xref: /freebsd/sys/kern/kern_event.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/proc.h>
37 #include <sys/malloc.h>
38 #include <sys/unistd.h>
39 #include <sys/file.h>
40 #include <sys/filedesc.h>
41 #include <sys/filio.h>
42 #include <sys/fcntl.h>
43 #include <sys/kthread.h>
44 #include <sys/selinfo.h>
45 #include <sys/queue.h>
46 #include <sys/event.h>
47 #include <sys/eventvar.h>
48 #include <sys/poll.h>
49 #include <sys/protosw.h>
50 #include <sys/sigio.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/stat.h>
55 #include <sys/sysctl.h>
56 #include <sys/sysproto.h>
57 #include <sys/syscallsubr.h>
58 #include <sys/taskqueue.h>
59 #include <sys/uio.h>
60 
61 #include <vm/uma.h>
62 
63 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
64 
65 /*
66  * This lock is used if multiple kq locks are required.  This possibly
67  * should be made into a per proc lock.
68  */
69 static struct mtx	kq_global;
70 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
71 #define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
72 	if (!haslck)				\
73 		mtx_lock(lck);			\
74 	haslck = 1;				\
75 } while (0)
76 #define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
77 	if (haslck)				\
78 		mtx_unlock(lck);			\
79 	haslck = 0;				\
80 } while (0)
81 
82 TASKQUEUE_DEFINE_THREAD(kqueue);
83 
84 static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
85 static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
86 static int	kqueue_aquire(struct file *fp, struct kqueue **kqp);
87 static void	kqueue_release(struct kqueue *kq, int locked);
88 static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
89 		    uintptr_t ident, int waitok);
90 static void	kqueue_task(void *arg, int pending);
91 static int	kqueue_scan(struct kqueue *kq, int maxevents,
92 		    struct kevent_copyops *k_ops,
93 		    const struct timespec *timeout,
94 		    struct kevent *keva, struct thread *td);
95 static void 	kqueue_wakeup(struct kqueue *kq);
96 static struct filterops *kqueue_fo_find(int filt);
97 static void	kqueue_fo_release(int filt);
98 
99 static fo_rdwr_t	kqueue_read;
100 static fo_rdwr_t	kqueue_write;
101 static fo_ioctl_t	kqueue_ioctl;
102 static fo_poll_t	kqueue_poll;
103 static fo_kqfilter_t	kqueue_kqfilter;
104 static fo_stat_t	kqueue_stat;
105 static fo_close_t	kqueue_close;
106 
107 static struct fileops kqueueops = {
108 	.fo_read = kqueue_read,
109 	.fo_write = kqueue_write,
110 	.fo_ioctl = kqueue_ioctl,
111 	.fo_poll = kqueue_poll,
112 	.fo_kqfilter = kqueue_kqfilter,
113 	.fo_stat = kqueue_stat,
114 	.fo_close = kqueue_close,
115 };
116 
117 static int 	knote_attach(struct knote *kn, struct kqueue *kq);
118 static void 	knote_drop(struct knote *kn, struct thread *td);
119 static void 	knote_enqueue(struct knote *kn);
120 static void 	knote_dequeue(struct knote *kn);
121 static void 	knote_init(void);
122 static struct 	knote *knote_alloc(int waitok);
123 static void 	knote_free(struct knote *kn);
124 
125 static void	filt_kqdetach(struct knote *kn);
126 static int	filt_kqueue(struct knote *kn, long hint);
127 static int	filt_procattach(struct knote *kn);
128 static void	filt_procdetach(struct knote *kn);
129 static int	filt_proc(struct knote *kn, long hint);
130 static int	filt_fileattach(struct knote *kn);
131 static void	filt_timerexpire(void *knx);
132 static int	filt_timerattach(struct knote *kn);
133 static void	filt_timerdetach(struct knote *kn);
134 static int	filt_timer(struct knote *kn, long hint);
135 
136 static struct filterops file_filtops =
137 	{ 1, filt_fileattach, NULL, NULL };
138 static struct filterops kqread_filtops =
139 	{ 1, NULL, filt_kqdetach, filt_kqueue };
140 /* XXX - move to kern_proc.c?  */
141 static struct filterops proc_filtops =
142 	{ 0, filt_procattach, filt_procdetach, filt_proc };
143 static struct filterops timer_filtops =
144 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
145 
146 static uma_zone_t	knote_zone;
147 static int 		kq_ncallouts = 0;
148 static int 		kq_calloutmax = (4 * 1024);
149 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
150     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
151 
152 /* XXX - ensure not KN_INFLUX?? */
153 #define KNOTE_ACTIVATE(kn, islock) do { 				\
154 	if ((islock))							\
155 		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
156 	else								\
157 		KQ_LOCK((kn)->kn_kq);					\
158 	(kn)->kn_status |= KN_ACTIVE;					\
159 	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
160 		knote_enqueue((kn));					\
161 	if (!(islock))							\
162 		KQ_UNLOCK((kn)->kn_kq);					\
163 } while(0)
164 #define KQ_LOCK(kq) do {						\
165 	mtx_lock(&(kq)->kq_lock);					\
166 } while (0)
167 #define KQ_FLUX_WAKEUP(kq) do {						\
168 	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
169 		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
