xref: /freebsd/sys/kern/kern_event.c (revision 3642298923e528d795e3a30ec165d2b469e28b40)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/proc.h>
37 #include <sys/malloc.h>
38 #include <sys/unistd.h>
39 #include <sys/file.h>
40 #include <sys/filedesc.h>
41 #include <sys/filio.h>
42 #include <sys/fcntl.h>
43 #include <sys/kthread.h>
44 #include <sys/selinfo.h>
45 #include <sys/queue.h>
46 #include <sys/event.h>
47 #include <sys/eventvar.h>
48 #include <sys/poll.h>
49 #include <sys/protosw.h>
50 #include <sys/sigio.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/stat.h>
55 #include <sys/sysctl.h>
56 #include <sys/sysproto.h>
57 #include <sys/syscallsubr.h>
58 #include <sys/taskqueue.h>
59 #include <sys/uio.h>
60 
61 #include <vm/uma.h>
62 
63 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
64 
65 /*
66  * This lock is used if multiple kq locks are required.  This possibly
67  * should be made into a per proc lock.
68  */
69 static struct mtx	kq_global;
70 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
71 #define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
72 	if (!haslck)				\
73 		mtx_lock(lck);			\
74 	haslck = 1;				\
75 } while (0)
76 #define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
77 	if (haslck)				\
78 		mtx_unlock(lck);			\
79 	haslck = 0;				\
80 } while (0)
81 
82 TASKQUEUE_DEFINE_THREAD(kqueue);
83 
84 static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
85 static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
86 static int	kqueue_aquire(struct file *fp, struct kqueue **kqp);
87 static void	kqueue_release(struct kqueue *kq, int locked);
88 static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
89 		    uintptr_t ident, int waitok);
90 static void	kqueue_task(void *arg, int pending);
91 static int	kqueue_scan(struct kqueue *kq, int maxevents,
92 		    struct kevent_copyops *k_ops,
93 		    const struct timespec *timeout,
94 		    struct kevent *keva, struct thread *td);
95 static void 	kqueue_wakeup(struct kqueue *kq);
96 static struct filterops *kqueue_fo_find(int filt);
97 static void	kqueue_fo_release(int filt);
98 
99 static fo_rdwr_t	kqueue_read;
100 static fo_rdwr_t	kqueue_write;
101 static fo_ioctl_t	kqueue_ioctl;
102 static fo_poll_t	kqueue_poll;
103 static fo_kqfilter_t	kqueue_kqfilter;
104 static fo_stat_t	kqueue_stat;
105 static fo_close_t	kqueue_close;
106 
107 static struct fileops kqueueops = {
108 	.fo_read = kqueue_read,
109 	.fo_write = kqueue_write,
110 	.fo_ioctl = kqueue_ioctl,
111 	.fo_poll = kqueue_poll,
112 	.fo_kqfilter = kqueue_kqfilter,
113 	.fo_stat = kqueue_stat,
114 	.fo_close = kqueue_close,
115 };
116 
117 static int 	knote_attach(struct knote *kn, struct kqueue *kq);
118 static void 	knote_drop(struct knote *kn, struct thread *td);
119 static void 	knote_enqueue(struct knote *kn);
120 static void 	knote_dequeue(struct knote *kn);
121 static void 	knote_init(void);
122 static struct 	knote *knote_alloc(int waitok);
123 static void 	knote_free(struct knote *kn);
124 
125 static void	filt_kqdetach(struct knote *kn);
126 static int	filt_kqueue(struct knote *kn, long hint);
127 static int	filt_procattach(struct knote *kn);
128 static void	filt_procdetach(struct knote *kn);
129 static int	filt_proc(struct knote *kn, long hint);
130 static int	filt_fileattach(struct knote *kn);
131 static void	filt_timerexpire(void *knx);
132 static int	filt_timerattach(struct knote *kn);
133 static void	filt_timerdetach(struct knote *kn);
134 static int	filt_timer(struct knote *kn, long hint);
135 
136 static struct filterops file_filtops =
137 	{ 1, filt_fileattach, NULL, NULL };
138 static struct filterops kqread_filtops =
139 	{ 1, NULL, filt_kqdetach, filt_kqueue };
140 /* XXX - move to kern_proc.c?  */
141 static struct filterops proc_filtops =
142 	{ 0, filt_procattach, filt_procdetach, filt_proc };
143 static struct filterops timer_filtops =
144 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
145 
146 static uma_zone_t	knote_zone;
147 static int 		kq_ncallouts = 0;
148 static int 		kq_calloutmax = (4 * 1024);
149 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
150     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
151 
152 /* XXX - ensure not KN_INFLUX?? */
153 #define KNOTE_ACTIVATE(kn, islock) do { 				\
154 	if ((islock))							\
155 		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
156 	else								\
157 		KQ_LOCK((kn)->kn_kq);					\
158 	(kn)->kn_status |= KN_ACTIVE;					\
159 	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
160 		knote_enqueue((kn));					\
161 	if (!(islock))							\
162 		KQ_UNLOCK((kn)->kn_kq);					\
163 } while(0)
164 #define KQ_LOCK(kq) do {						\
165 	mtx_lock(&(kq)->kq_lock);					\
166 } while (0)
167 #define KQ_FLUX_WAKEUP(kq) do {						\
168 	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
169 		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
170 		wakeup((kq));						\
171 	}								\
172 } while (0)
173 #define KQ_UNLOCK_FLUX(kq) do {						\
174 	KQ_FLUX_WAKEUP(kq);						\
175 	mtx_unlock(&(kq)->kq_lock);					\
176 } while (0)
177 #define KQ_UNLOCK(kq) do {						\
178 	mtx_unlock(&(kq)->kq_lock);					\
179 } while (0)
180 #define KQ_OWNED(kq) do {						\
181 	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
182 } while (0)
183 #define KQ_NOTOWNED(kq) do {						\
184 	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
185 } while (0)
186 #define KN_LIST_LOCK(kn) do {						\
187 	if (kn->kn_knlist != NULL)					\
188 		kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);	\
189 } while (0)
190 #define KN_LIST_UNLOCK(kn) do {						\
191 	if (kn->kn_knlist != NULL) 					\
192 		kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);	\
193 } while (0)
194 #define	KNL_ASSERT_LOCK(knl, islocked) do {				\
195 	if (islocked)							\
196 		KNL_ASSERT_LOCKED(knl);				\
197 	else								\
198 		KNL_ASSERT_UNLOCKED(knl);				\
199 } while (0)
200 #ifdef INVARIANTS
201 #define	KNL_ASSERT_LOCKED(knl) do {					\
202 	if (!knl->kl_locked((knl)->kl_lockarg))				\
203 			panic("knlist not locked, but should be");	\
204 } while (0)
205 #define	KNL_ASSERT_UNLOCKED(knl) do {				\
206 	if (knl->kl_locked((knl)->kl_lockarg))				\
207 		panic("knlist locked, but should not be");		\
208 } while (0)
209 #else /* !INVARIANTS */
210 #define	KNL_ASSERT_LOCKED(knl) do {} while(0)
211 #define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
212 #endif /* INVARIANTS */
213 
214 #define	KN_HASHSIZE		64		/* XXX should be tunable */
215 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
216 
217 static int
218 filt_nullattach(struct knote *kn)
219 {
220 
221 	return (ENXIO);
222 };
223 
224 struct filterops null_filtops =
225 	{ 0, filt_nullattach, NULL, NULL };
226 
227 /* XXX - make SYSINIT to add these, and move into respective modules. */
228 extern struct filterops sig_filtops;
229 extern struct filterops fs_filtops;
230 
231 /*
232  * Table for for all system-defined filters.
