWNED(kq);
1981 		kn = TAILQ_FIRST(&kq->kq_head);
1982 
1983 		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1984 		    kn_in_flux(kn)) {
1985 			if (influx) {
1986 				influx = 0;
1987 				KQ_FLUX_WAKEUP(kq);
1988 			}
1989 			kq->kq_state |= KQ_FLUXWAIT;
1990 			error = msleep(kq, &kq->kq_lock, PSOCK,
1991 			    "kqflxwt", 0);
1992 			continue;
1993 		}
1994 
1995 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1996 		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1997 			kn->kn_status &= ~KN_QUEUED;
1998 			kq->kq_count--;
1999 			continue;
2000 		}
2001 		if (kn == marker) {
2002 			KQ_FLUX_WAKEUP(kq);
2003 			if (count == maxevents)
2004 				goto retry;
2005 			goto done;
2006 		}
2007 		KASSERT(!kn_in_flux(kn),
2008 		    ("knote %p is unexpectedly in flux", kn));
2009 
2010 		if ((kn->kn_flags & EV_DROP) == EV_DROP) {
2011 			kn->kn_status &= ~KN_QUEUED;
2012 			kn_enter_flux(kn);
2013 			kq->kq_count--;
2014 			KQ_UNLOCK(kq);
2015 			/*
2016 			 * We don't need to lock the list since we've
2017 			 * marked it as in flux.
2018 			 */
2019 			knote_drop(kn, td);
2020 			KQ_LOCK(kq);
2021 			continue;
2022 		} else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
2023 			kn->kn_status &= ~KN_QUEUED;
2024 			kn_enter_flux(kn);
2025 			kq->kq_count--;
2026 			KQ_UNLOCK(kq);
2027 			/*
2028 			 * We don't need to lock the list since we've
2029 			 * marked the knote as being in flux.
2030 			 */
2031 			*kevp = kn->kn_kevent;
2032 			knote_drop(kn, td);
2033 			KQ_LOCK(kq);
2034 			kn = NULL;
2035 		} else {
2036 			kn->kn_status |= KN_SCAN;
2037 			kn_enter_flux(kn);
2038 			KQ_UNLOCK(kq);
2039 			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
2040 				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
2041 			knl = kn_list_lock(kn);
2042 			if (kn->kn_fop->f_event(kn, 0) == 0) {
2043 				KQ_LOCK(kq);
2044 				KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
2045 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE |
2046 				    KN_SCAN);
2047 				kn_leave_flux(kn);
2048 				kq->kq_count--;
2049 				kn_list_unlock(knl);
2050 				influx = 1;
2051 				continue;
2052 			}
2053 			touch = (!kn->kn_fop->f_isfd &&
2054 			    kn->kn_fop->f_touch != NULL);
2055 			if (touch)
2056 				kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
2057 			else
2058 				*kevp = kn->kn_kevent;
2059 			KQ_LOCK(kq);
2060 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
2061 			if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
2062 				/*
2063 				 * Manually clear knotes who weren't
2064 				 * 'touch'ed.
2065 				 */
2066 				if (touch == 0 && kn->kn_flags & EV_CLEAR) {
2067 					kn->kn_data = 0;
2068 					kn->kn_fflags = 0;
2069 				}
2070 				if (kn->kn_flags & EV_DISPATCH)
2071 					kn->kn_status |= KN_DISABLED;
2072 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
2073 				kq->kq_count--;
2074 			} else
2075 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2076 
2077 			kn->kn_status &= ~KN_SCAN;
2078 			kn_leave_flux(kn);
2079 			kn_list_unlock(knl);
2080 			influx = 1;
2081 		}
2082 
2083 		/* we are returning a copy to the user */
2084 		kevp++;
2085 		nkev++;
2086 		count--;
2087 
2088 		if (nkev == KQ_NEVENTS) {
2089 			influx = 0;
2090 			KQ_UNLOCK_FLUX(kq);
2091 			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
2092 			nkev = 0;
2093 			kevp = keva;
2094 			KQ_LOCK(kq);
2095 			if (error)
2096 				break;
2097 		}
2098 	}
2099 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2100 done:
2101 	KQ_OWNED(kq);
2102 	KQ_UNLOCK_FLUX(kq);
2103 	knote_free(marker);
2104 done_nl:
2105 	KQ_NOTOWNED(kq);
2106 	if (nkev != 0)
2107 		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
2108 	td->td_retval[0] = maxevents - count;
2109 	return (error);
2110 }
2111 
2112 /*ARGSUSED*/
2113 static int
2114 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
2115 	struct ucred *active_cred, struct thread *td)
2116 {
2117 	/*
2118 	 * Enabling sigio causes two major problems:
2119 	 * 1) infinite recursion:
2120 	 * Synopsys: kevent is being used to track signals and have FIOASYNC
2121 	 * set.  On receipt of a signal this will cause a kqueue to recurse
2122 	 * into itself over and over.  Sending the sigio causes the kqueue
2123 	 * to become ready, which in turn posts sigio again, forever.