170 		wakeup((kq));						\
171 	}								\
172 } while (0)
173 #define KQ_UNLOCK_FLUX(kq) do {						\
174 	KQ_FLUX_WAKEUP(kq);						\
175 	mtx_unlock(&(kq)->kq_lock);					\
176 } while (0)
177 #define KQ_UNLOCK(kq) do {						\
178 	mtx_unlock(&(kq)->kq_lock);					\
179 } while (0)
180 #define KQ_OWNED(kq) do {						\
181 	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
182 } while (0)
183 #define KQ_NOTOWNED(kq) do {						\
184 	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
185 } while (0)
186 #define KN_LIST_LOCK(kn) do {						\
187 	if (kn->kn_knlist != NULL)					\
188 		kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);	\
189 } while (0)
190 #define KN_LIST_UNLOCK(kn) do {						\
191 	if (kn->kn_knlist != NULL) 					\
192 		kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);	\
193 } while (0)
194 #define	KNL_ASSERT_LOCK(knl, islocked) do {				\
195 	if (islocked)							\
196 		KNL_ASSERT_LOCKED(knl);				\
197 	else								\
198 		KNL_ASSERT_UNLOCKED(knl);				\
199 } while (0)
200 #ifdef INVARIANTS
201 #define	KNL_ASSERT_LOCKED(knl) do {					\
202 	if (!knl->kl_locked((knl)->kl_lockarg))				\
203 			panic("knlist not locked, but should be");	\
204 } while (0)
205 #define	KNL_ASSERT_UNLOCKED(knl) do {				\
206 	if (knl->kl_locked((knl)->kl_lockarg))				\
207 		panic("knlist locked, but should not be");		\
208 } while (0)
209 #else /* !INVARIANTS */
210 #define	KNL_ASSERT_LOCKED(knl) do {} while(0)
211 #define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
212 #endif /* INVARIANTS */
213 
214 #define	KN_HASHSIZE		64		/* XXX should be tunable */
215 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
216 
217 static int
218 filt_nullattach(struct knote *kn)
219 {
220 
221 	return (ENXIO);
222 };
223 
224 struct filterops null_filtops =
225 	{ 0, filt_nullattach, NULL, NULL };
226 
227 /* XXX - make SYSINIT to add these, and move into respective modules. */
228 extern struct filterops sig_filtops;
229 extern struct filterops fs_filtops;
230 
231 /*
232  * Table for for all system-defined filters.
233  */
234 static struct mtx	filterops_lock;
235 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
236 	MTX_DEF);
237 static struct {
238 	struct filterops *for_fop;
239 	int for_refcnt;
240 } sysfilt_ops[EVFILT_SYSCOUNT] = {
241 	{ &file_filtops },			/* EVFILT_READ */
242 	{ &file_filtops },			/* EVFILT_WRITE */
243 	{ &null_filtops },			/* EVFILT_AIO */
244 	{ &file_filtops },			/* EVFILT_VNODE */
245 	{ &proc_filtops },			/* EVFILT_PROC */
246 	{ &sig_filtops },			/* EVFILT_SIGNAL */
247 	{ &timer_filtops },			/* EVFILT_TIMER */
248 	{ &file_filtops },			/* EVFILT_NETDEV */
249 	{ &fs_filtops },			/* EVFILT_FS */
250 	{ &null_filtops },			/* EVFILT_LIO */
251 };
252 
253 /*
254  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
255  * method.
256  */
257 static int
258 filt_fileattach(struct knote *kn)
259 {
260 
261 	return (fo_kqfilter(kn->kn_fp, kn));
262 }
263 
264 /*ARGSUSED*/
265 static int
266 kqueue_kqfilter(struct file *fp, struct knote *kn)
267 {
268 	struct kqueue *kq = kn->kn_fp->f_data;
269 
270 	if (kn->kn_filter != EVFILT_READ)
271 		return (EINVAL);
272 
273 	kn->kn_status |= KN_KQUEUE;
274 	kn->kn_fop = &kqread_filtops;
275 	knlist_add(&kq->kq_sel.si_note, kn, 0);
276 
277 	return (0);
278 }
279 
280 static void
281 filt_kqdetach(struct knote *kn)
282 {
283 	struct kqueue *kq = kn->kn_fp->f_data;
284 
285 	knlist_remove(&kq->kq_sel.si_note, kn, 0);
286 }
287 
288 /*ARGSUSED*/
289 static int
290 filt_kqueue(struct knote *kn, long hint)
291 {
292 	struct kqueue *kq = kn->kn_fp->f_data;
293 
294 	kn->kn_data = kq->kq_count;
295 	return (kn->kn_data > 0);
296 }
297 
298 /* XXX - move to kern_proc.c?  */
299 static int
300 filt_procattach(struct knote *kn)
301 {
302 	struct proc *p;
303 	int immediate;
304 	int error;
305 
306 	immediate = 0;
307 	p = pfind(kn->kn_id);
308 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
309 		p = zpfind(kn->kn_id);
310 		immediate = 1;
311 	} else if (p != NULL && (p->p_flag & P_WEXIT)) {
312 		immediate = 1;
313 	}
314 
315 	if (p == NULL)
316 		return (ESRCH);
317 	if ((error = p_cansee(curthread, p)))
318 		return (error);
319 
320 	kn->kn_ptr.p_proc = p;
321 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
322 
323 	/*
324 	 * internal flag indicating registration done by kernel
325 	 */
326 	if (kn->kn_flags & EV_FLAG1) {
327 		kn->kn_data = kn->kn_sdata;		/* ppid */
328 		kn->kn_fflags = NOTE_CHILD;
329 		kn->kn_flags &= ~EV_FLAG1;
330 	}
331 
332 	if (immediate == 0)
333 		knlist_add(&p->p_klist, kn, 1);
334 
335 	/*
336 	 * Immediately activate any exit notes if the target process is a
337 	 * zombie.  This is necessary to handle the case where the target
338 	 * process, e.g. a child, dies before the kevent is registered.