233  */
234 static struct mtx	filterops_lock;
235 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
236 	MTX_DEF);
237 static struct {
238 	struct filterops *for_fop;
239 	int for_refcnt;
240 } sysfilt_ops[EVFILT_SYSCOUNT] = {
241 	{ &file_filtops },			/* EVFILT_READ */
242 	{ &file_filtops },			/* EVFILT_WRITE */
243 	{ &null_filtops },			/* EVFILT_AIO */
244 	{ &file_filtops },			/* EVFILT_VNODE */
245 	{ &proc_filtops },			/* EVFILT_PROC */
246 	{ &sig_filtops },			/* EVFILT_SIGNAL */
247 	{ &timer_filtops },			/* EVFILT_TIMER */
248 	{ &file_filtops },			/* EVFILT_NETDEV */
249 	{ &fs_filtops },			/* EVFILT_FS */
250 };
251 
252 /*
253  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
254  * method.
255  */
256 static int
257 filt_fileattach(struct knote *kn)
258 {
259 
260 	return (fo_kqfilter(kn->kn_fp, kn));
261 }
262 
263 /*ARGSUSED*/
264 static int
265 kqueue_kqfilter(struct file *fp, struct knote *kn)
266 {
267 	struct kqueue *kq = kn->kn_fp->f_data;
268 
269 	if (kn->kn_filter != EVFILT_READ)
270 		return (EINVAL);
271 
272 	kn->kn_status |= KN_KQUEUE;
273 	kn->kn_fop = &kqread_filtops;
274 	knlist_add(&kq->kq_sel.si_note, kn, 0);
275 
276 	return (0);
277 }
278 
279 static void
280 filt_kqdetach(struct knote *kn)
281 {
282 	struct kqueue *kq = kn->kn_fp->f_data;
283 
284 	knlist_remove(&kq->kq_sel.si_note, kn, 0);
285 }
286 
287 /*ARGSUSED*/
288 static int
289 filt_kqueue(struct knote *kn, long hint)
290 {
291 	struct kqueue *kq = kn->kn_fp->f_data;
292 
293 	kn->kn_data = kq->kq_count;
294 	return (kn->kn_data > 0);
295 }
296 
297 /* XXX - move to kern_proc.c?  */
298 static int
299 filt_procattach(struct knote *kn)
300 {
301 	struct proc *p;
302 	int immediate;
303 	int error;
304 
305 	immediate = 0;
306 	p = pfind(kn->kn_id);
307 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
308 		p = zpfind(kn->kn_id);
309 		immediate = 1;
310 	} else if (p != NULL && (p->p_flag & P_WEXIT)) {
311 		immediate = 1;
312 	}
313 
314 	if (p == NULL)
315 		return (ESRCH);
316 	if ((error = p_cansee(curthread, p)))
317 		return (error);
318 
319 	kn->kn_ptr.p_proc = p;
320 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
321 
322 	/*
323 	 * internal flag indicating registration done by kernel
324 	 */
325 	if (kn->kn_flags & EV_FLAG1) {
326 		kn->kn_data = kn->kn_sdata;		/* ppid */
327 		kn->kn_fflags = NOTE_CHILD;
328 		kn->kn_flags &= ~EV_FLAG1;
329 	}
330 
331 	if (immediate == 0)
332 		knlist_add(&p->p_klist, kn, 1);
333 
334 	/*
335 	 * Immediately activate any exit notes if the target process is a
336 	 * zombie.  This is necessary to handle the case where the target
337 	 * process, e.g. a child, dies before the kevent is registered.
338 	 */
339 	if (immediate && filt_proc(kn, NOTE_EXIT))
340 		KNOTE_ACTIVATE(kn, 0);
341 
342 	PROC_UNLOCK(p);
343 
344 	return (0);
345 }
346 
347 /*
348  * The knote may be attached to a different process, which may exit,
349  * leaving nothing for the knote to be attached to.  So when the process
350  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
351  * it will be deleted when read out.  However, as part of the knote deletion,
352  * this routine is called, so a check is needed to avoid actually performing
353  * a detach, because the original process does not exist any more.
354  */
355 /* XXX - move to kern_proc.c?  */
356 static void
357 filt_procdetach(struct knote *kn)
358 {
359 	struct proc *p;
360 
361 	p = kn->kn_ptr.p_proc;
362 	knlist_remove(&p->p_klist, kn, 0);
363 	kn->kn_ptr.p_proc = NULL;
364 }
365 
366 /* XXX - move to kern_proc.c?  */
367 static int
368 filt_proc(struct knote *kn, long hint)
369 {
370 	struct proc *p = kn->kn_ptr.p_proc;
371 	u_int event;
372 
373 	/*
374 	 * mask off extra data
375 	 */
376 	event = (u_int)hint & NOTE_PCTRLMASK;
377 
378 	/*
379 	 * if the user is interested in this event, record it.
380 	 */
381 	if (kn->kn_sfflags & event)
382 		kn->kn_fflags |= event;
383 
384 	/*
385 	 * process is gone, so flag the event as finished.
386 	 */
387 	if (event == NOTE_EXIT) {
388 		if (!(kn->kn_status & KN_DETACHED))
389 			knlist_remove_inevent(&p->p_klist, kn);
390 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
391 		kn->kn_ptr.p_proc = NULL;
392 		return (1);
393 	}
394 
395 	/*
396 	 * process forked, and user wants to track the new process,
397 	 * so attach a new knote to it, and immediately report an
398 	 * event with the parent's pid.
399 	 */
400 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
401 		struct kevent kev;
402 		int error;
403 
404 		/*
405 		 * register knote with new process.
