1 /*- 2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 3 * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/kernel.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/proc.h> 37 #include <sys/malloc.h> 38 #include <sys/unistd.h> 39 #include <sys/file.h> 40 #include <sys/filedesc.h> 41 #include <sys/filio.h> 42 #include <sys/fcntl.h> 43 #include <sys/kthread.h> 44 #include <sys/selinfo.h> 45 #include <sys/queue.h> 46 #include <sys/event.h> 47 #include <sys/eventvar.h> 48 #include <sys/poll.h> 49 #include <sys/protosw.h> 50 #include <sys/sigio.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/stat.h> 55 #include <sys/sysctl.h> 56 #include <sys/sysproto.h> 57 #include <sys/syscallsubr.h> 58 #include <sys/taskqueue.h> 59 #include <sys/uio.h> 60 61 #include <vm/uma.h> 62 63 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); 64 65 /* 66 * This lock is used if multiple kq locks are required. This possibly 67 * should be made into a per proc lock. 68 */ 69 static struct mtx kq_global; 70 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF); 71 #define KQ_GLOBAL_LOCK(lck, haslck) do { \ 72 if (!haslck) \ 73 mtx_lock(lck); \ 74 haslck = 1; \ 75 } while (0) 76 #define KQ_GLOBAL_UNLOCK(lck, haslck) do { \ 77 if (haslck) \ 78 mtx_unlock(lck); \ 79 haslck = 0; \ 80 } while (0) 81 82 TASKQUEUE_DEFINE_THREAD(kqueue); 83 84 static int kevent_copyout(void *arg, struct kevent *kevp, int count); 85 static int kevent_copyin(void *arg, struct kevent *kevp, int count); 86 static int kqueue_aquire(struct file *fp, struct kqueue **kqp); 87 static void kqueue_release(struct kqueue *kq, int locked); 88 static int kqueue_expand(struct kqueue *kq, struct filterops *fops, 89 uintptr_t ident, int waitok); 90 static void kqueue_task(void *arg, int pending); 91 static int kqueue_scan(struct kqueue *kq, int maxevents, 92 struct kevent_copyops *k_ops, 93 const struct timespec *timeout, 94 struct kevent *keva, struct thread *td); 95 static void kqueue_wakeup(struct kqueue *kq); 96 static struct filterops *kqueue_fo_find(int filt); 97 static void kqueue_fo_release(int filt); 98 99 static fo_rdwr_t kqueue_read; 100 static fo_rdwr_t kqueue_write; 101 static fo_ioctl_t kqueue_ioctl; 102 static fo_poll_t kqueue_poll; 103 static fo_kqfilter_t kqueue_kqfilter; 104 static fo_stat_t kqueue_stat; 105 static fo_close_t kqueue_close; 106 107 static struct fileops kqueueops = { 108 .fo_read = kqueue_read, 109 .fo_write = kqueue_write, 110 .fo_ioctl = kqueue_ioctl, 111 .fo_poll = kqueue_poll, 112 .fo_kqfilter = kqueue_kqfilter, 113 .fo_stat = kqueue_stat, 114 .fo_close = kqueue_close, 115 }; 116 117 static int knote_attach(struct knote *kn, struct kqueue *kq); 118 static void knote_drop(struct knote *kn, struct thread *td); 119 static void knote_enqueue(struct knote *kn); 120 static void knote_dequeue(struct knote *kn); 121 static void knote_init(void); 122 static struct knote *knote_alloc(int waitok); 123 static void knote_free(struct knote *kn); 124 125 static void filt_kqdetach(struct knote *kn); 126 static int filt_kqueue(struct knote *kn, long hint); 127 static int filt_procattach(struct knote *kn); 128 static void filt_procdetach(struct knote *kn); 129 static int filt_proc(struct knote *kn, long hint); 130 static int filt_fileattach(struct knote *kn); 131 static void filt_timerexpire(void *knx); 132 static int filt_timerattach(struct knote *kn); 133 static void filt_timerdetach(struct knote *kn); 134 static int filt_timer(struct knote *kn, long hint); 135 136 static struct filterops file_filtops = 137 { 1, filt_fileattach, NULL, NULL }; 138 static struct filterops kqread_filtops = 139 { 1, NULL, filt_kqdetach, filt_kqueue }; 140 /* XXX - move to kern_proc.c? */ 141 static struct filterops proc_filtops = 142 { 0, filt_procattach, filt_procdetach, filt_proc }; 143 static struct filterops timer_filtops = 144 { 0, filt_timerattach, filt_timerdetach, filt_timer }; 145 146 static uma_zone_t knote_zone; 147 static int kq_ncallouts = 0; 148 static int kq_calloutmax = (4 * 1024); 149 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW, 150 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue"); 151 152 /* XXX - ensure not KN_INFLUX?? */ 153 #define KNOTE_ACTIVATE(kn, islock) do { \ 154 if ((islock)) \ 155 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED); \ 156 else \ 157 KQ_LOCK((kn)->kn_kq); \ 158 (kn)->kn_status |= KN_ACTIVE; \ 159 if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \ 160 knote_enqueue((kn)); \ 161 if (!(islock)) \ 162 KQ_UNLOCK((kn)->kn_kq); \ 163 } while(0) 164 #define KQ_LOCK(kq) do { \ 165 mtx_lock(&(kq)->kq_lock); \ 166 } while (0) 167 #define KQ_FLUX_WAKEUP(kq) do { \ 168 if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) { \ 169 (kq)->kq_state &= ~KQ_FLUXWAIT; \ 170 wakeup((kq)); \ 171 } \ 172 } while (0) 173 #define KQ_UNLOCK_FLUX(kq) do { \ 174 KQ_FLUX_WAKEUP(kq); \ 175 mtx_unlock(&(kq)->kq_lock); \ 176 } while (0) 177 #define KQ_UNLOCK(kq) do { \ 178 mtx_unlock(&(kq)->kq_lock); \ 179 } while (0) 180 #define KQ_OWNED(kq) do { \ 181 mtx_assert(&(kq)->kq_lock, MA_OWNED); \ 182 } while (0) 183 #define KQ_NOTOWNED(kq) do { \ 184 mtx_assert(&(kq)->kq_lock, MA_NOTOWNED); \ 185 } while (0) 186 #define KN_LIST_LOCK(kn) do { \ 187 if (kn->kn_knlist != NULL) \ 188 kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg); \ 189 } while (0) 190 #define KN_LIST_UNLOCK(kn) do { \ 191 if (kn->kn_knlist != NULL) \ 192 kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg); \ 193 } while (0) 194 #define KNL_ASSERT_LOCK(knl, islocked) do { \ 195 if (islocked) \ 196 KNL_ASSERT_LOCKED(knl); \ 197 else \ 198 KNL_ASSERT_UNLOCKED(knl); \ 199 } while (0) 200 #ifdef INVARIANTS 201 #define KNL_ASSERT_LOCKED(knl) do { \ 202 if (!knl->kl_locked((knl)->kl_lockarg)) \ 203 panic("knlist not locked, but should be"); \ 204 } while (0) 205 #define KNL_ASSERT_UNLOCKED(knl) do { \ 206 if (knl->kl_locked((knl)->kl_lockarg)) \ 207 panic("knlist locked, but should not be"); \ 208 } while (0) 209 #else /* !INVARIANTS */ 210 #define KNL_ASSERT_LOCKED(knl) do {} while(0) 211 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0) 212 #endif /* INVARIANTS */ 213 214 #define KN_HASHSIZE 64 /* XXX should be tunable */ 215 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 216 217 static int 218 filt_nullattach(struct knote *kn) 219 { 220 221 return (ENXIO); 222 }; 223 224 struct filterops null_filtops = 225 { 0, filt_nullattach, NULL, NULL }; 226 227 /* XXX - make SYSINIT to add these, and move into respective modules. */ 228 extern struct filterops sig_filtops; 229 extern struct filterops fs_filtops; 230 231 /* 232 * Table for for all system-defined filters. 