339 	 */
340 	if (immediate && filt_proc(kn, NOTE_EXIT))
341 		KNOTE_ACTIVATE(kn, 0);
342 
343 	PROC_UNLOCK(p);
344 
345 	return (0);
346 }
347 
348 /*
349  * The knote may be attached to a different process, which may exit,
350  * leaving nothing for the knote to be attached to.  So when the process
351  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
352  * it will be deleted when read out.  However, as part of the knote deletion,
353  * this routine is called, so a check is needed to avoid actually performing
354  * a detach, because the original process does not exist any more.
355  */
356 /* XXX - move to kern_proc.c?  */
357 static void
358 filt_procdetach(struct knote *kn)
359 {
360 	struct proc *p;
361 
362 	p = kn->kn_ptr.p_proc;
363 	knlist_remove(&p->p_klist, kn, 0);
364 	kn->kn_ptr.p_proc = NULL;
365 }
366 
367 /* XXX - move to kern_proc.c?  */
368 static int
369 filt_proc(struct knote *kn, long hint)
370 {
371 	struct proc *p = kn->kn_ptr.p_proc;
372 	u_int event;
373 
374 	/*
375 	 * mask off extra data
376 	 */
377 	event = (u_int)hint & NOTE_PCTRLMASK;
378 
379 	/*
380 	 * if the user is interested in this event, record it.
381 	 */
382 	if (kn->kn_sfflags & event)
383 		kn->kn_fflags |= event;
384 
385 	/*
386 	 * process is gone, so flag the event as finished.
387 	 */
388 	if (event == NOTE_EXIT) {
389 		if (!(kn->kn_status & KN_DETACHED))
390 			knlist_remove_inevent(&p->p_klist, kn);
391 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
392 		kn->kn_ptr.p_proc = NULL;
393 		return (1);
394 	}
395 
396 	/*
397 	 * process forked, and user wants to track the new process,
398 	 * so attach a new knote to it, and immediately report an
399 	 * event with the parent's pid.
400 	 */
401 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
402 		struct kevent kev;
403 		int error;
404 
405 		/*
406 		 * register knote with new process.
407 		 */
408 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
409 		kev.filter = kn->kn_filter;
410 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
411 		kev.fflags = kn->kn_sfflags;
412 		kev.data = kn->kn_id;			/* parent */
413 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
414 		error = kqueue_register(kn->kn_kq, &kev, NULL, 0);
415 		if (error)
416 			kn->kn_fflags |= NOTE_TRACKERR;
417 	}
418 
419 	return (kn->kn_fflags != 0);
420 }
421 
422 static int
423 timertoticks(intptr_t data)
424 {
425 	struct timeval tv;
426 	int tticks;
427 
428 	tv.tv_sec = data / 1000;
429 	tv.tv_usec = (data % 1000) * 1000;
430 	tticks = tvtohz(&tv);
431 
432 	return tticks;
433 }
434 
435 /* XXX - move to kern_timeout.c? */
436 static void
437 filt_timerexpire(void *knx)
438 {
439 	struct knote *kn = knx;
440 	struct callout *calloutp;
441 
442 	kn->kn_data++;
443 	KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
444 
445 	if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
446 		calloutp = (struct callout *)kn->kn_hook;
447 		callout_reset(calloutp, timertoticks(kn->kn_sdata),
448 		    filt_timerexpire, kn);
449 	}
450 }
451 
452 /*
453  * data contains amount of time to sleep, in milliseconds
454  */
455 /* XXX - move to kern_timeout.c? */
456 static int
457 filt_timerattach(struct knote *kn)
458 {
459 	struct callout *calloutp;
460 
461 	atomic_add_int(&kq_ncallouts, 1);
462 
463 	if (kq_ncallouts >= kq_calloutmax) {
464 		atomic_add_int(&kq_ncallouts, -1);
465 		return (ENOMEM);
466 	}
467 
468 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
469 	kn->kn_status &= ~KN_DETACHED;		/* knlist_add usually sets it */
470 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
471 	    M_KQUEUE, M_WAITOK);
472 	callout_init(calloutp, CALLOUT_MPSAFE);
473 	kn->kn_hook = calloutp;
474 	callout_reset(calloutp, timertoticks(kn->kn_sdata), filt_timerexpire,
475 	    kn);
476 
477 	return (0);
478 }
479 
480 /* XXX - move to kern_timeout.c? */
481 static void
482 filt_timerdetach(struct knote *kn)
483 {
484 	struct callout *calloutp;
485 
486 	calloutp = (struct callout *)kn->kn_hook;
487 	callout_drain(calloutp);
488 	FREE(calloutp, M_KQUEUE);
489 	atomic_add_int(&kq_ncallouts, -1);
490 	kn->kn_status |= KN_DETACHED;	/* knlist_remove usually clears it */
491 }
492 
493 /* XXX - move to kern_timeout.c? */
494 static int
495 filt_timer(struct knote *kn, long hint)
496 {
497 
498 	return (kn->kn_data != 0);
499 }
500 
501 /*
502  * MPSAFE
503  */
504 int
505 kqueue(struct thread *td, struct kqueue_args *uap)
506 {
507 	struct filedesc *fdp;
508 	struct kqueue *kq;
509 	struct file *fp;
510 	int fd, error;
511 
512 	fdp = td->td_proc->p_fd;
513 	error = falloc(td, &fp, &fd);
514 	if (error)
515 		goto done2;
516 
517 	/* An extra reference on `nfp' has been held for us by falloc(). */