406 		 */
407 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
408 		kev.filter = kn->kn_filter;
409 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
410 		kev.fflags = kn->kn_sfflags;
411 		kev.data = kn->kn_id;			/* parent */
412 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
413 		error = kqueue_register(kn->kn_kq, &kev, NULL, 0);
414 		if (error)
415 			kn->kn_fflags |= NOTE_TRACKERR;
416 	}
417 
418 	return (kn->kn_fflags != 0);
419 }
420 
421 static int
422 timertoticks(intptr_t data)
423 {
424 	struct timeval tv;
425 	int tticks;
426 
427 	tv.tv_sec = data / 1000;
428 	tv.tv_usec = (data % 1000) * 1000;
429 	tticks = tvtohz(&tv);
430 
431 	return tticks;
432 }
433 
434 /* XXX - move to kern_timeout.c? */
435 static void
436 filt_timerexpire(void *knx)
437 {
438 	struct knote *kn = knx;
439 	struct callout *calloutp;
440 
441 	kn->kn_data++;
442 	KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
443 
444 	if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
445 		calloutp = (struct callout *)kn->kn_hook;
446 		callout_reset(calloutp, timertoticks(kn->kn_sdata),
447 		    filt_timerexpire, kn);
448 	}
449 }
450 
451 /*
452  * data contains amount of time to sleep, in milliseconds
453  */
454 /* XXX - move to kern_timeout.c? */
455 static int
456 filt_timerattach(struct knote *kn)
457 {
458 	struct callout *calloutp;
459 
460 	atomic_add_int(&kq_ncallouts, 1);
461 
462 	if (kq_ncallouts >= kq_calloutmax) {
463 		atomic_add_int(&kq_ncallouts, -1);
464 		return (ENOMEM);
465 	}
466 
467 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
468 	kn->kn_status &= ~KN_DETACHED;		/* knlist_add usually sets it */
469 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
470 	    M_KQUEUE, M_WAITOK);
471 	callout_init(calloutp, CALLOUT_MPSAFE);
472 	kn->kn_hook = calloutp;
473 	callout_reset(calloutp, timertoticks(kn->kn_sdata), filt_timerexpire,
474 	    kn);
475 
476 	return (0);
477 }
478 
479 /* XXX - move to kern_timeout.c? */
480 static void
481 filt_timerdetach(struct knote *kn)
482 {
483 	struct callout *calloutp;
484 
485 	calloutp = (struct callout *)kn->kn_hook;
486 	callout_drain(calloutp);
487 	FREE(calloutp, M_KQUEUE);
488 	atomic_add_int(&kq_ncallouts, -1);
489 	kn->kn_status |= KN_DETACHED;	/* knlist_remove usually clears it */
490 }
491 
492 /* XXX - move to kern_timeout.c? */
493 static int
494 filt_timer(struct knote *kn, long hint)
495 {
496 
497 	return (kn->kn_data != 0);
498 }
499 
500 /*
501  * MPSAFE
502  */
503 int
504 kqueue(struct thread *td, struct kqueue_args *uap)
505 {
506 	struct filedesc *fdp;
507 	struct kqueue *kq;
508 	struct file *fp;
509 	int fd, error;
510 
511 	fdp = td->td_proc->p_fd;
512 	error = falloc(td, &fp, &fd);
513 	if (error)
514 		goto done2;
515 
516 	/* An extra reference on `nfp' has been held for us by falloc(). */
517 	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
518 	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
519 	TAILQ_INIT(&kq->kq_head);
520 	kq->kq_fdp = fdp;
521 	knlist_init(&kq->kq_sel.si_note, &kq->kq_lock, NULL, NULL, NULL);
522 	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
523 
524 	FILEDESC_LOCK_FAST(fdp);
525 	SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
526 	FILEDESC_UNLOCK_FAST(fdp);
527 
528 	FILE_LOCK(fp);
529 	fp->f_flag = FREAD | FWRITE;
530 	fp->f_type = DTYPE_KQUEUE;
531 	fp->f_ops = &kqueueops;
532 	fp->f_data = kq;
533 	FILE_UNLOCK(fp);
534 	fdrop(fp, td);
535 
536 	td->td_retval[0] = fd;
537 done2:
538 	return (error);
539 }
540 
541 #ifndef _SYS_SYSPROTO_H_
542 struct kevent_args {
543 	int	fd;
544 	const struct kevent *changelist;
545 	int	nchanges;
546 	struct	kevent *eventlist;
547 	int	nevents;
548 	const struct timespec *timeout;
549 };
550 #endif
551 /*
552  * MPSAFE
553  */
554 int
555 kevent(struct thread *td, struct kevent_args *uap)
556 {
557 	struct timespec ts, *tsp;
558 	struct kevent_copyops k_ops = { uap,
559 					kevent_copyout,
560 					kevent_copyin};
561 	int error;
562 
563 	if (uap->timeout != NULL) {
564 		error = copyin(uap->timeout, &ts, sizeof(ts));
565 		if (error)
566 			return (error);
567 		tsp = &ts;
568 	} else
569 		tsp = NULL;
570 
571 	return (kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
572 	    &k_ops, tsp));
573 }
574 
575 /*
576  * Copy 'count' items into the destination list pointed to by uap->eventlist.
577  */
578 static int
579 kevent_copyout(void *arg, struct kevent *kevp, int count)
580 {
581 	struct kevent_args *uap;
582 	int error;
583 
584 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
585 	uap = (struct kevent_args *)arg;
586 
587 	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
588 	if (error == 0)
589 		uap->eventlist += count;
590 	return (error);
591 }
592 
593 /*
594  * Copy 'count' items from the list pointed to by uap->changelist.
595  */
596 static int
597 kevent_copyin(void *arg, struct kevent *kevp, int count)
598 {
599 	struct kevent_args *uap;
600 	int error;
601 
602 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
603 	uap = (struct kevent_args *)arg;
604 
605 	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
606 	if (error == 0)
607 		uap->changelist += count;
608 	return (error);
609 }
610 
611 int
612 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
613     struct kevent_copyops *k_ops, const struct timespec *timeout)
614 {
615 	struct kevent keva[KQ_NEVENTS];
616 	struct kevent *kevp, *changes;
617 	struct kqueue *kq;
618 	struct file *fp;
619 	int i, n, nerrors, error;
620 
621 	if ((error = fget(td, fd, &fp)) != 0)
622 		return (error);
623 	if ((error = kqueue_aquire(fp, &kq)) != 0)
624 		goto done_norel;
625 
626 	nerrors = 0;
627 
628 	while (nchanges > 0) {
629 		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
630 		error = k_ops->k_copyin(k_ops->arg, keva, n);
631 		if (error)
632 			goto done;
633 		changes = keva;
634 		for (i = 0; i < n; i++) {
635 			kevp = &changes[i];
636 			kevp->flags &= ~EV_SYSFLAGS;
637 			error = kqueue_register(kq, kevp, td, 1);
638 			if (error) {
639 				if (nevents != 0) {
640 					kevp->flags = EV_ERROR;
641 					kevp->data = error;
642 					(void) k_ops->k_copyout(k_ops->arg,
643 					    kevp, 1);
644 					nevents--;
645 					nerrors++;
646 				} else {
647 					goto done;
648 				}
649 			}
650 		}
651 		nchanges -= n;
652 	}
653 	if (nerrors) {
654 		td->td_retval[0] = nerrors;
655 		error = 0;
656 		goto done;
657 	}
658 
659 	error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
660 done:
661 	kqueue_release(kq, 0);
662 done_norel:
663 	if (fp != NULL)
664 		fdrop(fp, td);
665 	return (error);
666 }
667 
668 int
669 kqueue_add_filteropts(int filt, struct filterops *filtops)
670 {
671 	int error;
672 
673 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
674 		printf(
675 "trying to add a filterop that is out of range: %d is beyond %d\n",
676 		    ~filt, EVFILT_SYSCOUNT);
677 		return EINVAL;
678 	}
679 	mtx_lock(&filterops_lock);
680 	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
681 	    sysfilt_ops[~filt].for_fop != NULL)
682 		error = EEXIST;
683 	else {
684 		sysfilt_ops[~filt].for_fop = filtops;
685 		sysfilt_ops[~filt].for_refcnt = 0;
686 	}
687 	mtx_unlock(&filterops_lock);
688 
689 	return (0);
690 }
691 
692 int
693 kqueue_del_filteropts(int filt)
694 {
695 	int error;
696 
697 	error = 0;
698 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
699 		return EINVAL;
700 
701 	mtx_lock(&filterops_lock);
702 	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
703 	    sysfilt_ops[~filt].for_fop == NULL)
704 		error = EINVAL;
705 	else if (sysfilt_ops[~filt].for_refcnt != 0)
706 		error = EBUSY;
707 	else {
708 		sysfilt_ops[~filt].for_fop = &null_filtops;
709 		sysfilt_ops[~filt].for_refcnt = 0;
710 	}
711 	mtx_unlock(&filterops_lock);
712 
713 	return error;
714 }
715 
716 static struct filterops *
717 kqueue_fo_find(int filt)
718 {
719 
720 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
721 		return NULL;
722 
723 	mtx_lock(&filterops_lock);
724 	sysfilt_ops[~filt].for_refcnt++;
725 	if (sysfilt_ops[~filt].for_fop == NULL)
726 		sysfilt_ops[~filt].for_fop = &null_filtops;
727 	mtx_unlock(&filterops_lock);
728 
729 	return sysfilt_ops[~filt].for_fop;
730 }
731 
732 static void
733 kqueue_fo_release(int filt)
734 {
735 
736 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
737 		return;
738 
739 	mtx_lock(&filterops_lock);
740 	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
741 	    ("filter object refcount not valid on release"));
742 	sysfilt_ops[~filt].for_refcnt--;
743 	mtx_unlock(&filterops_lock);
744 }
745 
746 /*
747  * A ref to kq (obtained via kqueue_aquire) should be held.  waitok will
748  * influence if memory allocation should wait.  Make sure it is 0 if you
749  * hold any mutexes.