2124 	 * Solution: this can be solved by setting a flag in the kqueue that
2125 	 * we have a SIGIO in progress.
2126 	 * 2) locking problems:
2127 	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
2128 	 * us above the proc and pgrp locks.
2129 	 * Solution: Post a signal using an async mechanism, being sure to
2130 	 * record a generation count in the delivery so that we do not deliver
2131 	 * a signal to the wrong process.
2132 	 *
2133 	 * Note, these two mechanisms are somewhat mutually exclusive!
2134 	 */
2135 #if 0
2136 	struct kqueue *kq;
2137 
2138 	kq = fp->f_data;
2139 	switch (cmd) {
2140 	case FIOASYNC:
2141 		if (*(int *)data) {
2142 			kq->kq_state |= KQ_ASYNC;
2143 		} else {
2144 			kq->kq_state &= ~KQ_ASYNC;
2145 		}
2146 		return (0);
2147 
2148 	case FIOSETOWN:
2149 		return (fsetown(*(int *)data, &kq->kq_sigio));
2150 
2151 	case FIOGETOWN:
2152 		*(int *)data = fgetown(&kq->kq_sigio);
2153 		return (0);
2154 	}
2155 #endif
2156 
2157 	return (ENOTTY);
2158 }
2159 
2160 /*ARGSUSED*/
2161 static int
2162 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
2163 	struct thread *td)
2164 {
2165 	struct kqueue *kq;
2166 	int revents = 0;
2167 	int error;
2168 
2169 	if ((error = kqueue_acquire(fp, &kq)))
2170 		return POLLERR;
2171 
2172 	KQ_LOCK(kq);
2173 	if (events & (POLLIN | POLLRDNORM)) {
2174 		if (kq->kq_count) {
2175 			revents |= events & (POLLIN | POLLRDNORM);
2176 		} else {
2177 			selrecord(td, &kq->kq_sel);
2178 			if (SEL_WAITING(&kq->kq_sel))
2179 				kq->kq_state |= KQ_SEL;
2180 		}
2181 	}
2182 	kqueue_release(kq, 1);
2183 	KQ_UNLOCK(kq);
2184 	return (revents);
2185 }
2186 
2187 /*ARGSUSED*/
2188 static int
2189 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
2190 	struct thread *td)
2191 {
2192 
2193 	bzero((void *)st, sizeof *st);
2194 	/*
2195 	 * We no longer return kq_count because the unlocked value is useless.
2196 	 * If you spent all this time getting the count, why not spend your
2197 	 * syscall better by calling kevent?
2198 	 *
2199 	 * XXX - This is needed for libc_r.