518 	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
519 	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
520 	TAILQ_INIT(&kq->kq_head);
521 	kq->kq_fdp = fdp;
522 	knlist_init(&kq->kq_sel.si_note, &kq->kq_lock, NULL, NULL, NULL);
523 	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
524 
525 	FILEDESC_LOCK_FAST(fdp);
526 	SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
527 	FILEDESC_UNLOCK_FAST(fdp);
528 
529 	FILE_LOCK(fp);
530 	fp->f_flag = FREAD | FWRITE;
531 	fp->f_type = DTYPE_KQUEUE;
532 	fp->f_ops = &kqueueops;
533 	fp->f_data = kq;
534 	FILE_UNLOCK(fp);
535 	fdrop(fp, td);
536 
537 	td->td_retval[0] = fd;
538 done2:
539 	return (error);
540 }
541 
542 #ifndef _SYS_SYSPROTO_H_
543 struct kevent_args {
544 	int	fd;
545 	const struct kevent *changelist;
546 	int	nchanges;
547 	struct	kevent *eventlist;
548 	int	nevents;
549 	const struct timespec *timeout;
550 };
551 #endif
552 /*
553  * MPSAFE
554  */
555 int
556 kevent(struct thread *td, struct kevent_args *uap)
557 {
558 	struct timespec ts, *tsp;
559 	struct kevent_copyops k_ops = { uap,
560 					kevent_copyout,
561 					kevent_copyin};
562 	int error;
563 
564 	if (uap->timeout != NULL) {
565 		error = copyin(uap->timeout, &ts, sizeof(ts));
566 		if (error)
567 			return (error);
568 		tsp = &ts;
569 	} else
570 		tsp = NULL;
571 
572 	return (kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
573 	    &k_ops, tsp));
574 }
575 
576 /*
577  * Copy 'count' items into the destination list pointed to by uap->eventlist.
578  */
579 static int
580 kevent_copyout(void *arg, struct kevent *kevp, int count)
581 {
582 	struct kevent_args *uap;
583 	int error;
584 
585 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
586 	uap = (struct kevent_args *)arg;
587 
588 	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
589 	if (error == 0)
590 		uap->eventlist += count;
591 	return (error);
592 }
593 
594 /*
595  * Copy 'count' items from the list pointed to by uap->changelist.
596  */
597 static int
598 kevent_copyin(void *arg, struct kevent *kevp, int count)
599 {
600 	struct kevent_args *uap;
601 	int error;
602 
603 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
604 	uap = (struct kevent_args *)arg;
605 
606 	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
607 	if (error == 0)
608 		uap->changelist += count;
609 	return (error);
610 }
611 
612 int
613 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
614     struct kevent_copyops *k_ops, const struct timespec *timeout)
615 {
616 	struct kevent keva[KQ_NEVENTS];
617 	struct kevent *kevp, *changes;
618 	struct kqueue *kq;
619 	struct file *fp;
620 	int i, n, nerrors, error;
621 
622 	if ((error = fget(td, fd, &fp)) != 0)
623 		return (error);
624 	if ((error = kqueue_aquire(fp, &kq)) != 0)
625 		goto done_norel;
626 
627 	nerrors = 0;
628 
629 	while (nchanges > 0) {
630 		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
631 		error = k_ops->k_copyin(k_ops->arg, keva, n);
632 		if (error)
633 			goto done;
634 		changes = keva;
635 		for (i = 0; i < n; i++) {
636 			kevp = &changes[i];
637 			if (!kevp->filter)
638 				continue;
639 			kevp->flags &= ~EV_SYSFLAGS;
640 			error = kqueue_register(kq, kevp, td, 1);
641 			if (error) {
642 				if (nevents != 0) {
643 					kevp->flags = EV_ERROR;
644 					kevp->data = error;
645 					(void) k_ops->k_copyout(k_ops->arg,
646 					    kevp, 1);
647 					nevents--;
648 					nerrors++;
649 				} else {
650 					goto done;
651 				}
652 			}
653 		}
654 		nchanges -= n;
655 	}
656 	if (nerrors) {
657 		td->td_retval[0] = nerrors;
658 		error = 0;
659 		goto done;
660 	}
661 
662 	error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
663 done:
664 	kqueue_release(kq, 0);
665 done_norel:
666 	if (fp != NULL)
667 		fdrop(fp, td);
668 	return (error);
669 }
670 
671 int
672 kqueue_add_filteropts(int filt, struct filterops *filtops)
673 {
674 	int error;
675 
676 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
677 		printf(
678 "trying to add a filterop that is out of range: %d is beyond %d\n",
679 		    ~filt, EVFILT_SYSCOUNT);
680 		return EINVAL;
681 	}
682 	mtx_lock(&filterops_lock);
683 	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
684 	    sysfilt_ops[~filt].for_fop != NULL)
685 		error = EEXIST;
686 	else {
687 		sysfilt_ops[~filt].for_fop = filtops;
688 		sysfilt_ops[~filt].for_refcnt = 0;
689 	}
690 	mtx_unlock(&filterops_lock);
691 
692 	return (0);
693 }
694 
695 int
696 kqueue_del_filteropts(int filt)
697 {
698 	int error;
699 
700 	error = 0;
701 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
702 		return EINVAL;
703 
704 	mtx_lock(&filterops_lock);