750  */
751 int
752 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
753 {
754 	struct filedesc *fdp;
755 	struct filterops *fops;
756 	struct file *fp;
757 	struct knote *kn, *tkn;
758 	int error, filt, event;
759 	int haskqglobal;
760 	int fd;
761 
762 	fdp = NULL;
763 	fp = NULL;
764 	kn = NULL;
765 	error = 0;
766 	haskqglobal = 0;
767 
768 	filt = kev->filter;
769 	fops = kqueue_fo_find(filt);
770 	if (fops == NULL)
771 		return EINVAL;
772 
773 	tkn = knote_alloc(waitok);		/* prevent waiting with locks */
774 
775 findkn:
776 	if (fops->f_isfd) {
777 		KASSERT(td != NULL, ("td is NULL"));
778 		fdp = td->td_proc->p_fd;
779 		FILEDESC_LOCK(fdp);
780 		/* validate descriptor */
781 		fd = kev->ident;
782 		if (fd < 0 || fd >= fdp->fd_nfiles ||
783 		    (fp = fdp->fd_ofiles[fd]) == NULL) {
784 			FILEDESC_UNLOCK(fdp);
785 			error = EBADF;
786 			goto done;
787 		}
788 		fhold(fp);
789 
790 		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
791 		    kev->ident, 0) != 0) {
792 			/* unlock and try again */
793 			FILEDESC_UNLOCK(fdp);
794 			fdrop(fp, td);
795 			fp = NULL;
796 			error = kqueue_expand(kq, fops, kev->ident, waitok);
797 			if (error)
798 				goto done;
799 			goto findkn;
800 		}
801 
802 		if (fp->f_type == DTYPE_KQUEUE) {
803 			/*
804 			 * if we add some inteligence about what we are doing,
805 			 * we should be able to support events on ourselves.
806 			 * We need to know when we are doing this to prevent
807 			 * getting both the knlist lock and the kq lock since
808 			 * they are the same thing.
809 			 */
810 			if (fp->f_data == kq) {
811 				FILEDESC_UNLOCK(fdp);
812 				error = EINVAL;
813 				goto done_noglobal;
814 			}
815 
816 			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
817 		}
818 
819 		FILEDESC_UNLOCK(fdp);
820 		KQ_LOCK(kq);
821 		if (kev->ident < kq->kq_knlistsize) {
822 			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
823 				if (kev->filter == kn->kn_filter)
824 					break;
825 		}
826 	} else {
827 		if ((kev->flags & EV_ADD) == EV_ADD)
828 			kqueue_expand(kq, fops, kev->ident, waitok);
829 
830 		KQ_LOCK(kq);
831 		if (kq->kq_knhashmask != 0) {
832 			struct klist *list;
833 
834 			list = &kq->kq_knhash[
835 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
836 			SLIST_FOREACH(kn, list, kn_link)
837 				if (kev->ident == kn->kn_id &&
838 				    kev->filter == kn->kn_filter)
839 					break;
840 		}
841 	}
842 
843 	/* knote is in the process of changing, wait for it to stablize. */
844 	if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
845 		if (fp != NULL) {
846 			fdrop(fp, td);
847 			fp = NULL;
848 		}
849 		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
850 		kq->kq_state |= KQ_FLUXWAIT;
851 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
852 		goto findkn;
853 	}
854 
855 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
856 		KQ_UNLOCK(kq);
857 		error = ENOENT;
858 		goto done;
859 	}
860 
861 	/*
862 	 * kn now contains the matching knote, or NULL if no match
863 	 */
864 	if (kev->flags & EV_ADD) {
865 		if (kn == NULL) {
866 			kn = tkn;
867 			tkn = NULL;
868 			if (kn == NULL) {
869 				error = ENOMEM;
870 				goto done;
871 			}
872 			kn->kn_fp = fp;
873 			kn->kn_kq = kq;
874 			kn->kn_fop = fops;
875 			/*
876 			 * apply reference counts to knote structure, and
877 			 * do not release it at the end of this routine.
878 			 */
879 			fops = NULL;
880 			fp = NULL;
881 
882 			kn->kn_sfflags = kev->fflags;
883 			kn->kn_sdata = kev->data;
884 			kev->fflags = 0;
885 			kev->data = 0;
886 			kn->kn_kevent = *kev;
887 			kn->kn_status = KN_INFLUX|KN_DETACHED;
888 
889 			error = knote_attach(kn, kq);
890 			KQ_UNLOCK(kq);
891 			if (error != 0) {
892 				tkn = kn;
893 				goto done;
894 			}
895 
896 			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
897 				knote_drop(kn, td);
898 				goto done;
899 			}
900 			KN_LIST_LOCK(kn);
901 		} else {
902 			/*
903 			 * The user may change some filter values after the
904 			 * initial EV_ADD, but doing so will not reset any
905 			 * filter which has already been triggered.
906 			 */
907 			kn->kn_status |= KN_INFLUX;
908 			KQ_UNLOCK(kq);
909 			KN_LIST_LOCK(kn);
910 			kn->kn_sfflags = kev->fflags;
911 			kn->kn_sdata = kev->data;
912 			kn->kn_kevent.udata = kev->udata;
913 		}
914 
915 		/*
916 		 * We can get here with kn->kn_knlist == NULL.
917 		 * This can happen when the initial attach event decides that
918 		 * the event is "completed" already.  i.e. filt_procattach
919 		 * is called on a zombie process.  It will call filt_proc
920 		 * which will remove it from the list, and NULL kn_knlist.
921 		 */
922 		event = kn->kn_fop->f_event(kn, 0);
923 		KN_LIST_UNLOCK(kn);
924 		KQ_LOCK(kq);
925 		if (event)
926 			KNOTE_ACTIVATE(kn, 1);
927 		kn->kn_status &= ~KN_INFLUX;
928 	} else if (kev->flags & EV_DELETE) {
929 		kn->kn_status |= KN_INFLUX;
930 		KQ_UNLOCK(kq);
931 		if (!(kn->kn_status & KN_DETACHED))
932 			kn->kn_fop->f_detach(kn);
933 		knote_drop(kn, td);
934 		goto done;
935 	}
936 
937 	if ((kev->flags & EV_DISABLE) &&
938 	    ((kn->kn_status & KN_DISABLED) == 0)) {
939 		kn->kn_status |= KN_DISABLED;
940 	}
941 
942 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
943 		kn->kn_status &= ~KN_DISABLED;
944 		if ((kn->kn_status & KN_ACTIVE) &&
945 		    ((kn->kn_status & KN_QUEUED) == 0))
946 			knote_enqueue(kn);
947 	}
948 	KQ_UNLOCK_FLUX(kq);
949 
950 done:
951 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
952 done_noglobal:
953 	if (fp != NULL)
954 		fdrop(fp, td);
955 	if (tkn != NULL)
956 		knote_free(tkn);
957 	if (fops != NULL)
958 		kqueue_fo_release(filt);
959 	return (error);
960 }
961 
962 static int
963 kqueue_aquire(struct file *fp, struct kqueue **kqp)
964 {
965 	int error;
966 	struct kqueue *kq;
967 
968 	error = 0;
969 
970 	FILE_LOCK(fp);
971 	do {
972 		kq = fp->f_data;
973 		if (fp->f_type != DTYPE_KQUEUE || kq == NULL) {
974 			error = EBADF;
975 			break;
976 		}
977 		*kqp = kq;
978 		KQ_LOCK(kq);
979 		if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
980 			KQ_UNLOCK(kq);
981 			error = EBADF;
982 			break;
983 		}
984 		kq->kq_refcnt++;
985 		KQ_UNLOCK(kq);
986 	} while (0);
987 	FILE_UNLOCK(fp);
988 
989 	return error;
990 }
991 
992 static void
993 kqueue_release(struct kqueue *kq, int locked)
994 {
995 	if (locked)
996 		KQ_OWNED(kq);
997 	else
998 		KQ_LOCK(kq);
999 	kq->kq_refcnt--;
1000 	if (kq->kq_refcnt == 1)
1001 		wakeup(&kq->kq_refcnt);
1002 	if (!locked)
1003 		KQ_UNLOCK(kq);
1004 }
1005 
1006 static void
1007 kqueue_schedtask(struct kqueue *kq)
1008 {
1009 
1010 	KQ_OWNED(kq);
1011 	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1012 	    ("scheduling kqueue task while draining"));
1013 
1014 	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1015 		taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
1016 		kq->kq_state |= KQ_TASKSCHED;
1017 	}
1018 }
1019 
1020 /*
1021  * Expand the kq to make sure we have storage for fops/ident pair.