2200 	 */
2201 	st->st_mode = S_IFIFO;
2202 	return (0);
2203 }
2204 
2205 static void
2206 kqueue_drain(struct kqueue *kq, struct thread *td)
2207 {
2208 	struct knote *kn;
2209 	int i;
2210 
2211 	KQ_LOCK(kq);
2212 
2213 	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
2214 	    ("kqueue already closing"));
2215 	kq->kq_state |= KQ_CLOSING;
2216 	if (kq->kq_refcnt > 1)
2217 		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
2218 
2219 	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
2220 
2221 	KASSERT(knlist_empty(&kq->kq_sel.si_note),
2222 	    ("kqueue's knlist not empty"));
2223 
2224 	for (i = 0; i < kq->kq_knlistsize; i++) {
2225 		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
2226 			if (kn_in_flux(kn)) {
2227 				kq->kq_state |= KQ_FLUXWAIT;
2228 				msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
2229 				continue;
2230 			}
2231 			kn_enter_flux(kn);
2232 			KQ_UNLOCK(kq);
2233 			knote_drop(kn, td);
2234 			KQ_LOCK(kq);
2235 		}
2236 	}
2237 	if (kq->kq_knhashmask != 0) {
2238 		for (i = 0; i <= kq->kq_knhashmask; i++) {
2239 			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
2240 				if (kn_in_flux(kn)) {
2241 					kq->kq_state |= KQ_FLUXWAIT;
2242 					msleep(kq, &kq->kq_lock, PSOCK,
2243 					       "kqclo2", 0);
2244 					continue;
2245 				}
2246 				kn_enter_flux(kn);
2247 				KQ_UNLOCK(kq);
2248 				knote_drop(kn, td);
2249 				KQ_LOCK(kq);
2250 			}
2251 		}
2252 	}
2253 
2254 	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
2255 		kq->kq_state |= KQ_TASKDRAIN;
2256 		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
2257 	}
2258 
2259 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
2260 		selwakeuppri(&kq->kq_sel, PSOCK);
2261 		if (!SEL_WAITING(&kq->kq_sel))
2262 			kq->kq_state &= ~KQ_SEL;
2263 	}
2264 
2265 	KQ_UNLOCK(kq);
2266 }
2267 
2268 static void
2269 kqueue_destroy(struct kqueue *kq)
2270 {
2271 
2272 	KASSERT(kq->kq_fdp == NULL,
2273 	    ("kqueue still attached to a file descriptor"));
2274 	seldrain(&kq->kq_sel);
2275 	knlist_destroy(&kq->kq_sel.si_note);
2276 	mtx_destroy(&kq->kq_lock);
2277 
2278 	if (kq->kq_knhash != NULL)
2279 		free(kq->kq_knhash, M_KQUEUE);
2280 	if (kq->kq_knlist != NULL)
2281 		free(kq->kq_knlist, M_KQUEUE);
2282 
2283 	funsetown(&kq->kq_sigio);
2284 }
2285 
2286 /*ARGSUSED*/
2287 static int
2288 kqueue_close(struct file *fp, struct thread *td)
2289 {
2290 	struct kqueue *kq = fp->f_data;
2291 	struct filedesc *fdp;
2292 	int error;
2293 	int filedesc_unlock;
2294 
2295 	if ((error = kqueue_acquire(fp, &kq)))
2296 		return error;
2297 	kqueue_drain(kq, td);
2298 
2299 	/*
2300 	 * We could be called due to the knote_drop() doing fdrop(),
2301 	 * called from kqueue_register().  In this case the global
2302 	 * lock is owned, and filedesc sx is locked before, to not
2303 	 * take the sleepable lock after non-sleepable.
2304 	 */
2305 	fdp = kq->kq_fdp;
2306 	kq->kq_fdp = NULL;
2307 	if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
2308 		FILEDESC_XLOCK(fdp);
2309 		filedesc_unlock = 1;
2310 	} else
2311 		filedesc_unlock = 0;
2312 	TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
2313 	if (filedesc_unlock)
2314 		FILEDESC_XUNLOCK(fdp);
2315 
2316 	kqueue_destroy(kq);
2317 	chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
2318 	crfree(kq->kq_cred);
2319 	free(kq, M_KQUEUE);
2320 	fp->f_data = NULL;
2321 
2322 	return (0);
2323 }
2324 
2325 static int
2326 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2327 {
2328 
2329 	kif->kf_type = KF_TYPE_KQUEUE;
2330 	return (0);
2331 }
2332 
2333 static void
2334 kqueue_wakeup(struct kqueue *kq)
2335 {
2336 	KQ_OWNED(kq);
2337 
2338 	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
2339 		kq->kq_state &= ~KQ_SLEEP;
2340 		wakeup(kq);
2341 	}
2342 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
2343 		selwakeuppri(&kq->kq_sel, PSOCK);
2344 		if (!SEL_WAITING(&kq->kq_sel))
2345 			kq->kq_state &= ~KQ_SEL;
2346 	}
2347 	if (!knlist_empty(&kq->kq_sel.si_note))
2348 		kqueue_schedtask(kq);
2349 	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
2350 		pgsigio(&kq->kq_sigio, SIGIO, 0);
2351 	}
2352 }
2353 
2354 /*
2355  * Walk down a list of knotes, activating them if their event has triggered.