233 */ 234 static struct mtx filterops_lock; 235 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops", 236 MTX_DEF); 237 static struct { 238 struct filterops *for_fop; 239 int for_refcnt; 240 } sysfilt_ops[EVFILT_SYSCOUNT] = { 241 { &file_filtops }, /* EVFILT_READ */ 242 { &file_filtops }, /* EVFILT_WRITE */ 243 { &null_filtops }, /* EVFILT_AIO */ 244 { &file_filtops }, /* EVFILT_VNODE */ 245 { &proc_filtops }, /* EVFILT_PROC */ 246 { &sig_filtops }, /* EVFILT_SIGNAL */ 247 { &timer_filtops }, /* EVFILT_TIMER */ 248 { &file_filtops }, /* EVFILT_NETDEV */ 249 { &fs_filtops }, /* EVFILT_FS */ 250 { &null_filtops }, /* EVFILT_LIO */ 251 }; 252 253 /* 254 * Simple redirection for all cdevsw style objects to call their fo_kqfilter 255 * method. 256 */ 257 static int 258 filt_fileattach(struct knote *kn) 259 { 260 261 return (fo_kqfilter(kn->kn_fp, kn)); 262 } 263 264 /*ARGSUSED*/ 265 static int 266 kqueue_kqfilter(struct file *fp, struct knote *kn) 267 { 268 struct kqueue *kq = kn->kn_fp->f_data; 269 270 if (kn->kn_filter != EVFILT_READ) 271 return (EINVAL); 272 273 kn->kn_status |= KN_KQUEUE; 274 kn->kn_fop = &kqread_filtops; 275 knlist_add(&kq->kq_sel.si_note, kn, 0); 276 277 return (0); 278 } 279 280 static void 281 filt_kqdetach(struct knote *kn) 282 { 283 struct kqueue *kq = kn->kn_fp->f_data; 284 285 knlist_remove(&kq->kq_sel.si_note, kn, 0); 286 } 287 288 /*ARGSUSED*/ 289 static int 290 filt_kqueue(struct knote *kn, long hint) 291 { 292 struct kqueue *kq = kn->kn_fp->f_data; 293 294 kn->kn_data = kq->kq_count; 295 return (kn->kn_data > 0); 296 } 297 298 /* XXX - move to kern_proc.c? */ 299 static int 300 filt_procattach(struct knote *kn) 301 { 302 struct proc *p; 303 int immediate; 304 int error; 305 306 immediate = 0; 307 p = pfind(kn->kn_id); 308 if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) { 309 p = zpfind(kn->kn_id); 310 immediate = 1; 311 } else if (p != NULL && (p->p_flag & P_WEXIT)) { 312 immediate = 1; 313 } 314 315 if (p == NULL) 316 return (ESRCH); 317 if ((error = p_cansee(curthread, p))) 318 return (error); 319 320 kn->kn_ptr.p_proc = p; 321 kn->kn_flags |= EV_CLEAR; /* automatically set */ 322 323 /* 324 * internal flag indicating registration done by kernel 325 */ 326 if (kn->kn_flags & EV_FLAG1) { 327 kn->kn_data = kn->kn_sdata; /* ppid */ 328 kn->kn_fflags = NOTE_CHILD; 329 kn->kn_flags &= ~EV_FLAG1; 330 } 331 332 if (immediate == 0) 333 knlist_add(&p->p_klist, kn, 1); 334 335 /* 336 * Immediately activate any exit notes if the target process is a 337 * zombie. This is necessary to handle the case where the target 338 * process, e.g. a child, dies before the kevent is registered. 339 */ 340 if (immediate && filt_proc(kn, NOTE_EXIT)) 341 KNOTE_ACTIVATE(kn, 0); 342 343 PROC_UNLOCK(p); 344 345 return (0); 346 } 347 348 /* 349 * The knote may be attached to a different process, which may exit, 350 * leaving nothing for the knote to be attached to. So when the process 351 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 352 * it will be deleted when read out. However, as part of the knote deletion, 353 * this routine is called, so a check is needed to avoid actually performing 354 * a detach, because the original process does not exist any more. 355 */ 356 /* XXX - move to kern_proc.c? */ 357 static void 358 filt_procdetach(struct knote *kn) 359 { 360 struct proc *p; 361 362 p = kn->kn_ptr.p_proc; 363 knlist_remove(&p->p_klist, kn, 0); 364 kn->kn_ptr.p_proc = NULL; 365 } 366 367 /* XXX - move to kern_proc.c? */ 368 static int 369 filt_proc(struct knote *kn, long hint) 370 { 371 struct proc *p = kn->kn_ptr.p_proc; 372 u_int event; 373 374 /* 375 * mask off extra data 376 */ 377 event = (u_int)hint & NOTE_PCTRLMASK; 378 379 /* 380 * if the user is interested in this event, record it. 381 */ 382 if (kn->kn_sfflags & event) 383 kn->kn_fflags |= event; 384 385 /* 386 * process is gone, so flag the event as finished. 387 */ 388 if (event == NOTE_EXIT) { 389 if (!(kn->kn_status & KN_DETACHED)) 390 knlist_remove_inevent(&p->p_klist, kn); 391 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 392 kn->kn_ptr.p_proc = NULL; 393 return (1); 394 } 395 396 /* 397 * process forked, and user wants to track the new process, 398 * so attach a new knote to it, and immediately report an 399 * event with the parent's pid. 400 */ 401 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) { 402 struct kevent kev; 403 int error; 404 405 /* 406 * register knote with new process. 407 */ 408 kev.ident = hint & NOTE_PDATAMASK; /* pid */ 409 kev.filter = kn->kn_filter; 410 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1; 411 kev.fflags = kn->kn_sfflags; 412 kev.data = kn->kn_id; /* parent */ 413 kev.udata = kn->kn_kevent.udata; /* preserve udata */ 414 error = kqueue_register(kn->kn_kq, &kev, NULL, 0); 415 if (error) 416 kn->kn_fflags |= NOTE_TRACKERR; 417 } 418 419 return (kn->kn_fflags != 0); 420 } 421 422 static int 423 timertoticks(intptr_t data) 424 { 425 struct timeval tv; 426 int tticks; 427 428 tv.tv_sec = data / 1000; 429 tv.tv_usec = (data % 1000) * 1000; 430 tticks = tvtohz(&tv); 431 432 return tticks; 433 } 434 435 /* XXX - move to kern_timeout.c? */ 436 static void 437 filt_timerexpire(void *knx) 438 { 439 struct knote *kn = knx; 440 struct callout *calloutp; 441 442 kn->kn_data++; 443 KNOTE_ACTIVATE(kn, 0); /* XXX - handle locking */ 444 445 if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) { 446 calloutp = (struct callout *)kn->kn_hook; 447 callout_reset(calloutp, timertoticks(kn->kn_sdata), 448 filt_timerexpire, kn); 449 } 450 } 451 452 /* 453 * data contains amount of time to sleep, in milliseconds 454 */ 455 /* XXX - move to kern_timeout.c? */ 456 static int 457 filt_timerattach(struct knote *kn) 458 { 