705 	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
706 	    sysfilt_ops[~filt].for_fop == NULL)
707 		error = EINVAL;
708 	else if (sysfilt_ops[~filt].for_refcnt != 0)
709 		error = EBUSY;
710 	else {
711 		sysfilt_ops[~filt].for_fop = &null_filtops;
712 		sysfilt_ops[~filt].for_refcnt = 0;
713 	}
714 	mtx_unlock(&filterops_lock);
715 
716 	return error;
717 }
718 
719 static struct filterops *
720 kqueue_fo_find(int filt)
721 {
722 
723 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
724 		return NULL;
725 
726 	mtx_lock(&filterops_lock);
727 	sysfilt_ops[~filt].for_refcnt++;
728 	if (sysfilt_ops[~filt].for_fop == NULL)
729 		sysfilt_ops[~filt].for_fop = &null_filtops;
730 	mtx_unlock(&filterops_lock);
731 
732 	return sysfilt_ops[~filt].for_fop;
733 }
734 
735 static void
736 kqueue_fo_release(int filt)
737 {
738 
739 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
740 		return;
741 
742 	mtx_lock(&filterops_lock);
743 	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
744 	    ("filter object refcount not valid on release"));
745 	sysfilt_ops[~filt].for_refcnt--;
746 	mtx_unlock(&filterops_lock);
747 }
748 
749 /*
750  * A ref to kq (obtained via kqueue_aquire) should be held.  waitok will
751  * influence if memory allocation should wait.  Make sure it is 0 if you
752  * hold any mutexes.
753  */
754 int
755 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
756 {
757 	struct filedesc *fdp;
758 	struct filterops *fops;
759 	struct file *fp;
760 	struct knote *kn, *tkn;
761 	int error, filt, event;
762 	int haskqglobal;
763 	int fd;
764 
765 	fdp = NULL;
766 	fp = NULL;
767 	kn = NULL;
768 	error = 0;
769 	haskqglobal = 0;
770 
771 	filt = kev->filter;
772 	fops = kqueue_fo_find(filt);
773 	if (fops == NULL)
774 		return EINVAL;
775 
776 	tkn = knote_alloc(waitok);		/* prevent waiting with locks */
777 
778 findkn:
779 	if (fops->f_isfd) {
780 		KASSERT(td != NULL, ("td is NULL"));
781 		fdp = td->td_proc->p_fd;
782 		FILEDESC_LOCK(fdp);
783 		/* validate descriptor */
784 		fd = kev->ident;
785 		if (fd < 0 || fd >= fdp->fd_nfiles ||
786 		    (fp = fdp->fd_ofiles[fd]) == NULL) {
787 			FILEDESC_UNLOCK(fdp);
788 			error = EBADF;
789 			goto done;
790 		}
791 		fhold(fp);
792 
793 		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
794 		    kev->ident, 0) != 0) {
795 			/* unlock and try again */
796 			FILEDESC_UNLOCK(fdp);
797 			fdrop(fp, td);
798 			fp = NULL;
799 			error = kqueue_expand(kq, fops, kev->ident, waitok);
800 			if (error)
801 				goto done;
802 			goto findkn;
803 		}
804 
805 		if (fp->f_type == DTYPE_KQUEUE) {
806 			/*
807 			 * if we add some inteligence about what we are doing,
808 			 * we should be able to support events on ourselves.
809 			 * We need to know when we are doing this to prevent
810 			 * getting both the knlist lock and the kq lock since
811 			 * they are the same thing.
812 			 */
813 			if (fp->f_data == kq) {
814 				FILEDESC_UNLOCK(fdp);
815 				error = EINVAL;
816 				goto done_noglobal;
817 			}
818 
819 			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
820 		}
821 
822 		FILEDESC_UNLOCK(fdp);
823 		KQ_LOCK(kq);
824 		if (kev->ident < kq->kq_knlistsize) {
825 			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
826 				if (kev->filter == kn->kn_filter)
827 					break;
828 		}
829 	} else {
830 		if ((kev->flags & EV_ADD) == EV_ADD)
831 			kqueue_expand(kq, fops, kev->ident, waitok);
832 
833 		KQ_LOCK(kq);
834 		if (kq->kq_knhashmask != 0) {
835 			struct klist *list;
836 
837 			list = &kq->kq_knhash[
838 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
839 			SLIST_FOREACH(kn, list, kn_link)
840 				if (kev->ident == kn->kn_id &&
841 				    kev->filter == kn->kn_filter)
842 					break;
843 		}
844 	}
845 
846 	/* knote is in the process of changing, wait for it to stablize. */
847 	if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
848 		if (fp != NULL) {
849 			fdrop(fp, td);
850 			fp = NULL;
851 		}
852 		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
853 		kq->kq_state |= KQ_FLUXWAIT;
854 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
855 		goto findkn;
856 	}
857 
858 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
859 		KQ_UNLOCK(kq);
860 		error = ENOENT;
861 		goto done;
862 	}
863 
864 	/*
865 	 * kn now contains the matching knote, or NULL if no match
866 	 */
867 	if (kev->flags & EV_ADD) {
868 		if (kn == NULL) {
869 			kn = tkn;
870 			tkn = NULL;
871 			if (kn == NULL) {
872 				error = ENOMEM;
873 				goto done;
874 			}
875 			kn->kn_fp = fp;
876 			kn->kn_kq = kq;
877 			kn->kn_fop = fops;
878 			/*
879 			 * apply reference counts to knote structure, and
880 			 * do not release it at the end of this routine.