2356  *
2357  * There is a possibility to optimize in the case of one kq watching another.
2358  * Instead of scheduling a task to wake it up, you could pass enough state
2359  * down the chain to make up the parent kqueue.  Make this code functional
2360  * first.
2361  */
2362 void
2363 knote(struct knlist *list, long hint, int lockflags)
2364 {
2365 	struct kqueue *kq;
2366 	struct knote *kn, *tkn;
2367 	int error;
2368 
2369 	if (list == NULL)
2370 		return;
2371 
2372 	KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
2373 
2374 	if ((lockflags & KNF_LISTLOCKED) == 0)
2375 		list->kl_lock(list->kl_lockarg);
2376 
2377 	/*
2378 	 * If we unlock the list lock (and enter influx), we can
2379 	 * eliminate the kqueue scheduling, but this will introduce
2380 	 * four lock/unlock's for each knote to test.  Also, marker
2381 	 * would be needed to keep iteration position, since filters
2382 	 * or other threads could remove events.
2383 	 */
2384 	SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
2385 		kq = kn->kn_kq;
2386 		KQ_LOCK(kq);
2387 		if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
2388 			/*
2389 			 * Do not process the influx notes, except for
2390 			 * the influx coming from the kq unlock in the
2391 			 * kqueue_scan().  In the later case, we do
2392 			 * not interfere with the scan, since the code
2393 			 * fragment in kqueue_scan() locks the knlist,
2394 			 * and cannot proceed until we finished.
2395 			 */
2396 			KQ_UNLOCK(kq);
2397 		} else if ((lockflags & KNF_NOKQLOCK) != 0) {
2398 			kn_enter_flux(kn);
2399 			KQ_UNLOCK(kq);
2400 			error = kn->kn_fop->f_event(kn, hint);
2401 			KQ_LOCK(kq);
2402 			kn_leave_flux(kn);
2403 			if (error)
2404 				KNOTE_ACTIVATE(kn, 1);
2405 			KQ_UNLOCK_FLUX(kq);
2406 		} else {
2407 			if (kn->kn_fop->f_event(kn, hint))
2408 				KNOTE_ACTIVATE(kn, 1);
2409 			KQ_UNLOCK(kq);
2410 		}
2411 	}
2412 	if ((lockflags & KNF_LISTLOCKED) == 0)
2413 		list->kl_unlock(list->kl_lockarg);
2414 }
2415 
2416 /*
2417  * add a knote to a knlist
2418  */
2419 void
2420 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
2421 {
2422 
2423 	KNL_ASSERT_LOCK(knl, islocked);
2424 	KQ_NOTOWNED(kn->kn_kq);
2425 	KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
2426 	KASSERT((kn->kn_status & KN_DETACHED) != 0,
2427 	    ("knote %p was not detached", kn));
2428 	if (!islocked)
2429 		knl->kl_lock(knl->kl_lockarg);
2430 	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
2431 	if (!islocked)
2432 		knl->kl_unlock(knl->kl_lockarg);
2433 	KQ_LOCK(kn->kn_kq);
2434 	kn->kn_knlist = knl;
2435 	kn->kn_status &= ~KN_DETACHED;
2436 	KQ_UNLOCK(kn->kn_kq);
2437 }
2438 
2439 static void
2440 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
2441     int kqislocked)
2442 {
2443 
2444 	KASSERT(!kqislocked || knlislocked, ("kq locked w/o knl locked"));
2445 	KNL_ASSERT_LOCK(knl, knlislocked);
2446 	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
2447 	KASSERT(kqislocked || kn_in_flux(kn), ("knote %p not in flux", kn));
2448 	KASSERT((kn->kn_status & KN_DETACHED) == 0,
2449 	    ("knote %p was already detached", kn));
2450 	if (!knlislocked)
2451 		knl->kl_lock(knl->kl_lockarg);
2452 	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
2453 	kn->kn_knlist = NULL;
2454 	if (!knlislocked)
2455 		kn_list_unlock(knl);
2456 	if (!kqislocked)
2457 		KQ_LOCK(kn->kn_kq);