459 struct callout *calloutp; 460 461 atomic_add_int(&kq_ncallouts, 1); 462 463 if (kq_ncallouts >= kq_calloutmax) { 464 atomic_add_int(&kq_ncallouts, -1); 465 return (ENOMEM); 466 } 467 468 kn->kn_flags |= EV_CLEAR; /* automatically set */ 469 kn->kn_status &= ~KN_DETACHED; /* knlist_add usually sets it */ 470 MALLOC(calloutp, struct callout *, sizeof(*calloutp), 471 M_KQUEUE, M_WAITOK); 472 callout_init(calloutp, CALLOUT_MPSAFE); 473 kn->kn_hook = calloutp; 474 callout_reset(calloutp, timertoticks(kn->kn_sdata), filt_timerexpire, 475 kn); 476 477 return (0); 478 } 479 480 /* XXX - move to kern_timeout.c? */ 481 static void 482 filt_timerdetach(struct knote *kn) 483 { 484 struct callout *calloutp; 485 486 calloutp = (struct callout *)kn->kn_hook; 487 callout_drain(calloutp); 488 FREE(calloutp, M_KQUEUE); 489 atomic_add_int(&kq_ncallouts, -1); 490 kn->kn_status |= KN_DETACHED; /* knlist_remove usually clears it */ 491 } 492 493 /* XXX - move to kern_timeout.c? */ 494 static int 495 filt_timer(struct knote *kn, long hint) 496 { 497 498 return (kn->kn_data != 0); 499 } 500 501 /* 502 * MPSAFE 503 */ 504 int 505 kqueue(struct thread *td, struct kqueue_args *uap) 506 { 507 struct filedesc *fdp; 508 struct kqueue *kq; 509 struct file *fp; 510 int fd, error; 511 512 fdp = td->td_proc->p_fd; 513 error = falloc(td, &fp, &fd); 514 if (error) 515 goto done2; 516 517 /* An extra reference on `nfp' has been held for us by falloc(). */ 518 kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO); 519 mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK); 520 TAILQ_INIT(&kq->kq_head); 521 kq->kq_fdp = fdp; 522 knlist_init(&kq->kq_sel.si_note, &kq->kq_lock, NULL, NULL, NULL); 523 TASK_INIT(&kq->kq_task, 0, kqueue_task, kq); 524 525 FILEDESC_LOCK_FAST(fdp); 526 SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list); 527 FILEDESC_UNLOCK_FAST(fdp); 528 529 FILE_LOCK(fp); 530 fp->f_flag = FREAD | FWRITE; 531 fp->f_type = DTYPE_KQUEUE; 532 fp->f_ops = &kqueueops; 533 fp->f_data = kq; 534 FILE_UNLOCK(fp); 535 fdrop(fp, td); 536 537 td->td_retval[0] = fd; 538 done2: 539 return (error); 540 } 541 542 #ifndef _SYS_SYSPROTO_H_ 543 struct kevent_args { 544 int fd; 545 const struct kevent *changelist; 546 int nchanges; 547 struct kevent *eventlist; 548 int nevents; 549 const struct timespec *timeout; 550 }; 551 #endif 552 /* 553 * MPSAFE 554 */ 555 int 556 kevent(struct thread *td, struct kevent_args *uap) 557 { 558 struct timespec ts, *tsp; 559 struct kevent_copyops k_ops = { uap, 560 kevent_copyout, 561 kevent_copyin}; 562 int error; 563 564 if (uap->timeout != NULL) { 565 error = copyin(uap->timeout, &ts, sizeof(ts)); 566 if (error) 567 return (error); 568 tsp = &ts; 569 } else 570 tsp = NULL; 571 572 return (kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 573 &k_ops, tsp)); 574 } 575 576 /* 577 * Copy 'count' items into the destination list pointed to by uap->eventlist. 578 */ 579 static int 580 kevent_copyout(void *arg, struct kevent *kevp, int count) 581 { 582 struct kevent_args *uap; 583 int error; 584 585 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 586 uap = (struct kevent_args *)arg; 587 588 error = copyout(kevp, uap->eventlist, count * sizeof *kevp); 589 if (error == 0) 590 uap->eventlist += count; 591 return (error); 592 } 593 594 /* 595 * Copy 'count' items from the list pointed to by uap->changelist. 596 */ 597 static int 598 kevent_copyin(void *arg, struct kevent *kevp, int count) 599 { 600 struct kevent_args *uap; 601 int error; 602 603 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 604 uap = (struct kevent_args *)arg; 605 606 error = copyin(uap->changelist, kevp, count * sizeof *kevp); 607 if (error == 0) 608 uap->changelist += count; 609 return (error); 610 } 611 612 int 613 kern_kevent(struct thread *td, int fd, int nchanges, int nevents, 614 struct kevent_copyops *k_ops, const struct timespec *timeout) 615 { 616 struct kevent keva[KQ_NEVENTS]; 617 struct kevent *kevp, *changes; 618 struct kqueue *kq; 619 struct file *fp; 620 int i, n, nerrors, error; 621 622 if ((error = fget(td, fd, &fp)) != 0) 623 return (error); 624 if ((error = kqueue_aquire(fp, &kq)) != 0) 625 goto done_norel; 626 627 nerrors = 0; 628 629 while (nchanges > 0) { 630 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges; 631 error = k_ops->k_copyin(k_ops->arg, keva, n); 632 if (error) 633 goto done; 634 changes = keva; 635 for (i = 0; i < n; i++) { 636 kevp = &changes[i]; 637 if (!kevp->filter) 638 continue; 639 kevp->flags &= ~EV_SYSFLAGS; 640 error = kqueue_register(kq, kevp, td, 1); 641 if (error) { 642 if (nevents != 0) { 643 kevp->flags = EV_ERROR; 644 kevp->data = error; 645 (void) k_ops->k_copyout(k_ops->arg, 646 kevp, 1); 647 nevents--; 648 nerrors++; 649 } else { 650 goto done; 651 } 652 } 653 } 654 nchanges -= n; 655 } 656 if (nerrors) { 657 td->td_retval[0] = nerrors; 658 error = 0; 659 goto done; 660 } 661 662 error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td); 663 done: 664 kqueue_release(kq, 0); 665 done_norel: 666 if (fp != NULL) 667 fdrop(fp, td); 668 return (error); 669 } 670 671 int 672 kqueue_add_filteropts(int filt, struct filterops *filtops) 673 { 674 int error; 675 676 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) { 677 printf( 678 "trying to add a filterop that is out of range: %d is beyond %d\n", 679 ~filt, EVFILT_SYSCOUNT); 680 return EINVAL; 681 } 682 mtx_lock(&filterops_lock); 683 if (sysfilt_ops[~filt].for_fop != &null_filtops && 684 sysfilt_ops[~filt].for_fop != NULL) 685 error = EEXIST; 686 else { 687 sysfilt_ops[~filt].for_fop = filtops; 688 sysfilt_ops[~filt].for_refcnt = 0; 689 } 690 mtx_unlock(&filterops_lock); 691 692 return (0); 693 } 694 695 int 696 kqueue_del_filteropts(int filt) 697 { 698 int error; 699 700 error = 0; 701 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) 702 return EINVAL; 703 704 mtx_lock(&filterops_lock); 705 if (sysfilt_ops[~filt].for_fop == &null_filtops || 706 sysfilt_ops[~filt].for_fop == NULL) 707 error = EINVAL; 708 else if (sysfilt_ops[~filt].for_refcnt != 0) 709 error = EBUSY; 710 else { 711 sysfilt_ops[~filt].for_fop = &null_filtops; 712 sysfilt_ops[~filt].for_refcnt = 0; 713 } 714 mtx_unlock(&filterops_lock); 