881 			 */
882 			fops = NULL;
883 			fp = NULL;
884 
885 			kn->kn_sfflags = kev->fflags;
886 			kn->kn_sdata = kev->data;
887 			kev->fflags = 0;
888 			kev->data = 0;
889 			kn->kn_kevent = *kev;
890 			kn->kn_status = KN_INFLUX|KN_DETACHED;
891 
892 			error = knote_attach(kn, kq);
893 			KQ_UNLOCK(kq);
894 			if (error != 0) {
895 				tkn = kn;
896 				goto done;
897 			}
898 
899 			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
900 				knote_drop(kn, td);
901 				goto done;
902 			}
903 			KN_LIST_LOCK(kn);
904 		} else {
905 			/*
906 			 * The user may change some filter values after the
907 			 * initial EV_ADD, but doing so will not reset any
908 			 * filter which has already been triggered.
909 			 */
910 			kn->kn_status |= KN_INFLUX;
911 			KQ_UNLOCK(kq);
912 			KN_LIST_LOCK(kn);
913 			kn->kn_sfflags = kev->fflags;
914 			kn->kn_sdata = kev->data;
915 			kn->kn_kevent.udata = kev->udata;
916 		}
917 
918 		/*
919 		 * We can get here with kn->kn_knlist == NULL.
920 		 * This can happen when the initial attach event decides that
921 		 * the event is "completed" already.  i.e. filt_procattach
922 		 * is called on a zombie process.  It will call filt_proc
923 		 * which will remove it from the list, and NULL kn_knlist.
924 		 */
925 		event = kn->kn_fop->f_event(kn, 0);
926 		KN_LIST_UNLOCK(kn);
927 		KQ_LOCK(kq);
928 		if (event)
929 			KNOTE_ACTIVATE(kn, 1);
930 		kn->kn_status &= ~KN_INFLUX;
931 	} else if (kev->flags & EV_DELETE) {
932 		kn->kn_status |= KN_INFLUX;
933 		KQ_UNLOCK(kq);
934 		if (!(kn->kn_status & KN_DETACHED))
935 			kn->kn_fop->f_detach(kn);
936 		knote_drop(kn, td);
937 		goto done;
938 	}
939 
940 	if ((kev->flags & EV_DISABLE) &&
941 	    ((kn->kn_status & KN_DISABLED) == 0)) {
942 		kn->kn_status |= KN_DISABLED;
943 	}
944 
945 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
946 		kn->kn_status &= ~KN_DISABLED;
947 		if ((kn->kn_status & KN_ACTIVE) &&
948 		    ((kn->kn_status & KN_QUEUED) == 0))
949 			knote_enqueue(kn);
950 	}
951 	KQ_UNLOCK_FLUX(kq);
952 
953 done:
954 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
955 done_noglobal:
956 	if (fp != NULL)
957 		fdrop(fp, td);
958 	if (tkn != NULL)
959 		knote_free(tkn);
960 	if (fops != NULL)
961 		kqueue_fo_release(filt);
962 	return (error);
963 }
964 
965 static int
966 kqueue_aquire(struct file *fp, struct kqueue **kqp)
967 {
968 	int error;
969 	struct kqueue *kq;
970 
971 	error = 0;
972 
973 	FILE_LOCK(fp);
974 	do {
975 		kq = fp->f_data;
976 		if (fp->f_type != DTYPE_KQUEUE || kq == NULL) {
977 			error = EBADF;
978 			break;
979 		}
980 		*kqp = kq;
981 		KQ_LOCK(kq);
982 		if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
983 			KQ_UNLOCK(kq);
984 			error = EBADF;
985 			break;
986 		}
987 		kq->kq_refcnt++;
988 		KQ_UNLOCK(kq);
989 	} while (0);
990 	FILE_UNLOCK(fp);
991 
992 	return error;
993 }
994 
995 static void
996 kqueue_release(struct kqueue *kq, int locked)
997 {
998 	if (locked)
999 		KQ_OWNED(kq);
1000 	else
1001 		KQ_LOCK(kq);
1002 	kq->kq_refcnt--;
1003 	if (kq->kq_refcnt == 1)
1004 		wakeup(&kq->kq_refcnt);
1005 	if (!locked)
1006 		KQ_UNLOCK(kq);
1007 }
1008 
1009 static void
1010 kqueue_schedtask(struct kqueue *kq)
1011 {
1012 
1013 	KQ_OWNED(kq);
1014 	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1015 	    ("scheduling kqueue task while draining"));
1016 
1017 	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1018 		taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
1019 		kq->kq_state |= KQ_TASKSCHED;
1020 	}
1021 }
1022 
1023 /*
1024  * Expand the kq to make sure we have storage for fops/ident pair.
1025  *
1026  * Return 0 on success (or no work necessary), return errno on failure.
1027  *
1028  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
1029  * If kqueue_register is called from a non-fd context, there usually/should
1030  * be no locks held.