2458 	kn->kn_status |= KN_DETACHED;
2459 	if (!kqislocked)
2460 		KQ_UNLOCK(kn->kn_kq);
2461 }
2462 
2463 /*
2464  * remove knote from the specified knlist
2465  */
2466 void
2467 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
2468 {
2469 
2470 	knlist_remove_kq(knl, kn, islocked, 0);
2471 }
2472 
2473 int
2474 knlist_empty(struct knlist *knl)
2475 {
2476 
2477 	KNL_ASSERT_LOCKED(knl);
2478 	return (SLIST_EMPTY(&knl->kl_list));
2479 }
2480 
2481 static struct mtx knlist_lock;
2482 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
2483     MTX_DEF);
2484 static void knlist_mtx_lock(void *arg);
2485 static void knlist_mtx_unlock(void *arg);
2486 
2487 static void
2488 knlist_mtx_lock(void *arg)
2489 {
2490 
2491 	mtx_lock((struct mtx *)arg);
2492 }
2493 
2494 static void
2495 knlist_mtx_unlock(void *arg)
2496 {
2497 
2498 	mtx_unlock((struct mtx *)arg);
2499 }
2500 
2501 static void
2502 knlist_mtx_assert_lock(void *arg, int what)
2503 {
2504 
2505 	if (what == LA_LOCKED)
2506 		mtx_assert((struct mtx *)arg, MA_OWNED);
2507 	else
2508 		mtx_assert((struct mtx *)arg, MA_NOTOWNED);
2509 }
2510 
2511 static void
2512 knlist_rw_rlock(void *arg)
2513 {
2514 
2515 	rw_rlock((struct rwlock *)arg);
2516 }
2517 
2518 static void
2519 knlist_rw_runlock(void *arg)
2520 {
2521 
2522 	rw_runlock((struct rwlock *)arg);
2523 }
2524 
2525 static void
2526 knlist_rw_assert_lock(void *arg, int what)
2527 {
2528 
2529 	if (what == LA_LOCKED)
2530 		rw_assert((struct rwlock *)arg, RA_LOCKED);
2531 	else
2532 		rw_assert((struct rwlock *)arg, RA_UNLOCKED);
2533 }
2534 
2535 void
2536 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
2537     void (*kl_unlock)(void *),
2538     void (*kl_assert_lock)(void *, int))
2539 {
2540 
2541 	if (lock == NULL)
2542 		knl->kl_lockarg = &knlist_lock;
2543 	else
2544 		knl->kl_lockarg = lock;
2545 
2546 	if (kl_lock == NULL)
2547 		knl->kl_lock = knlist_mtx_lock;
2548 	else
2549 		knl->kl_lock = kl_lock;
2550 	if (kl_unlock == NULL)
2551 		knl->kl_unlock = knlist_mtx_unlock;
2552 	else
2553 		knl->kl_unlock = kl_unlock;
2554 	if (kl_assert_lock == NULL)
2555 		knl->kl_assert_lock = knlist_mtx_assert_lock;
2556 	else
2557 		knl->kl_assert_lock = kl_assert_lock;
2558 
2559 	knl->kl_autodestroy = 0;
2560 	SLIST_INIT(&knl->kl_list);
2561 }
2562 
2563 void
2564 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
2565 {
2566 
2567 	knlist_init(knl, lock, NULL, NULL, NULL);
2568 }
2569 
2570 struct knlist *
2571 knlist_alloc(struct mtx *lock)
2572 {
2573 	struct knlist *knl;
2574 
2575 	knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
2576 	knlist_init_mtx(knl, lock);
2577 	return (knl);
2578 }
2579 
2580 void
2581 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
2582 {
2583 
2584 	knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
2585 	    knlist_rw_assert_lock);
2586 }
2587 
2588 void
2589 knlist_destroy(struct knlist *knl)
2590 {
2591 
2592 	KASSERT(KNLIST_EMPTY(knl),
2593 	    ("destroying knlist %p with knotes on it", knl));
2594 }
2595 
2596 void
2597 knlist_detach(struct knlist *knl)
2598 {
2599 
2600 	KNL_ASSERT_LOCKED(knl);
2601 	knl->kl_autodestroy = 1;
2602 	if (knlist_empty(knl)) {
2603 		knlist_destroy(knl);
2604 		free(knl, M_KQUEUE);
2605 	}
2606 }
2607 
2608 /*
2609  * Even if we are locked, we may need to drop the lock to allow any influx
2610  * knotes time to "settle".