715 716 return error; 717 } 718 719 static struct filterops * 720 kqueue_fo_find(int filt) 721 { 722 723 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) 724 return NULL; 725 726 mtx_lock(&filterops_lock); 727 sysfilt_ops[~filt].for_refcnt++; 728 if (sysfilt_ops[~filt].for_fop == NULL) 729 sysfilt_ops[~filt].for_fop = &null_filtops; 730 mtx_unlock(&filterops_lock); 731 732 return sysfilt_ops[~filt].for_fop; 733 } 734 735 static void 736 kqueue_fo_release(int filt) 737 { 738 739 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) 740 return; 741 742 mtx_lock(&filterops_lock); 743 KASSERT(sysfilt_ops[~filt].for_refcnt > 0, 744 ("filter object refcount not valid on release")); 745 sysfilt_ops[~filt].for_refcnt--; 746 mtx_unlock(&filterops_lock); 747 } 748 749 /* 750 * A ref to kq (obtained via kqueue_aquire) should be held. waitok will 751 * influence if memory allocation should wait. Make sure it is 0 if you 752 * hold any mutexes. 753 */ 754 int 755 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok) 756 { 757 struct filedesc *fdp; 758 struct filterops *fops; 759 struct file *fp; 760 struct knote *kn, *tkn; 761 int error, filt, event; 762 int haskqglobal; 763 int fd; 764 765 fdp = NULL; 766 fp = NULL; 767 kn = NULL; 768 error = 0; 769 haskqglobal = 0; 770 771 filt = kev->filter; 772 fops = kqueue_fo_find(filt); 773 if (fops == NULL) 774 return EINVAL; 775 776 tkn = knote_alloc(waitok); /* prevent waiting with locks */ 777 778 findkn: 779 if (fops->f_isfd) { 780 KASSERT(td != NULL, ("td is NULL")); 781 fdp = td->td_proc->p_fd; 782 FILEDESC_LOCK(fdp); 783 /* validate descriptor */ 784 fd = kev->ident; 785 if (fd < 0 || fd >= fdp->fd_nfiles || 786 (fp = fdp->fd_ofiles[fd]) == NULL) { 787 FILEDESC_UNLOCK(fdp); 788 error = EBADF; 789 goto done; 790 } 791 fhold(fp); 792 793 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops, 794 kev->ident, 0) != 0) { 795 /* unlock and try again */ 796 FILEDESC_UNLOCK(fdp); 797 fdrop(fp, td); 798 fp = NULL; 799 error = kqueue_expand(kq, fops, kev->ident, waitok); 800 if (error) 801 goto done; 802 goto findkn; 803 } 804 805 if (fp->f_type == DTYPE_KQUEUE) { 806 /* 807 * if we add some inteligence about what we are doing, 808 * we should be able to support events on ourselves. 809 * We need to know when we are doing this to prevent 810 * getting both the knlist lock and the kq lock since 811 * they are the same thing. 812 */ 813 if (fp->f_data == kq) { 814 FILEDESC_UNLOCK(fdp); 815 error = EINVAL; 816 goto done_noglobal; 817 } 818 819 KQ_GLOBAL_LOCK(&kq_global, haskqglobal); 820 } 821 822 FILEDESC_UNLOCK(fdp); 823 KQ_LOCK(kq); 824 if (kev->ident < kq->kq_knlistsize) { 825 SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link) 826 if (kev->filter == kn->kn_filter) 827 break; 828 } 829 } else { 830 if ((kev->flags & EV_ADD) == EV_ADD) 831 kqueue_expand(kq, fops, kev->ident, waitok); 832 833 KQ_LOCK(kq); 834 if (kq->kq_knhashmask != 0) { 835 struct klist *list; 836 837 list = &kq->kq_knhash[ 838 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)]; 839 SLIST_FOREACH(kn, list, kn_link) 840 if (kev->ident == kn->kn_id && 841 kev->filter == kn->kn_filter) 842 break; 843 } 844 } 845 846 /* knote is in the process of changing, wait for it to stablize. */ 847 if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) { 848 if (fp != NULL) { 849 fdrop(fp, td); 850 fp = NULL; 851 } 852 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 853 kq->kq_state |= KQ_FLUXWAIT; 854 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0); 855 goto findkn; 856 } 857 858 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) { 859 KQ_UNLOCK(kq); 860 error = ENOENT; 861 goto done; 862 } 863 864 /* 865 * kn now contains the matching knote, or NULL if no match 866 */ 867 if (kev->flags & EV_ADD) { 868 if (kn == NULL) { 869 kn = tkn; 870 tkn = NULL; 871 if (kn == NULL) { 872 error = ENOMEM; 873 goto done; 874 } 875 kn->kn_fp = fp; 876 kn->kn_kq = kq; 877 kn->kn_fop = fops; 878 /* 879 * apply reference counts to knote structure, and 880 * do not release it at the end of this routine. 881 */ 882 fops = NULL; 883 fp = NULL; 884 885 kn->kn_sfflags = kev->fflags; 886 kn->kn_sdata = kev->data; 887 kev->fflags = 0; 888 kev->data = 0; 889 kn->kn_kevent = *kev; 890 kn->kn_status = KN_INFLUX|KN_DETACHED; 891 892 error = knote_attach(kn, kq); 893 KQ_UNLOCK(kq); 894 if (error != 0) { 895 tkn = kn; 896 goto done; 897 } 898 899 if ((error = kn->kn_fop->f_attach(kn)) != 0) { 900 knote_drop(kn, td); 901 goto done; 902 } 903 KN_LIST_LOCK(kn); 904 } else { 905 /* 906 * The user may change some filter values after the 907 * initial EV_ADD, but doing so will not reset any 908 * filter which has already been triggered. 909 */ 910 kn->kn_status |= KN_INFLUX; 911 KQ_UNLOCK(kq); 912 KN_LIST_LOCK(kn); 913 kn->kn_sfflags = kev->fflags; 914 kn->kn_sdata = kev->data; 915 kn->kn_kevent.udata = kev->udata; 916 } 917 918 /* 919 * We can get here with kn->kn_knlist == NULL. 920 * This can happen when the initial attach event decides that 921 * the event is "completed" already. i.e. filt_procattach 922 * is called on a zombie process. It will call filt_proc 923 * which will remove it from the list, and NULL kn_knlist. 924 */ 925 event = kn->kn_fop->f_event(kn, 0); 926 KN_LIST_UNLOCK(kn); 927 KQ_LOCK(kq); 928 if (event) 929 KNOTE_ACTIVATE(kn, 1); 930 kn->kn_status &= ~KN_INFLUX; 931 } else if (kev->flags & EV_DELETE) { 932 kn->kn_status |= KN_INFLUX; 933 KQ_UNLOCK(kq); 934 if (!