1031  */
1032 static int
1033 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1034 	int waitok)
1035 {
1036 	struct klist *list, *tmp_knhash;
1037 	u_long tmp_knhashmask;
1038 	int size;
1039 	int fd;
1040 	int mflag = waitok ? M_WAITOK : M_NOWAIT;
1041 
1042 	KQ_NOTOWNED(kq);
1043 
1044 	if (fops->f_isfd) {
1045 		fd = ident;
1046 		if (kq->kq_knlistsize <= fd) {
1047 			size = kq->kq_knlistsize;
1048 			while (size <= fd)
1049 				size += KQEXTENT;
1050 			MALLOC(list, struct klist *,
1051 			    size * sizeof list, M_KQUEUE, mflag);
1052 			if (list == NULL)
1053 				return ENOMEM;
1054 			KQ_LOCK(kq);
1055 			if (kq->kq_knlistsize > fd) {
1056 				FREE(list, M_KQUEUE);
1057 				list = NULL;
1058 			} else {
1059 				if (kq->kq_knlist != NULL) {
1060 					bcopy(kq->kq_knlist, list,
1061 					    kq->kq_knlistsize * sizeof list);
1062 					FREE(kq->kq_knlist, M_KQUEUE);
1063 					kq->kq_knlist = NULL;
1064 				}
1065 				bzero((caddr_t)list +
1066 				    kq->kq_knlistsize * sizeof list,
1067 				    (size - kq->kq_knlistsize) * sizeof list);
1068 				kq->kq_knlistsize = size;
1069 				kq->kq_knlist = list;
1070 			}
1071 			KQ_UNLOCK(kq);
1072 		}
1073 	} else {
1074 		if (kq->kq_knhashmask == 0) {
1075 			tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1076 			    &tmp_knhashmask);
1077 			if (tmp_knhash == NULL)
1078 				return ENOMEM;
1079 			KQ_LOCK(kq);
1080 			if (kq->kq_knhashmask == 0) {
1081 				kq->kq_knhash = tmp_knhash;
1082 				kq->kq_knhashmask = tmp_knhashmask;
1083 			} else {
1084 				free(tmp_knhash, M_KQUEUE);
1085 			}
1086 			KQ_UNLOCK(kq);
1087 		}
1088 	}
1089 
1090 	KQ_NOTOWNED(kq);
1091 	return 0;
1092 }
1093 
1094 static void
1095 kqueue_task(void *arg, int pending)
1096 {
1097 	struct kqueue *kq;
1098 	int haskqglobal;
1099 
1100 	haskqglobal = 0;
1101 	kq = arg;
1102 
1103 	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1104 	KQ_LOCK(kq);
1105 
1106 	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1107 
1108 	kq->kq_state &= ~KQ_TASKSCHED;
1109 	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1110 		wakeup(&kq->kq_state);
1111 	}
1112 	KQ_UNLOCK(kq);
1113 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1114 }
1115 
1116 /*
1117  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1118  * We treat KN_MARKER knotes as if they are INFLUX.
1119  */
1120 static int
1121 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1122     const struct timespec *tsp, struct kevent *keva, struct thread *td)
1123 {
1124 	struct kevent *kevp;
1125 	struct timeval atv, rtv, ttv;
1126 	struct knote *kn, *marker;
1127 	int count, timeout, nkev, error;
1128 	int haskqglobal;
1129 
1130 	count = maxevents;
1131 	nkev = 0;
1132 	error = 0;
1133 	haskqglobal = 0;
1134 
1135 	if (maxevents == 0)
1136 		goto done_nl;
1137 
1138 	if (tsp != NULL) {
1139 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
1140 		if (itimerfix(&atv)) {
1141 			error = EINVAL;
1142 			goto done_nl;
1143 		}
1144 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1145 			timeout = -1;
1146 		else
1147 			timeout = atv.tv_sec > 24 * 60 * 60 ?
1148 			    24 * 60 * 60 * hz : tvtohz(&atv);
1149 		getmicrouptime(&rtv);
1150 		timevaladd(&atv, &rtv);
1151 	} else {
1152 		atv.tv_sec = 0;
1153 		atv.tv_usec = 0;
1154 		timeout = 0;
1155 	}
1156 	marker = knote_alloc(1);
1157 	if (marker == NULL) {
1158 		error = ENOMEM;
1159 		goto done_nl;
1160 	}
1161 	marker->kn_status = KN_MARKER;
1162 	KQ_LOCK(kq);
1163 	goto start;
1164 
1165 retry:
1166 	if (atv.tv_sec || atv.tv_usec) {
1167 		getmicrouptime(&rtv);
1168 		if (timevalcmp(&rtv, &atv, >=))
1169 			goto done;
1170 		ttv = atv;
1171 		timevalsub(&ttv, &rtv);
1172 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
1173 			24 * 60 * 60 * hz : tvtohz(&ttv);
1174 	}
1175 
1176 start:
1177 	kevp = keva;
1178 	if (kq->kq_count == 0) {
1179 		if (timeout < 0) {
1180 			error = EWOULDBLOCK;
1181 		} else {
1182 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1183 			kq->kq_state |= KQ_SLEEP;
1184 			error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH,
1185 			    "kqread", timeout);
1186 		}
1187 		if (error == 0)
1188 			goto retry;
1189 		/* don't restart after signals... */
1190 		if (error == ERESTART)
1191 			error = EINTR;
1192 		else if (error == EWOULDBLOCK)
1193 			error = 0;
1194 		goto done;
1195 	}
1196 
1197 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1198 	while (count) {
1199 		KQ_OWNED(kq);
1200 		kn = TAILQ_FIRST(&kq->kq_head);
1201 
1202 		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1203 		    (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1204 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1205 			kq->kq_state |= KQ_FLUXWAIT;
1206 			error = msleep(kq, &kq->kq_lock, PSOCK,
1207 			    "kqflxwt", 0);
1208 			continue;
1209 		}
1210 
1211 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1212 		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1213 			kn->kn_status &= ~KN_QUEUED;
1214 			kq->kq_count--;
1215 			continue;
1216 		}
1217 		if (kn == marker) {
1218 			KQ_FLUX_WAKEUP(kq);
1219 			if (count == maxevents)
1220 				goto retry;
1221 			goto done;
1222 		}
1223 		KASSERT((kn->kn_status & KN_INFLUX) == 0,
1224 		    ("KN_INFLUX set when not suppose to be"));
1225 
1226 		if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1227 			kn->kn_status &= ~KN_QUEUED;
1228 			kn->kn_status |= KN_INFLUX;
1229 			kq->kq_count--;
1230 			KQ_UNLOCK(kq);
1231 			/*
1232 			 * We don't need to lock the list since we've marked
1233 			 * it _INFLUX.