1022  *
1023  * Return 0 on success (or no work necessary), return errno on failure.
1024  *
1025  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
1026  * If kqueue_register is called from a non-fd context, there usually/should
1027  * be no locks held.
1028  */
1029 static int
1030 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1031 	int waitok)
1032 {
1033 	struct klist *list, *tmp_knhash;
1034 	u_long tmp_knhashmask;
1035 	int size;
1036 	int fd;
1037 	int mflag = waitok ? M_WAITOK : M_NOWAIT;
1038 
1039 	KQ_NOTOWNED(kq);
1040 
1041 	if (fops->f_isfd) {
1042 		fd = ident;
1043 		if (kq->kq_knlistsize <= fd) {
1044 			size = kq->kq_knlistsize;
1045 			while (size <= fd)
1046 				size += KQEXTENT;
1047 			MALLOC(list, struct klist *,
1048 			    size * sizeof list, M_KQUEUE, mflag);
1049 			if (list == NULL)
1050 				return ENOMEM;
1051 			KQ_LOCK(kq);
1052 			if (kq->kq_knlistsize > fd) {
1053 				FREE(list, M_KQUEUE);
1054 				list = NULL;
1055 			} else {
1056 				if (kq->kq_knlist != NULL) {
1057 					bcopy(kq->kq_knlist, list,
1058 					    kq->kq_knlistsize * sizeof list);
1059 					FREE(kq->kq_knlist, M_KQUEUE);
1060 					kq->kq_knlist = NULL;
1061 				}
1062 				bzero((caddr_t)list +
1063 				    kq->kq_knlistsize * sizeof list,
1064 				    (size - kq->kq_knlistsize) * sizeof list);
1065 				kq->kq_knlistsize = size;
1066 				kq->kq_knlist = list;
1067 			}
1068 			KQ_UNLOCK(kq);
1069 		}
1070 	} else {
1071 		if (kq->kq_knhashmask == 0) {
1072 			tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1073 			    &tmp_knhashmask);
1074 			if (tmp_knhash == NULL)
1075 				return ENOMEM;
1076 			KQ_LOCK(kq);
1077 			if (kq->kq_knhashmask == 0) {
1078 				kq->kq_knhash = tmp_knhash;
1079 				kq->kq_knhashmask = tmp_knhashmask;
1080 			} else {
1081 				free(tmp_knhash, M_KQUEUE);
1082 			}
1083 			KQ_UNLOCK(kq);
1084 		}
1085 	}
1086 
1087 	KQ_NOTOWNED(kq);
1088 	return 0;
1089 }
1090 
1091 static void
1092 kqueue_task(void *arg, int pending)
1093 {
1094 	struct kqueue *kq;
1095 	int haskqglobal;
1096 
1097 	haskqglobal = 0;
1098 	kq = arg;
1099 
1100 	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1101 	KQ_LOCK(kq);
1102 
1103 	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1104 
1105 	kq->kq_state &= ~KQ_TASKSCHED;
1106 	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1107 		wakeup(&kq->kq_state);
1108 	}
1109 	KQ_UNLOCK(kq);
1110 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1111 }
1112 
1113 /*
1114  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1115  * We treat KN_MARKER knotes as if they are INFLUX.
1116  */
1117 static int
1118 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1119     const struct timespec *tsp, struct kevent *keva, struct thread *td)
1120 {
1121 	struct kevent *kevp;
1122 	struct timeval atv, rtv, ttv;
1123 	struct knote *kn, *marker;
1124 	int count, timeout, nkev, error;
1125 	int haskqglobal;
1126 
1127 	count = maxevents;
1128 	nkev = 0;
1129 	error = 0;
1130 	haskqglobal = 0;
1131 
1132 	if (maxevents == 0)
1133 		goto done_nl;
1134 
1135 	if (tsp != NULL) {
1136 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
1137 		if (itimerfix(&atv)) {
1138 			error = EINVAL;
1139 			goto done_nl;
1140 		}
1141 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1142 			timeout = -1;
1143 		else
1144 			timeout = atv.tv_sec > 24 * 60 * 60 ?
1145 			    24 * 60 * 60 * hz : tvtohz(&atv);
1146 		getmicrouptime(&rtv);
1147 		timevaladd(&atv, &rtv);
1148 	} else {
1149 		atv.tv_sec = 0;
1150 		atv.tv_usec = 0;
1151 		timeout = 0;
1152 	}
1153 	marker = knote_alloc(1);
1154 	if (marker == NULL) {
1155 		error = ENOMEM;
1156 		goto done_nl;
1157 	}
1158 	marker->kn_status = KN_MARKER;
1159 	KQ_LOCK(kq);
1160 	goto start;
1161 
1162 retry:
1163 	if (atv.tv_sec || atv.tv_usec) {
1164 		getmicrouptime(&rtv);
1165 		if (timevalcmp(&rtv, &atv, >=))
1166 			goto done;
1167 		ttv = atv;
1168 		timevalsub(&ttv, &rtv);
1169 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
1170 			24 * 60 * 60 * hz : tvtohz(&ttv);
1171 	}
1172 
1173 start:
1174 	kevp = keva;
1175 	if (kq->kq_count == 0) {
1176 		if (timeout < 0) {
1177 			error = EWOULDBLOCK;
1178 		} else {
1179 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1180 			kq->kq_state |= KQ_SLEEP;
1181 			error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH,
1182 			    "kqread", timeout);
1183 		}
1184 		if (error == 0)
1185 			goto retry;
1186 		/* don't restart after signals... */
1187 		if (error == ERESTART)
1188 			error = EINTR;
1189 		else if (error == EWOULDBLOCK)
1190 			error = 0;
1191 		goto done;
1192 	}
1193 
1194 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1195 	while (count) {
1196 		KQ_OWNED(kq);
1197 		kn = TAILQ_FIRST(&kq->kq_head);
1198 
1199 		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1200 		    (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1201 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1202 			kq->kq_state |= KQ_FLUXWAIT;
1203 			error = msleep(kq, &kq->kq_lock, PSOCK,
1204 			    "kqflxwt", 0);
1205 			continue;
1206 		}
1207 
1208 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1209 		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1210 			kn->kn_status &= ~KN_QUEUED;
1211 			kq->kq_count--;
1212 			continue;
1213 		}
1214 		if (kn == marker) {
1215 			KQ_FLUX_WAKEUP(kq);
1216 			if (count == maxevents)
1217 				goto retry;
1218 			goto done;
1219 		}
1220 		KASSERT((kn->kn_status & KN_INFLUX) == 0,
1221 		    ("KN_INFLUX set when not suppose to be"));
1222 
1223 		if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1224 			kn->kn_status &= ~KN_QUEUED;
1225 			kn->kn_status |= KN_INFLUX;
1226 			kq->kq_count--;
1227 			KQ_UNLOCK(kq);
1228 			/*
1229 			 * We don't need to lock the list since we've marked
1230 			 * it _INFLUX.