(kn->kn_status & KN_DETACHED)) 935 kn->kn_fop->f_detach(kn); 936 knote_drop(kn, td); 937 goto done; 938 } 939 940 if ((kev->flags & EV_DISABLE) && 941 ((kn->kn_status & KN_DISABLED) == 0)) { 942 kn->kn_status |= KN_DISABLED; 943 } 944 945 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { 946 kn->kn_status &= ~KN_DISABLED; 947 if ((kn->kn_status & KN_ACTIVE) && 948 ((kn->kn_status & KN_QUEUED) == 0)) 949 knote_enqueue(kn); 950 } 951 KQ_UNLOCK_FLUX(kq); 952 953 done: 954 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 955 done_noglobal: 956 if (fp != NULL) 957 fdrop(fp, td); 958 if (tkn != NULL) 959 knote_free(tkn); 960 if (fops != NULL) 961 kqueue_fo_release(filt); 962 return (error); 963 } 964 965 static int 966 kqueue_aquire(struct file *fp, struct kqueue **kqp) 967 { 968 int error; 969 struct kqueue *kq; 970 971 error = 0; 972 973 FILE_LOCK(fp); 974 do { 975 kq = fp->f_data; 976 if (fp->f_type != DTYPE_KQUEUE || kq == NULL) { 977 error = EBADF; 978 break; 979 } 980 *kqp = kq; 981 KQ_LOCK(kq); 982 if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) { 983 KQ_UNLOCK(kq); 984 error = EBADF; 985 break; 986 } 987 kq->kq_refcnt++; 988 KQ_UNLOCK(kq); 989 } while (0); 990 FILE_UNLOCK(fp); 991 992 return error; 993 } 994 995 static void 996 kqueue_release(struct kqueue *kq, int locked) 997 { 998 if (locked) 999 KQ_OWNED(kq); 1000 else 1001 KQ_LOCK(kq); 1002 kq->kq_refcnt--; 1003 if (kq->kq_refcnt == 1) 1004 wakeup(&kq->kq_refcnt); 1005 if (!locked) 1006 KQ_UNLOCK(kq); 1007 } 1008 1009 static void 1010 kqueue_schedtask(struct kqueue *kq) 1011 { 1012 1013 KQ_OWNED(kq); 1014 KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN), 1015 ("scheduling kqueue task while draining")); 1016 1017 if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) { 1018 taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task); 1019 kq->kq_state |= KQ_TASKSCHED; 1020 } 1021 } 1022 1023 /* 1024 * Expand the kq to make sure we have storage for fops/ident pair. 1025 * 1026 * Return 0 on success (or no work necessary), return errno on failure. 1027 * 1028 * Not calling hashinit w/ waitok (proper malloc flag) should be safe. 1029 * If kqueue_register is called from a non-fd context, there usually/should 1030 * be no locks held. 1031 */ 1032 static int 1033 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident, 1034 int waitok) 1035 { 1036 struct klist *list, *tmp_knhash; 1037 u_long tmp_knhashmask; 1038 int size; 1039 int fd; 1040 int mflag = waitok ? M_WAITOK : M_NOWAIT; 1041 1042 KQ_NOTOWNED(kq); 1043 1044 if (fops->f_isfd) { 1045 fd = ident; 1046 if (kq->kq_knlistsize <= fd) { 1047 size = kq->kq_knlistsize; 1048 while (size <= fd) 1049 size += KQEXTENT; 1050 MALLOC(list, struct klist *, 1051 size * sizeof list, M_KQUEUE, mflag); 1052 if (list == NULL) 1053 return ENOMEM; 1054 KQ_LOCK(kq); 1055 if (kq->kq_knlistsize > fd) { 1056 FREE(list, M_KQUEUE); 1057 list = NULL; 1058 } else { 1059 if (kq->kq_knlist != NULL) { 1060 bcopy(kq->kq_knlist, list, 1061 kq->kq_knlistsize * sizeof list); 1062 FREE(kq->kq_knlist, M_KQUEUE); 1063 kq->kq_knlist = NULL; 1064 } 1065 bzero((caddr_t)list + 1066 kq->kq_knlistsize * sizeof list, 1067 (size - kq->kq_knlistsize) * sizeof list); 1068 kq->kq_knlistsize = size; 1069 kq->kq_knlist = list; 1070 } 1071 KQ_UNLOCK(kq); 1072 } 1073 } else { 1074 if (kq->kq_knhashmask == 0) { 1075 tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE, 1076 &tmp_knhashmask); 1077 if (tmp_knhash == NULL) 1078 return ENOMEM; 1079 KQ_LOCK(kq); 1080 if (kq->kq_knhashmask == 0) { 1081 kq->kq_knhash = tmp_knhash; 1082 kq->kq_knhashmask = tmp_knhashmask; 1083 } else { 1084 free(tmp_knhash, M_KQUEUE); 1085 } 1086 KQ_UNLOCK(kq); 1087 } 1088 } 1089 1090 KQ_NOTOWNED(kq); 1091 return 0; 1092 } 1093 1094 static void 1095 kqueue_task(void *arg, int pending) 1096 { 1097 struct kqueue *kq; 1098 int haskqglobal; 1099 1100 haskqglobal = 0; 1101 kq = arg; 1102 1103 KQ_GLOBAL_LOCK(&kq_global, haskqglobal); 1104 KQ_LOCK(kq); 1105 1106 KNOTE_LOCKED(&kq->kq_sel.si_note, 0); 1107 1108 kq->kq_state &= ~KQ_TASKSCHED; 1109 if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) { 1110 wakeup(&kq->kq_state); 1111 } 1112 KQ_UNLOCK(kq); 1113 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1114 } 1115 1116 /* 1117 * Scan, update kn_data (if not ONESHOT), and copyout triggered events. 1118 * We treat KN_MARKER knotes as if they are INFLUX. 1119 */ 1120 static int 1121 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops, 1122 const struct timespec *tsp, struct kevent *keva, struct thread *td) 1123 { 1124 struct kevent *kevp; 1125 struct timeval atv, rtv, ttv; 1126 struct knote *kn, *marker; 1127 int count, timeout, nkev, error; 1128 int haskqglobal; 1129 1130 count = maxevents; 1131 nkev = 0; 1132 error = 0; 1133 haskqglobal = 0; 1134 1135 if (maxevents == 0) 1136 goto done_nl; 1137 1138 if (tsp != NULL) { 1139 TIMESPEC_TO_TIMEVAL(&atv, tsp); 1140 if (itimerfix(&atv)) { 1141 error = EINVAL; 1142 goto done_nl; 1143 } 1144 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) 1145 timeout = -1; 1146 else 1147 timeout = atv.tv_sec > 24 * 60 * 60 ? 1148 24 * 60 * 60 * hz : tvtohz(&atv); 1149 getmicrouptime(&rtv); 1150 timevaladd(&atv, &rtv); 1151 } else { 1152 atv.tv_sec = 0; 1153 atv.tv_usec = 0; 1154 timeout = 0; 1155 } 1156 marker = knote_alloc(1); 1157 if (marker == NULL) { 1158 error = ENOMEM; 1159 goto done_nl; 1160 } 1161 marker->kn_status = KN_MARKER; 1162 KQ_LOCK(kq); 1163 goto start; 1164 1165 retry: 1166 if (atv.tv_sec || atv.tv_usec) { 1167 getmicrouptime(&rtv); 1168 if (timevalcmp(&rtv, &atv, >=)) 1169 goto done; 1170 ttv = atv; 1171 timevalsub(&ttv, &rtv); 1172 timeout = ttv.tv_sec > 24 * 60 * 60 ? 1173 24 * 60 * 60 * hz : tvtohz(&ttv); 1174 } 1175 1176 start: 1177 kevp = keva; 1178 if (kq->kq_count == 0) { 1179 if (timeout < 0) { 1180 error = EWOULDBLOCK; 1181 } else { 1182 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1183 kq->kq_state |= KQ_SLEEP; 1184 error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH, 1185 "kqread", timeout); 1186 } 1187 if (error == 0) 1188 goto retry; 1189 /* don't restart after signals... */ 1190 if (error == ERESTART) 1191 error = EINTR; 1192 else if (error == EWOULDBLOCK) 1193 error = 0; 1194 goto done; 1195 } 1196 1197 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe); 1198 while (count) { 1199 KQ_OWNED(kq); 1200 kn = TAILQ_FIRST(&kq->kq_head); 1201 1202 if ((kn->kn_status == KN_MARKER && kn != marker) || 1203 (kn->kn_status & KN_INFLUX) == KN_INFLUX) { 1204 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1205 kq->kq_state |= KQ_FLUXWAIT; 1206 error = msleep(kq, &kq->kq_lock, PSOCK, 1207 "kqflxwt", 0); 1208 continue; 1209 } 1210 1211 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 1212 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) { 1213 kn->kn_status &= ~KN_QUEUED; 1214 kq->kq_count--; 1215 continue; 1216 } 1217 if (kn == marker) { 1218 KQ_FLUX_WAKEUP(kq); 1219 if (count == maxevents) 1220 goto retry; 1221 goto done; 1222 } 1223 KASSERT((kn->kn_status & KN_INFLUX) == 0, 1224 ("KN_INFLUX set when not suppose to be")); 1225 1226 if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) { 1227 kn->kn_status &= ~KN_QUEUED; 1228 kn->kn_status |= KN_INFLUX; 1229 kq->kq_count--; 1230 KQ_UNLOCK(kq); 1231 /* 1232 * We don't need to lock the list since we've marked 1233 * it _INFLUX. 