2611  */
2612 void
2613 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
2614 {
2615 	struct knote *kn, *kn2;
2616 	struct kqueue *kq;
2617 
2618 	KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
2619 	if (islocked)
2620 		KNL_ASSERT_LOCKED(knl);
2621 	else {
2622 		KNL_ASSERT_UNLOCKED(knl);
2623 again:		/* need to reacquire lock since we have dropped it */
2624 		knl->kl_lock(knl->kl_lockarg);
2625 	}
2626 
2627 	SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
2628 		kq = kn->kn_kq;
2629 		KQ_LOCK(kq);
2630 		if (kn_in_flux(kn)) {
2631 			KQ_UNLOCK(kq);
2632 			continue;
2633 		}
2634 		knlist_remove_kq(knl, kn, 1, 1);
2635 		if (killkn) {
2636 			kn_enter_flux(kn);
2637 			KQ_UNLOCK(kq);
2638 			knote_drop_detached(kn, td);
2639 		} else {
2640 			/* Make sure cleared knotes disappear soon */
2641 			kn->kn_flags |= EV_EOF | EV_ONESHOT;
2642 			KQ_UNLOCK(kq);
2643 		}
2644 		kq = NULL;
2645 	}
2646 
2647 	if (!SLIST_EMPTY(&knl->kl_list)) {
2648 		/* there are still in flux knotes remaining */
2649 		kn = SLIST_FIRST(&knl->kl_list);
2650 		kq = kn->kn_kq;
2651 		KQ_LOCK(kq);
2652 		KASSERT(kn_in_flux(kn), ("knote removed w/o list lock"));
2653 		knl->kl_unlock(knl->kl_lockarg);
2654 		kq->kq_state |= KQ_FLUXWAIT;
2655 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
2656 		kq = NULL;
2657 		goto again;
2658 	}
2659 
2660 	if (islocked)
2661 		KNL_ASSERT_LOCKED(knl);
2662 	else {
2663 		knl->kl_unlock(knl->kl_lockarg);
2664 		KNL_ASSERT_UNLOCKED(knl);
2665 	}
2666 }
2667 
2668 /*
2669  * Remove all knotes referencing a specified fd must be called with FILEDESC
2670  * lock.  This prevents a race where a new fd comes along and occupies the
2671  * entry and we attach a knote to the fd.
2672  */
2673 void
2674 knote_fdclose(struct thread *td, int fd)
2675 {
2676 	struct filedesc *fdp = td->td_proc->p_fd;
2677 	struct kqueue *kq;
2678 	struct knote *kn;
2679 	int influx;
2680 
2681 	FILEDESC_XLOCK_ASSERT(fdp);
2682 
2683 	/*
2684 	 * We shouldn't have to worry about new kevents appearing on fd
2685 	 * since filedesc is locked.