1231 			 */
1232 			*kevp = kn->kn_kevent;
1233 			if (!(kn->kn_status & KN_DETACHED))
1234 				kn->kn_fop->f_detach(kn);
1235 			knote_drop(kn, td);
1236 			KQ_LOCK(kq);
1237 			kn = NULL;
1238 		} else {
1239 			kn->kn_status |= KN_INFLUX;
1240 			KQ_UNLOCK(kq);
1241 			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1242 				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1243 			KN_LIST_LOCK(kn);
1244 			if (kn->kn_fop->f_event(kn, 0) == 0) {
1245 				KQ_LOCK(kq);
1246 				kn->kn_status &=
1247 				    ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX);
1248 				kq->kq_count--;
1249 				KN_LIST_UNLOCK(kn);
1250 				continue;
1251 			}
1252 			*kevp = kn->kn_kevent;
1253 			KQ_LOCK(kq);
1254 			if (kn->kn_flags & EV_CLEAR) {
1255 				kn->kn_data = 0;
1256 				kn->kn_fflags = 0;
1257 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1258 				kq->kq_count--;
1259 			} else
1260 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1261 
1262 			kn->kn_status &= ~(KN_INFLUX);
1263 			KN_LIST_UNLOCK(kn);
1264 
1265 		}
1266 
1267 		/* we are returning a copy to the user */
1268 		kevp++;
1269 		nkev++;
1270 		count--;
1271 
1272 		if (nkev == KQ_NEVENTS) {
1273 			KQ_UNLOCK_FLUX(kq);
1274 			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1275 			nkev = 0;
1276 			kevp = keva;
1277 			KQ_LOCK(kq);
1278 			if (error)
1279 				break;
1280 		}
1281 	}
1282 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1283 done:
1284 	KQ_OWNED(kq);
1285 	KQ_UNLOCK_FLUX(kq);
1286 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1287 	knote_free(marker);
1288 done_nl:
1289 	KQ_NOTOWNED(kq);
1290 	if (nkev != 0)
1291 		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1292 	td->td_retval[0] = maxevents - count;
1293 	return (error);
1294 }
1295 
1296 /*
1297  * XXX
1298  * This could be expanded to call kqueue_scan, if desired.
1299  */
1300 /*ARGSUSED*/
1301 static int
1302 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1303 	int flags, struct thread *td)
1304 {
1305 	return (ENXIO);
1306 }
1307 
1308 /*ARGSUSED*/
1309 static int
1310 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1311 	 int flags, struct thread *td)
1312 {
1313 	return (ENXIO);
1314 }
1315 
1316 /*ARGSUSED*/
1317 static int
1318 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
1319 	struct ucred *active_cred, struct thread *td)
1320 {
1321 	/*
1322 	 * Enabling sigio causes two major problems:
1323 	 * 1) infinite recursion:
1324 	 * Synopsys: kevent is being used to track signals and have FIOASYNC
1325 	 * set.  On receipt of a signal this will cause a kqueue to recurse
1326 	 * into itself over and over.  Sending the sigio causes the kqueue
1327 	 * to become ready, which in turn posts sigio again, forever.
1328 	 * Solution: this can be solved by setting a flag in the kqueue that
1329 	 * we have a SIGIO in progress.
1330 	 * 2) locking problems:
1331 	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
1332 	 * us above the proc and pgrp locks.
1333 	 * Solution: Post a signal using an async mechanism, being sure to
1334 	 * record a generation count in the delivery so that we do not deliver
1335 	 * a signal to the wrong process.
1336 	 *
1337 	 * Note, these two mechanisms are somewhat mutually exclusive!
1338 	 */
1339 #if 0
1340 	struct kqueue *kq;
1341 
1342 	kq = fp->f_data;
1343 	switch (cmd) {
1344 	case FIOASYNC:
1345 		if (*(int *)data) {
1346 			kq->kq_state |= KQ_ASYNC;
1347 		} else {
1348 			kq->kq_state &= ~KQ_ASYNC;
1349 		}
1350 		return (0);
1351 
1352 	case FIOSETOWN:
1353 		return (fsetown(*(int *)data, &kq->kq_sigio));
1354 
1355 	case FIOGETOWN:
1356 		*(int *)data = fgetown(&kq->kq_sigio);
1357 		return (0);
1358 	}
1359 #endif
1360 
1361 	return (ENOTTY);
1362 }
1363 
1364 /*ARGSUSED*/
1365 static int
1366 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
1367 	struct thread *td)
1368 {
1369 	struct kqueue *kq;
1370 	int revents = 0;
1371 	int error;
1372 
1373 	if ((error = kqueue_aquire(fp, &kq)))
1374 		return POLLERR;
1375 
1376 	KQ_LOCK(kq);
1377 	if (events & (POLLIN | POLLRDNORM)) {
1378 		if (kq->kq_count) {
1379 			revents |= events & (POLLIN | POLLRDNORM);
1380 		} else {
1381 			selrecord(td, &kq->kq_sel);
1382 			kq->kq_state |= KQ_SEL;
1383 		}
1384 	}
1385 	kqueue_release(kq, 1);
1386 	KQ_UNLOCK(kq);
1387 	return (revents);
1388 }
1389 
1390 /*ARGSUSED*/
1391 static int
1392 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1393 	struct thread *td)
1394 {
1395 
1396 	bzero((void *)st, sizeof *st);
1397 	/*
1398 	 * We no longer return kq_count because the unlocked value is useless.
1399 	 * If you spent all this time getting the count, why not spend your
1400 	 * syscall better by calling kevent?
1401 	 *
1402 	 * XXX - This is needed for libc_r.