1234 */ 1235 *kevp = kn->kn_kevent; 1236 if (!(kn->kn_status & KN_DETACHED)) 1237 kn->kn_fop->f_detach(kn); 1238 knote_drop(kn, td); 1239 KQ_LOCK(kq); 1240 kn = NULL; 1241 } else { 1242 kn->kn_status |= KN_INFLUX; 1243 KQ_UNLOCK(kq); 1244 if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE) 1245 KQ_GLOBAL_LOCK(&kq_global, haskqglobal); 1246 KN_LIST_LOCK(kn); 1247 if (kn->kn_fop->f_event(kn, 0) == 0) { 1248 KQ_LOCK(kq); 1249 kn->kn_status &= 1250 ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX); 1251 kq->kq_count--; 1252 KN_LIST_UNLOCK(kn); 1253 continue; 1254 } 1255 *kevp = kn->kn_kevent; 1256 KQ_LOCK(kq); 1257 if (kn->kn_flags & EV_CLEAR) { 1258 kn->kn_data = 0; 1259 kn->kn_fflags = 0; 1260 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 1261 kq->kq_count--; 1262 } else 1263 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 1264 1265 kn->kn_status &= ~(KN_INFLUX); 1266 KN_LIST_UNLOCK(kn); 1267 1268 } 1269 1270 /* we are returning a copy to the user */ 1271 kevp++; 1272 nkev++; 1273 count--; 1274 1275 if (nkev == KQ_NEVENTS) { 1276 KQ_UNLOCK_FLUX(kq); 1277 error = k_ops->k_copyout(k_ops->arg, keva, nkev); 1278 nkev = 0; 1279 kevp = keva; 1280 KQ_LOCK(kq); 1281 if (error) 1282 break; 1283 } 1284 } 1285 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe); 1286 done: 1287 KQ_OWNED(kq); 1288 KQ_UNLOCK_FLUX(kq); 1289 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal); 1290 knote_free(marker); 1291 done_nl: 1292 KQ_NOTOWNED(kq); 1293 if (nkev != 0) 1294 error = k_ops->k_copyout(k_ops->arg, keva, nkev); 1295 td->td_retval[0] = maxevents - count; 1296 return (error); 1297 } 1298 1299 /* 1300 * XXX 1301 * This could be expanded to call kqueue_scan, if desired. 1302 */ 1303 /*ARGSUSED*/ 1304 static int 1305 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred, 1306 int flags, struct thread *td) 1307 { 1308 return (ENXIO); 1309 } 1310 1311 /*ARGSUSED*/ 1312 static int 1313 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred, 1314 int flags, struct thread *td) 1315 { 1316 return (ENXIO); 1317 } 1318 1319 /*ARGSUSED*/ 1320 static int 1321 kqueue_ioctl(struct file *fp, u_long cmd, void *data, 1322 struct ucred *active_cred, struct thread *td) 1323 { 1324 /* 1325 * Enabling sigio causes two major problems: 1326 * 1) infinite recursion: 1327 * Synopsys: kevent is being used to track signals and have FIOASYNC 1328 * set. On receipt of a signal this will cause a kqueue to recurse 1329 * into itself over and over. Sending the sigio causes the kqueue 1330 * to become ready, which in turn posts sigio again, forever. 1331 * Solution: this can be solved by setting a flag in the kqueue that 1332 * we have a SIGIO in progress. 1333 * 2) locking problems: 1334 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts 1335 * us above the proc and pgrp locks. 1336 * Solution: Post a signal using an async mechanism, being sure to 1337 * record a generation count in the delivery so that we do not deliver 1338 * a signal to the wrong process. 1339 * 1340 * Note, these two mechanisms are somewhat mutually exclusive! 1341 */ 1342 #if 0 1343 struct kqueue *kq; 1344 1345 kq = fp->f_data; 1346 switch (cmd) { 1347 case FIOASYNC: 1348 if (*(int *)data) { 1349 kq->kq_state |= KQ_ASYNC; 1350 } else { 1351 kq->kq_state &= ~KQ_ASYNC; 1352 } 1353 return (0); 1354 1355 case FIOSETOWN: 1356 return (fsetown(*(int *)data, &kq->kq_sigio)); 1357 1358 case FIOGETOWN: 1359 *(int *)data = fgetown(&kq->kq_sigio); 1360 return (0); 1361 } 1362 #endif 1363 1364 return (ENOTTY); 1365 } 1366 1367 /*ARGSUSED*/ 1368 static int 1369 kqueue_poll(struct file *fp, int events, struct ucred *active_cred, 1370 struct thread *td) 1371 { 1372 struct kqueue *kq; 1373 int revents = 0; 1374 int error; 1375 1376 if ((error = kqueue_aquire(fp, &kq))) 1377 return POLLERR; 1378 1379 KQ_LOCK(kq); 1380 if (events & (POLLIN | POLLRDNORM)) { 1381 if (kq->kq_count) { 1382 revents |= events & (POLLIN | POLLRDNORM); 1383 } else { 1384 selrecord(td, &kq->kq_sel); 1385 kq->kq_state |= KQ_SEL; 1386 } 1387 } 1388 kqueue_release(kq, 1); 1389 KQ_UNLOCK(kq); 1390 return (revents); 1391 } 1392 1393 /*ARGSUSED*/ 1394 static int 1395 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred, 1396 struct thread *td) 1397 { 1398 1399 bzero((void *)st, sizeof *st); 1400 /* 1401 * We no longer return kq_count because the unlocked value is useless. 1402 * If you spent all this time getting the count, why not spend your 1403 * syscall better by calling kevent? 1404 * 1405 * XXX - This is needed for libc_r. 1406 */ 1407 st->st_mode = S_IFIFO; 1408 return (0); 1409 } 1410 1411 /*ARGSUSED*/ 1412 static int 1413 kqueue_close(struct file *fp, struct thread *td) 1414 { 1415 struct kqueue *kq = fp->f_data; 1416 struct filedesc *fdp; 1417 struct knote *kn; 1418 int i; 1419 int error; 1420 1421 if ((error = kqueue_aquire(fp, &kq))) 1422 return error; 1423 1424 KQ_LOCK(kq); 1425 1426 KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING, 1427 ("kqueue already closing")); 1428 kq->kq_state |= KQ_CLOSING; 1429 if (kq->kq_refcnt > 1) 1430 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0); 1431 1432 KASSERT(kq->kq_refcnt == 1, ("other refs are out there!")); 1433 fdp = kq->kq_fdp; 1434 1435 KASSERT(knlist_empty(&kq->kq_sel.si_note), 1436 ("kqueue's knlist not empty")); 1437 1438 for (i = 0; i < kq->kq_knlistsize; i++) { 1439 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) { 1440 KASSERT((kn->kn_status & KN_INFLUX) == 0, 1441 ("KN_INFLUX set when not suppose to be")); 1442 kn->kn_status |= KN_INFLUX; 1443 KQ_UNLOCK(kq); 1444 if (!