2686 	 */
2687 	TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
2688 		KQ_LOCK(kq);
2689 
2690 again:
2691 		influx = 0;
2692 		while (kq->kq_knlistsize > fd &&
2693 		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
2694 			if (kn_in_flux(kn)) {
2695 				/* someone else might be waiting on our knote */
2696 				if (influx)
2697 					wakeup(kq);
2698 				kq->kq_state |= KQ_FLUXWAIT;
2699 				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2700 				goto again;
2701 			}
2702 			kn_enter_flux(kn);
2703 			KQ_UNLOCK(kq);
2704 			influx = 1;
2705 			knote_drop(kn, td);
2706 			KQ_LOCK(kq);
2707 		}
2708 		KQ_UNLOCK_FLUX(kq);
2709 	}
2710 }
2711 
2712 static int
2713 knote_attach(struct knote *kn, struct kqueue *kq)
2714 {
2715 	struct klist *list;
2716 
2717 	KASSERT(kn_in_flux(kn), ("knote %p not marked influx", kn));
2718 	KQ_OWNED(kq);
2719 
2720 	if ((kq->kq_state & KQ_CLOSING) != 0)
2721 		return (EBADF);
2722 	if (kn->kn_fop->f_isfd) {
2723 		if (kn->kn_id >= kq->kq_knlistsize)
2724 			return (ENOMEM);
2725 		list = &kq->kq_knlist[kn->kn_id];
2726 	} else {
2727 		if (kq->kq_knhash == NULL)
2728 			return (ENOMEM);
2729 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2730 	}
2731 	SLIST_INSERT_HEAD(list, kn, kn_link);
2732 	return (0);
2733 }
2734 
2735 static void
2736 knote_drop(struct knote *kn, struct thread *td)
2737 {
2738 
2739 	if ((kn->kn_status & KN_DETACHED) == 0)
2740 		kn->kn_fop->f_detach(kn);
2741 	knote_drop_detached(kn, td);
2742 }
2743 
2744 static void
2745 knote_drop_detached(struct knote *kn, struct thread *td)
2746 {
2747 	struct kqueue *kq;
2748 	struct klist *list;
2749 
2750 	kq = kn->kn_kq;
2751 
2752 	KASSERT((kn->kn_status & KN_DETACHED) != 0,
2753 	    ("knote %p still attached", kn));
2754 	KQ_NOTOWNED(kq);
2755 
2756 	KQ_LOCK(kq);
2757 	KASSERT(kn->kn_influx == 1,
2758 	    ("knote_drop called on %p with influx %d", kn, kn->kn_influx));
2759 
2760 	if (kn->kn_fop->f_isfd)
2761 		list = &kq->kq_knlist[kn->kn_id];
2762 	else
2763 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2764 
2765 	if (!SLIST_EMPTY(list))
2766 		SLIST_REMOVE(list, kn, knote, kn_link);
2767 	if (kn->kn_status & KN_QUEUED)
2768 		knote_dequeue(kn);
2769 	KQ_UNLOCK_FLUX(kq);
2770 
2771 	if (kn->kn_fop->f_isfd) {
2772 		fdrop(kn->kn_fp, td);
2773 		kn->kn_fp = NULL;
2774 	}
2775 	kqueue_fo_release(kn->kn_kevent.filter);
2776 	kn->kn_fop = NULL;
2777 	knote_free(kn);
2778 }
2779 
2780 static void
2781 knote_enqueue(struct knote *kn)
2782 {
2783 	struct kqueue *kq = kn->kn_kq;
2784 
2785 	KQ_OWNED(kn->kn_kq);
2786 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2787 
2788 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2789 	kn->kn_status |= KN_QUEUED;
2790 	kq->kq_count++;
2791 	kqueue_wakeup(kq);
2792 }
2793 
2794 static void
2795 knote_dequeue(struct knote *kn)
2796 {
2797 	struct kqueue *kq = kn->kn_kq;
2798 
2799 	KQ_OWNED(kn->kn_kq);
2800 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2801 
2802 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2803 	kn->kn_status &= ~KN_QUEUED;
2804 	kq->kq_count--;
2805 }
2806 
2807 static void
2808 knote_init(void)
2809 {
2810 
2811 	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
2812 	    NULL, NULL, UMA_ALIGN_PTR, 0);
2813 }
2814 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
2815 
2816 static struct knote *
2817 knote_alloc(int mflag)
2818 {
2819 
2820 	return (uma_zalloc(knote_zone, mflag | M_ZERO));
2821 }
2822 
2823 static void
2824 knote_free(struct knote *kn)
2825 {
2826 
2827 	uma_zfree(knote_zone, kn);
2828 }
2829 
2830 /*
2831  * Register the kev w/ the kq specified by fd.
2832  */
2833 int
2834 kqfd_register(int fd, struct kevent *kev, struct thread *td, int mflag)
2835 {
2836 	struct kqueue *kq;
2837 	struct file *fp;
2838 	cap_rights_t rights;
2839 	int error;
2840 
2841 	error = fget(td, fd, cap_rights_init_one(&rights, CAP_KQUEUE_CHANGE),
2842 	    &fp);
2843 	if (error != 0)
2844 		return (error);
2845 	if ((error = kqueue_acquire(fp, &kq)) != 0)
2846 		goto noacquire;
2847 
2848 	error = kqueue_register(kq, kev, td, mflag);
2849 	kqueue_release(kq, 0);
2850 
2851 noacquire:
2852 	fdrop(fp, td);
2853 	return (error);
2854 }
2855