1403 	 */
1404 	st->st_mode = S_IFIFO;
1405 	return (0);
1406 }
1407 
1408 /*ARGSUSED*/
1409 static int
1410 kqueue_close(struct file *fp, struct thread *td)
1411 {
1412 	struct kqueue *kq = fp->f_data;
1413 	struct filedesc *fdp;
1414 	struct knote *kn;
1415 	int i;
1416 	int error;
1417 
1418 	if ((error = kqueue_aquire(fp, &kq)))
1419 		return error;
1420 
1421 	KQ_LOCK(kq);
1422 
1423 	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
1424 	    ("kqueue already closing"));
1425 	kq->kq_state |= KQ_CLOSING;
1426 	if (kq->kq_refcnt > 1)
1427 		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
1428 
1429 	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
1430 	fdp = kq->kq_fdp;
1431 
1432 	KASSERT(knlist_empty(&kq->kq_sel.si_note),
1433 	    ("kqueue's knlist not empty"));
1434 
1435 	for (i = 0; i < kq->kq_knlistsize; i++) {
1436 		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
1437 			KASSERT((kn->kn_status & KN_INFLUX) == 0,
1438 			    ("KN_INFLUX set when not suppose to be"));
1439 			kn->kn_status |= KN_INFLUX;
1440 			KQ_UNLOCK(kq);
1441 			if (!(kn->kn_status & KN_DETACHED))
1442 				kn->kn_fop->f_detach(kn);
1443 			knote_drop(kn, td);
1444 			KQ_LOCK(kq);
1445 		}
1446 	}
1447 	if (kq->kq_knhashmask != 0) {
1448 		for (i = 0; i <= kq->kq_knhashmask; i++) {
1449 			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
1450 				KASSERT((kn->kn_status & KN_INFLUX) == 0,
1451 				    ("KN_INFLUX set when not suppose to be"));
1452 				kn->kn_status |= KN_INFLUX;
1453 				KQ_UNLOCK(kq);
1454 				if (!(kn->kn_status & KN_DETACHED))
1455 					kn->kn_fop->f_detach(kn);
1456 				knote_drop(kn, td);
1457 				KQ_LOCK(kq);
1458 			}
1459 		}
1460 	}
1461 
1462 	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
1463 		kq->kq_state |= KQ_TASKDRAIN;
1464 		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
1465 	}
1466 
1467 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1468 		kq->kq_state &= ~KQ_SEL;
1469 		selwakeuppri(&kq->kq_sel, PSOCK);
1470 	}
1471 
1472 	KQ_UNLOCK(kq);
1473 
1474 	FILEDESC_LOCK_FAST(fdp);
1475 	SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list);
1476 	FILEDESC_UNLOCK_FAST(fdp);
1477 
1478 	knlist_destroy(&kq->kq_sel.si_note);
1479 	mtx_destroy(&kq->kq_lock);
1480 	kq->kq_fdp = NULL;
1481 
1482 	if (kq->kq_knhash != NULL)
1483 		free(kq->kq_knhash, M_KQUEUE);
1484 	if (kq->kq_knlist != NULL)
1485 		free(kq->kq_knlist, M_KQUEUE);
1486 
1487 	funsetown(&kq->kq_sigio);
1488 	free(kq, M_KQUEUE);
1489 	fp->f_data = NULL;
1490 
1491 	return (0);
1492 }
1493 
1494 static void
1495 kqueue_wakeup(struct kqueue *kq)
1496 {
1497 	KQ_OWNED(kq);
1498 
1499 	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
1500 		kq->kq_state &= ~KQ_SLEEP;
1501 		wakeup(kq);
1502 	}
1503 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1504 		kq->kq_state &= ~KQ_SEL;
1505 		selwakeuppri(&kq->kq_sel, PSOCK);
1506 	}
1507 	if (!knlist_empty(&kq->kq_sel.si_note))
1508 		kqueue_schedtask(kq);
1509 	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
1510 		pgsigio(&kq->kq_sigio, SIGIO, 0);
1511 	}
1512 }
1513 
1514 /*
1515  * Walk down a list of knotes, activating them if their event has triggered.
1516  *
1517  * There is a possibility to optimize in the case of one kq watching another.
1518  * Instead of scheduling a task to wake it up, you could pass enough state
1519  * down the chain to make up the parent kqueue.  Make this code functional
1520  * first.
1521  */
1522 void
1523 knote(struct knlist *list, long hint, int islocked)
1524 {
1525 	struct kqueue *kq;
1526 	struct knote *kn;
1527 
1528 	if (list == NULL)
1529 		return;
1530 
1531 	KNL_ASSERT_LOCK(list, islocked);
1532 
1533 	if (!islocked)
1534 		list->kl_lock(list->kl_lockarg);
1535 
1536 	/*
1537 	 * If we unlock the list lock (and set KN_INFLUX), we can eliminate
1538 	 * the kqueue scheduling, but this will introduce four
1539 	 * lock/unlock's for each knote to test.  If we do, continue to use
1540 	 * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
1541 	 * only safe if you want to remove the current item, which we are
1542 	 * not doing.
1543 	 */
1544 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
1545 		kq = kn->kn_kq;
1546 		if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
1547 			KQ_LOCK(kq);
1548 			if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
1549 				kn->kn_status |= KN_HASKQLOCK;
1550 				if (kn->kn_fop->f_event(kn, hint))
1551 					KNOTE_ACTIVATE(kn, 1);
1552 				kn->kn_status &= ~KN_HASKQLOCK;
1553 			}
1554 			KQ_UNLOCK(kq);
1555 		}
1556 		kq = NULL;
1557 	}
1558 	if (!islocked)
1559 		list->kl_unlock(list->kl_lockarg);
1560 }
1561 
1562 /*
1563  * add a knote to a knlist
1564  */
1565 void
1566 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
1567 {
1568 	KNL_ASSERT_LOCK(knl, islocked);
1569 	KQ_NOTOWNED(kn->kn_kq);
1570 	KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
1571 	    (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
1572 	if (!islocked)
1573 		knl->kl_lock(knl->kl_lockarg);
1574 	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
1575 	if (!islocked)
1576 		knl->kl_unlock(knl->kl_lockarg);
1577 	KQ_LOCK(kn->kn_kq);
1578 	kn->kn_knlist = knl;
1579 	kn->kn_status &= ~KN_DETACHED;
1580 	KQ_UNLOCK(kn->kn_kq);
1581 }
1582 
1583 static void
1584 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
1585 {
1586 	KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
1587 	KNL_ASSERT_LOCK(knl, knlislocked);
1588 	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
1589 	if (!kqislocked)
1590 		KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
1591     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
1592 	if (!knlislocked)
1593 		knl->kl_lock(knl->kl_lockarg);
1594 	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
1595 	kn->kn_knlist = NULL;
1596 	if (!knlislocked)
1597 		knl->kl_unlock(knl->kl_lockarg);
1598 	if (!kqislocked)
1599 		KQ_LOCK(kn->kn_kq);
1600 	kn->kn_status |= KN_DETACHED;
1601 	if (!kqislocked)
1602 		KQ_UNLOCK(kn->kn_kq);
1603 }
1604 
1605 /*
1606  * remove all knotes from a specified klist
1607  */
1608 void
1609 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
1610 {
1611 
1612 	knlist_remove_kq(knl, kn, islocked, 0);
1613 }
1614 
1615 /*
1616  * remove knote from a specified klist while in f_event handler.
1617  */
1618 void
1619 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
1620 {
1621 
1622 	knlist_remove_kq(knl, kn, 1,
1623 	    (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
1624 }
1625 
1626 int
1627 knlist_empty(struct knlist *knl)
1628 {
1629 	KNL_ASSERT_LOCKED(knl);
1630 	return SLIST_EMPTY(&knl->kl_list);
1631 }
1632 
1633 static struct mtx	knlist_lock;
1634 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
1635 	MTX_DEF);
1636 static void knlist_mtx_lock(void *arg);
1637 static void knlist_mtx_unlock(void *arg);
1638 static int knlist_mtx_locked(void *arg);
1639 
1640 static void
1641 knlist_mtx_lock(void *arg)
1642 {
1643 	mtx_lock((struct mtx *)arg);
1644 }
1645 
1646 static void
1647 knlist_mtx_unlock(void *arg)
1648 {
1649 	mtx_unlock((struct mtx *)arg);
1650 }
1651 
1652 static int
1653 knlist_mtx_locked(void *arg)
1654 {
1655 	return (mtx_owned((struct mtx *)arg));
1656 }
1657 
1658 void
1659 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
1660     void (*kl_unlock)(void *), int (*kl_locked)(void *))
1661 {
1662 
1663 	if (lock == NULL)
1664 		knl->kl_lockarg = &knlist_lock;
1665 	else
1666 		knl->kl_lockarg = lock;
1667 
1668 	if (kl_lock == NULL)
1669 		knl->kl_lock = knlist_mtx_lock;
1670 	else
1671 		knl->kl_lock = kl_lock;
1672 	if (kl_lock == NULL)
1673 		knl->kl_unlock = knlist_mtx_unlock;
1674 	else
1675 		knl->kl_unlock = kl_unlock;
1676 	if (kl_locked == NULL)
1677 		knl->kl_locked = knlist_mtx_locked;
1678 	else
1679 		knl->kl_locked = kl_locked;
1680 
1681 	SLIST_INIT(&knl->kl_list);
1682 }
1683 
1684 void
1685 knlist_destroy(struct knlist *knl)
1686 {
1687 
1688 #ifdef INVARIANTS
1689 	/*
1690 	 * if we run across this error, we need to find the offending
1691 	 * driver and have it call knlist_clear.