(kn->kn_status & KN_DETACHED)) 1445 kn->kn_fop->f_detach(kn); 1446 knote_drop(kn, td); 1447 KQ_LOCK(kq); 1448 } 1449 } 1450 if (kq->kq_knhashmask != 0) { 1451 for (i = 0; i <= kq->kq_knhashmask; i++) { 1452 while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) { 1453 KASSERT((kn->kn_status & KN_INFLUX) == 0, 1454 ("KN_INFLUX set when not suppose to be")); 1455 kn->kn_status |= KN_INFLUX; 1456 KQ_UNLOCK(kq); 1457 if (!(kn->kn_status & KN_DETACHED)) 1458 kn->kn_fop->f_detach(kn); 1459 knote_drop(kn, td); 1460 KQ_LOCK(kq); 1461 } 1462 } 1463 } 1464 1465 if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) { 1466 kq->kq_state |= KQ_TASKDRAIN; 1467 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0); 1468 } 1469 1470 if ((kq->kq_state & KQ_SEL) == KQ_SEL) { 1471 kq->kq_state &= ~KQ_SEL; 1472 selwakeuppri(&kq->kq_sel, PSOCK); 1473 } 1474 1475 KQ_UNLOCK(kq); 1476 1477 FILEDESC_LOCK_FAST(fdp); 1478 SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list); 1479 FILEDESC_UNLOCK_FAST(fdp); 1480 1481 knlist_destroy(&kq->kq_sel.si_note); 1482 mtx_destroy(&kq->kq_lock); 1483 kq->kq_fdp = NULL; 1484 1485 if (kq->kq_knhash != NULL) 1486 free(kq->kq_knhash, M_KQUEUE); 1487 if (kq->kq_knlist != NULL) 1488 free(kq->kq_knlist, M_KQUEUE); 1489 1490 funsetown(&kq->kq_sigio); 1491 free(kq, M_KQUEUE); 1492 fp->f_data = NULL; 1493 1494 return (0); 1495 } 1496 1497 static void 1498 kqueue_wakeup(struct kqueue *kq) 1499 { 1500 KQ_OWNED(kq); 1501 1502 if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) { 1503 kq->kq_state &= ~KQ_SLEEP; 1504 wakeup(kq); 1505 } 1506 if ((kq->kq_state & KQ_SEL) == KQ_SEL) { 1507 kq->kq_state &= ~KQ_SEL; 1508 selwakeuppri(&kq->kq_sel, PSOCK); 1509 } 1510 if (!knlist_empty(&kq->kq_sel.si_note)) 1511 kqueue_schedtask(kq); 1512 if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) { 1513 pgsigio(&kq->kq_sigio, SIGIO, 0); 1514 } 1515 } 1516 1517 /* 1518 * Walk down a list of knotes, activating them if their event has triggered. 1519 * 1520 * There is a possibility to optimize in the case of one kq watching another. 1521 * Instead of scheduling a task to wake it up, you could pass enough state 1522 * down the chain to make up the parent kqueue. Make this code functional 1523 * first. 1524 */ 1525 void 1526 knote(struct knlist *list, long hint, int islocked) 1527 { 1528 struct kqueue *kq; 1529 struct knote *kn; 1530 1531 if (list == NULL) 1532 return; 1533 1534 KNL_ASSERT_LOCK(list, islocked); 1535 1536 if (!islocked) 1537 list->kl_lock(list->kl_lockarg); 1538 1539 /* 1540 * If we unlock the list lock (and set KN_INFLUX), we can eliminate 1541 * the kqueue scheduling, but this will introduce four 1542 * lock/unlock's for each knote to test. If we do, continue to use 1543 * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is 1544 * only safe if you want to remove the current item, which we are 1545 * not doing. 1546 */ 1547 SLIST_FOREACH(kn, &list->kl_list, kn_selnext) { 1548 kq = kn->kn_kq; 1549 if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) { 1550 KQ_LOCK(kq); 1551 if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) { 1552 kn->kn_status |= KN_HASKQLOCK; 1553 if (kn->kn_fop->f_event(kn, hint)) 1554 KNOTE_ACTIVATE(kn, 1); 1555 kn->kn_status &= ~KN_HASKQLOCK; 1556 } 1557 KQ_UNLOCK(kq); 1558 } 1559 kq = NULL; 1560 } 1561 if (!islocked) 1562 list->kl_unlock(list->kl_lockarg); 1563 } 1564 1565 /* 1566 * add a knote to a knlist 1567 */ 1568 void 1569 knlist_add(struct knlist *knl, struct knote *kn, int islocked) 1570 { 1571 KNL_ASSERT_LOCK(knl, islocked); 1572 KQ_NOTOWNED(kn->kn_kq); 1573 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == 1574 (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED")); 1575 if (!islocked) 1576 knl->kl_lock(knl->kl_lockarg); 1577 SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext); 1578 if (!islocked) 1579 knl->kl_unlock(knl->kl_lockarg); 1580 KQ_LOCK(kn->kn_kq); 1581 kn->kn_knlist = knl; 1582 kn->kn_status &= ~KN_DETACHED; 1583 KQ_UNLOCK(kn->kn_kq); 1584 } 1585 1586 static void 1587 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked) 1588 { 1589 KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked")); 1590 KNL_ASSERT_LOCK(knl, knlislocked); 1591 mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED); 1592 if (!kqislocked) 1593 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX, 1594 ("knlist_remove called w/o knote being KN_INFLUX or already removed")); 1595 if (!knlislocked) 1596 knl->kl_lock(knl->kl_lockarg); 1597 SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext); 1598 kn->kn_knlist = NULL; 1599 if (!knlislocked) 1600 knl->kl_unlock(knl->kl_lockarg); 1601 if (!kqislocked) 1602 KQ_LOCK(kn->kn_kq); 1603 kn->kn_status |= KN_DETACHED; 1604 if (!kqislocked) 1605 KQ_UNLOCK(kn->kn_kq); 1606 } 1607 1608 /* 1609 * remove all knotes from a specified klist 1610 */ 1611 void 1612 knlist_remove(struct knlist *knl, struct knote *kn, int islocked) 1613 { 1614 1615 knlist_remove_kq(knl, kn, islocked, 0); 1616 } 1617 1618 /* 1619 * remove knote from a specified klist while in f_event handler. 1620 */ 1621 void 1622 knlist_remove_inevent(struct knlist *knl, struct knote *kn) 1623 { 1624 1625 knlist_remove_kq(knl, kn, 1, 1626 (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK); 1627 } 1628 1629 int 1630 knlist_empty(struct knlist *knl) 1631 { 1632 KNL_ASSERT_LOCKED(knl); 1633 return SLIST_EMPTY(&knl->kl_list); 1634 } 1635 1636 static struct mtx knlist_lock; 1637 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects", 1638 MTX_DEF); 1639 static void knlist_mtx_lock(void *arg); 1640 static void knlist_mtx_unlock(void *arg); 1641 static int knlist_mtx_locked(void *arg); 1642 1643 static void 1644 knlist_mtx_lock(void *arg) 1645 { 1646 mtx_lock((struct mtx *)arg); 1647 } 1648 1649 static void 1650 knlist_mtx_unlock(void *arg) 1651 { 1652 mtx_unlock((struct mtx *)arg); 1653 } 1654 1655 static int 1656 knlist_mtx_locked(void *arg) 1657 { 1658 return (mtx_owned((struct mtx *)arg)); 1659 } 1660 1661 void 1662 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *), 1663 void (*kl_unlock)(void *), int (*kl_locked)(void *)) 1664 { 1665 1666 if (lock == NULL) 1667 knl->kl_lockarg = &knlist_lock; 1668 else 1669 knl->kl_lockarg = lock; 1670 1671 if (kl_lock == NULL) 1672 knl->kl_lock = knlist_mtx_lock; 1673 else 1674 knl->kl_lock = kl_lock; 1675 if (kl_lock == NULL) 1676 knl->kl_unlock = knlist_mtx_unlock; 1677 else 1678 knl->kl_unlock = kl_unlock; 1679 if (kl_locked == NULL) 1680 knl->kl_locked = knlist_mtx_locked; 1681 else 1682 knl->kl_locked = kl_locked; 1683 1684 SLIST_INIT(&knl->kl_list); 1685 } 1686 1687 void 1688 knlist_destroy(struct knlist *knl) 1689 { 1690 1691 #ifdef INVARIANTS 1692 /* 1693 * if we run across this error, we need to find the offending 1694 * driver and have it call knlist_clear. 