1692 	 */
1693 	if (!SLIST_EMPTY(&knl->kl_list))
1694 		printf("WARNING: destroying knlist w/ knotes on it!\n");
1695 #endif
1696 
1697 	knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
1698 	SLIST_INIT(&knl->kl_list);
1699 }
1700 
1701 /*
1702  * Even if we are locked, we may need to drop the lock to allow any influx
1703  * knotes time to "settle".
1704  */
1705 void
1706 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
1707 {
1708 	struct knote *kn;
1709 	struct kqueue *kq;
1710 
1711 	if (islocked)
1712 		KNL_ASSERT_LOCKED(knl);
1713 	else {
1714 		KNL_ASSERT_UNLOCKED(knl);
1715 again:		/* need to reaquire lock since we have dropped it */
1716 		knl->kl_lock(knl->kl_lockarg);
1717 	}
1718 
1719 	SLIST_FOREACH(kn, &knl->kl_list, kn_selnext) {
1720 		kq = kn->kn_kq;
1721 		KQ_LOCK(kq);
1722 		if ((kn->kn_status & KN_INFLUX)) {
1723 			KQ_UNLOCK(kq);
1724 			continue;
1725 		}
1726 		knlist_remove_kq(knl, kn, 1, 1);
1727 		if (killkn) {
1728 			kn->kn_status |= KN_INFLUX | KN_DETACHED;
1729 			KQ_UNLOCK(kq);
1730 			knote_drop(kn, td);
1731 		} else {
1732 			/* Make sure cleared knotes disappear soon */
1733 			kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1734 			KQ_UNLOCK(kq);
1735 		}
1736 		kq = NULL;
1737 	}
1738 
1739 	if (!SLIST_EMPTY(&knl->kl_list)) {
1740 		/* there are still KN_INFLUX remaining */
1741 		kn = SLIST_FIRST(&knl->kl_list);
1742 		kq = kn->kn_kq;
1743 		KQ_LOCK(kq);
1744 		KASSERT(kn->kn_status & KN_INFLUX,
1745 		    ("knote removed w/o list lock"));
1746 		knl->kl_unlock(knl->kl_lockarg);
1747 		kq->kq_state |= KQ_FLUXWAIT;
1748 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
1749 		kq = NULL;
1750 		goto again;
1751 	}
1752 
1753 	if (islocked)
1754 		KNL_ASSERT_LOCKED(knl);
1755 	else {
1756 		knl->kl_unlock(knl->kl_lockarg);
1757 		KNL_ASSERT_UNLOCKED(knl);
1758 	}
1759 }
1760 
1761 /*
1762  * remove all knotes referencing a specified fd
1763  * must be called with FILEDESC lock.  This prevents a race where a new fd
1764  * comes along and occupies the entry and we attach a knote to the fd.
1765  */
1766 void
1767 knote_fdclose(struct thread *td, int fd)
1768 {
1769 	struct filedesc *fdp = td->td_proc->p_fd;
1770 	struct kqueue *kq;
1771 	struct knote *kn;
1772 	int influx;
1773 
1774 	FILEDESC_LOCK_ASSERT(fdp, MA_OWNED);
1775 
1776 	/*
1777 	 * We shouldn't have to worry about new kevents appearing on fd
1778 	 * since filedesc is locked.
1779 	 */
1780 	SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
1781 		KQ_LOCK(kq);
1782 
1783 again:
1784 		influx = 0;
1785 		while (kq->kq_knlistsize > fd &&
1786 		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
1787 			if (kn->kn_status & KN_INFLUX) {
1788 				/* someone else might be waiting on our knote */
1789 				if (influx)
1790 					wakeup(kq);
1791 				kq->kq_state |= KQ_FLUXWAIT;
1792 				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
1793 				goto again;
1794 			}
1795 			kn->kn_status |= KN_INFLUX;
1796 			KQ_UNLOCK(kq);
1797 			if (!(kn->kn_status & KN_DETACHED))
1798 				kn->kn_fop->f_detach(kn);
1799 			knote_drop(kn, td);
1800 			influx = 1;
1801 			KQ_LOCK(kq);
1802 		}
1803 		KQ_UNLOCK_FLUX(kq);
1804 	}
1805 }
1806 
1807 static int
1808 knote_attach(struct knote *kn, struct kqueue *kq)
1809 {
1810 	struct klist *list;
1811 
1812 	KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
1813 	KQ_OWNED(kq);
1814 
1815 	if (kn->kn_fop->f_isfd) {
1816 		if (kn->kn_id >= kq->kq_knlistsize)
1817 			return ENOMEM;
1818 		list = &kq->kq_knlist[kn->kn_id];
1819 	} else {
1820 		if (kq->kq_knhash == NULL)
1821 			return ENOMEM;
1822 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1823 	}
1824 
1825 	SLIST_INSERT_HEAD(list, kn, kn_link);
1826 
1827 	return 0;
1828 }
1829 
1830 /*
1831  * knote must already have been detatched using the f_detach method.
1832  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
1833  * to prevent other removal.
1834  */
1835 static void
1836 knote_drop(struct knote *kn, struct thread *td)
1837 {
1838 	struct kqueue *kq;
1839 	struct klist *list;
1840 
1841 	kq = kn->kn_kq;
1842 
1843 	KQ_NOTOWNED(kq);
1844 	KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
1845 	    ("knote_drop called without KN_INFLUX set in kn_status"));
1846 
1847 	KQ_LOCK(kq);
1848 	if (kn->kn_fop->f_isfd)
1849 		list = &kq->kq_knlist[kn->kn_id];
1850 	else
1851 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1852 
1853 	SLIST_REMOVE(list, kn, knote, kn_link);
1854 	if (kn->kn_status & KN_QUEUED)
1855 		knote_dequeue(kn);
1856 	KQ_UNLOCK_FLUX(kq);
1857 
1858 	if (kn->kn_fop->f_isfd) {
1859 		fdrop(kn->kn_fp, td);
1860 		kn->kn_fp = NULL;
1861 	}
1862 	kqueue_fo_release(kn->kn_kevent.filter);
1863 	kn->kn_fop = NULL;
1864 	knote_free(kn);
1865 }
1866 
1867 static void
1868 knote_enqueue(struct knote *kn)
1869 {
1870 	struct kqueue *kq = kn->kn_kq;
1871 
1872 	KQ_OWNED(kn->kn_kq);
1873 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1874 
1875 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1876 	kn->kn_status |= KN_QUEUED;
1877 	kq->kq_count++;
1878 	kqueue_wakeup(kq);
1879 }
1880 
1881 static void
1882 knote_dequeue(struct knote *kn)
1883 {
1884 	struct kqueue *kq = kn->kn_kq;
1885 
1886 	KQ_OWNED(kn->kn_kq);
1887 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1888 
1889 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1890 	kn->kn_status &= ~KN_QUEUED;
1891 	kq->kq_count--;
1892 }
1893 
1894 static void
1895 knote_init(void)
1896 {
1897 
1898 	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
1899 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1900 }
1901 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
1902 
1903 static struct knote *
1904 knote_alloc(int waitok)
1905 {
1906 	return ((struct knote *)uma_zalloc(knote_zone,
1907 	    (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
1908 }
1909 
1910 static void
1911 knote_free(struct knote *kn)
1912 {
1913 	if (kn != NULL)
1914 		uma_zfree(knote_zone, kn);
1915 }
1916