1695 */ 1696 if (!SLIST_EMPTY(&knl->kl_list)) 1697 printf("WARNING: destroying knlist w/ knotes on it!\n"); 1698 #endif 1699 1700 knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL; 1701 SLIST_INIT(&knl->kl_list); 1702 } 1703 1704 /* 1705 * Even if we are locked, we may need to drop the lock to allow any influx 1706 * knotes time to "settle". 1707 */ 1708 void 1709 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn) 1710 { 1711 struct knote *kn; 1712 struct kqueue *kq; 1713 1714 if (islocked) 1715 KNL_ASSERT_LOCKED(knl); 1716 else { 1717 KNL_ASSERT_UNLOCKED(knl); 1718 again: /* need to reaquire lock since we have dropped it */ 1719 knl->kl_lock(knl->kl_lockarg); 1720 } 1721 1722 SLIST_FOREACH(kn, &knl->kl_list, kn_selnext) { 1723 kq = kn->kn_kq; 1724 KQ_LOCK(kq); 1725 if ((kn->kn_status & KN_INFLUX)) { 1726 KQ_UNLOCK(kq); 1727 continue; 1728 } 1729 knlist_remove_kq(knl, kn, 1, 1); 1730 if (killkn) { 1731 kn->kn_status |= KN_INFLUX | KN_DETACHED; 1732 KQ_UNLOCK(kq); 1733 knote_drop(kn, td); 1734 } else { 1735 /* Make sure cleared knotes disappear soon */ 1736 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1737 KQ_UNLOCK(kq); 1738 } 1739 kq = NULL; 1740 } 1741 1742 if (!SLIST_EMPTY(&knl->kl_list)) { 1743 /* there are still KN_INFLUX remaining */ 1744 kn = SLIST_FIRST(&knl->kl_list); 1745 kq = kn->kn_kq; 1746 KQ_LOCK(kq); 1747 KASSERT(kn->kn_status & KN_INFLUX, 1748 ("knote removed w/o list lock")); 1749 knl->kl_unlock(knl->kl_lockarg); 1750 kq->kq_state |= KQ_FLUXWAIT; 1751 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0); 1752 kq = NULL; 1753 goto again; 1754 } 1755 1756 if (islocked) 1757 KNL_ASSERT_LOCKED(knl); 1758 else { 1759 knl->kl_unlock(knl->kl_lockarg); 1760 KNL_ASSERT_UNLOCKED(knl); 1761 } 1762 } 1763 1764 /* 1765 * remove all knotes referencing a specified fd 1766 * must be called with FILEDESC lock. This prevents a race where a new fd 1767 * comes along and occupies the entry and we attach a knote to the fd. 1768 */ 1769 void 1770 knote_fdclose(struct thread *td, int fd) 1771 { 1772 struct filedesc *fdp = td->td_proc->p_fd; 1773 struct kqueue *kq; 1774 struct knote *kn; 1775 int influx; 1776 1777 FILEDESC_LOCK_ASSERT(fdp, MA_OWNED); 1778 1779 /* 1780 * We shouldn't have to worry about new kevents appearing on fd 1781 * since filedesc is locked. 1782 */ 1783 SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) { 1784 KQ_LOCK(kq); 1785 1786 again: 1787 influx = 0; 1788 while (kq->kq_knlistsize > fd && 1789 (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) { 1790 if (kn->kn_status & KN_INFLUX) { 1791 /* someone else might be waiting on our knote */ 1792 if (influx) 1793 wakeup(kq); 1794 kq->kq_state |= KQ_FLUXWAIT; 1795 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0); 1796 goto again; 1797 } 1798 kn->kn_status |= KN_INFLUX; 1799 KQ_UNLOCK(kq); 1800 if (!(kn->kn_status & KN_DETACHED)) 1801 kn->kn_fop->f_detach(kn); 1802 knote_drop(kn, td); 1803 influx = 1; 1804 KQ_LOCK(kq); 1805 } 1806 KQ_UNLOCK_FLUX(kq); 1807 } 1808 } 1809 1810 static int 1811 knote_attach(struct knote *kn, struct kqueue *kq) 1812 { 1813 struct klist *list; 1814 1815 KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX")); 1816 KQ_OWNED(kq); 1817 1818 if (kn->kn_fop->f_isfd) { 1819 if (kn->kn_id >= kq->kq_knlistsize) 1820 return ENOMEM; 1821 list = &kq->kq_knlist[kn->kn_id]; 1822 } else { 1823 if (kq->kq_knhash == NULL) 1824 return ENOMEM; 1825 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 1826 } 1827 1828 SLIST_INSERT_HEAD(list, kn, kn_link); 1829 1830 return 0; 1831 } 1832 1833 /* 1834 * knote must already have been detached using the f_detach method. 1835 * no lock need to be held, it is assumed that the KN_INFLUX flag is set 1836 * to prevent other removal. 1837 */ 1838 static void 1839 knote_drop(struct knote *kn, struct thread *td) 1840 { 1841 struct kqueue *kq; 1842 struct klist *list; 1843 1844 kq = kn->kn_kq; 1845 1846 KQ_NOTOWNED(kq); 1847 KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX, 1848 ("knote_drop called without KN_INFLUX set in kn_status")); 1849 1850 KQ_LOCK(kq); 1851 if (kn->kn_fop->f_isfd) 1852 list = &kq->kq_knlist[kn->kn_id]; 1853 else 1854 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 1855 1856 if (!SLIST_EMPTY(list)) 1857 SLIST_REMOVE(list, kn, knote, kn_link); 1858 if (kn->kn_status & KN_QUEUED) 1859 knote_dequeue(kn); 1860 KQ_UNLOCK_FLUX(kq); 1861 1862 if (kn->kn_fop->f_isfd) { 1863 fdrop(kn->kn_fp, td); 1864 kn->kn_fp = NULL; 1865 } 1866 kqueue_fo_release(kn->kn_kevent.filter); 1867 kn->kn_fop = NULL; 1868 knote_free(kn); 1869 } 1870 1871 static void 1872 knote_enqueue(struct knote *kn) 1873 { 1874 struct kqueue *kq = kn->kn_kq; 1875 1876 KQ_OWNED(kn->kn_kq); 1877 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued")); 1878 1879 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 1880 kn->kn_status |= KN_QUEUED; 1881 kq->kq_count++; 1882 kqueue_wakeup(kq); 1883 } 1884 1885 static void 1886 knote_dequeue(struct knote *kn) 1887 { 1888 struct kqueue *kq = kn->kn_kq; 1889 1890 KQ_OWNED(kn->kn_kq); 1891 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued")); 1892 1893 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 1894 kn->kn_status &= ~KN_QUEUED; 1895 kq->kq_count--; 1896 } 1897 1898 static void 1899 knote_init(void) 1900 { 1901 1902 knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL, 1903 NULL, NULL, UMA_ALIGN_PTR, 0); 1904 } 1905 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL) 1906 1907 static struct knote * 1908 knote_alloc(int waitok) 1909 { 1910 return ((struct knote *)uma_zalloc(knote_zone, 1911 (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO)); 1912 } 1913 1914 static void 1915 knote_free(struct knote *kn) 1916 { 1917 if (kn != NULL) 1918 uma_zfree(knote_zone, kn); 1919 } 1920