1234 			 */
1235 			*kevp = kn->kn_kevent;
1236 			if (!(kn->kn_status & KN_DETACHED))
1237 				kn->kn_fop->f_detach(kn);
1238 			knote_drop(kn, td);
1239 			KQ_LOCK(kq);
1240 			kn = NULL;
1241 		} else {
1242 			kn->kn_status |= KN_INFLUX;
1243 			KQ_UNLOCK(kq);
1244 			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1245 				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1246 			KN_LIST_LOCK(kn);
1247 			if (kn->kn_fop->f_event(kn, 0) == 0) {
1248 				KQ_LOCK(kq);
1249 				kn->kn_status &=
1250 				    ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX);
1251 				kq->kq_count--;
1252 				KN_LIST_UNLOCK(kn);
1253 				continue;
1254 			}
1255 			*kevp = kn->kn_kevent;
1256 			KQ_LOCK(kq);
1257 			if (kn->kn_flags & EV_CLEAR) {
1258 				kn->kn_data = 0;
1259 				kn->kn_fflags = 0;
1260 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1261 				kq->kq_count--;
1262 			} else
1263 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1264 
1265 			kn->kn_status &= ~(KN_INFLUX);
1266 			KN_LIST_UNLOCK(kn);
1267 
1268 		}
1269 
1270 		/* we are returning a copy to the user */
1271 		kevp++;
1272 		nkev++;
1273 		count--;
1274 
1275 		if (nkev == KQ_NEVENTS) {
1276 			KQ_UNLOCK_FLUX(kq);
1277 			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1278 			nkev = 0;
1279 			kevp = keva;
1280 			KQ_LOCK(kq);
1281 			if (error)
1282 				break;
1283 		}
1284 	}
1285 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1286 done:
1287 	KQ_OWNED(kq);
1288 	KQ_UNLOCK_FLUX(kq);
1289 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1290 	knote_free(marker);
1291 done_nl:
1292 	KQ_NOTOWNED(kq);
1293 	if (nkev != 0)
1294 		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1295 	td->td_retval[0] = maxevents - count;
1296 	return (error);
1297 }
1298 
1299 /*
1300  * XXX
1301  * This could be expanded to call kqueue_scan, if desired.
1302  */
1303 /*ARGSUSED*/
1304 static int
1305 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1306 	int flags, struct thread *td)
1307 {
1308 	return (ENXIO);
1309 }
1310 
1311 /*ARGSUSED*/
1312 static int
1313 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1314 	 int flags, struct thread *td)
1315 {
1316 	return (ENXIO);
1317 }
1318 
1319 /*ARGSUSED*/
1320 static int
1321 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
1322 	struct ucred *active_cred, struct thread *td)
1323 {
1324 	/*
1325 	 * Enabling sigio causes two major problems:
1326 	 * 1) infinite recursion:
1327 	 * Synopsys: kevent is being used to track signals and have FIOASYNC
1328 	 * set.  On receipt of a signal this will cause a kqueue to recurse
1329 	 * into itself over and over.  Sending the sigio causes the kqueue
1330 	 * to become ready, which in turn posts sigio again, forever.
1331 	 * Solution: this can be solved by setting a flag in the kqueue that
1332 	 * we have a SIGIO in progress.
1333 	 * 2) locking problems:
1334 	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
1335 	 * us above the proc and pgrp locks.
1336 	 * Solution: Post a signal using an async mechanism, being sure to
1337 	 * record a generation count in the delivery so that we do not deliver
1338 	 * a signal to the wrong process.
1339 	 *
1340 	 * Note, these two mechanisms are somewhat mutually exclusive!
1341 	 */
1342 #if 0
1343 	struct kqueue *kq;
1344 
1345 	kq = fp->f_data;
1346 	switch (cmd) {
1347 	case FIOASYNC:
1348 		if (*(int *)data) {
1349 			kq->kq_state |= KQ_ASYNC;
1350 		} else {
1351 			kq->kq_state &= ~KQ_ASYNC;
1352 		}
1353 		return (0);
1354 
1355 	case FIOSETOWN:
1356 		return (fsetown(*(int *)data, &kq->kq_sigio));
1357 
1358 	case FIOGETOWN:
1359 		*(int *)data = fgetown(&kq->kq_sigio);
1360 		return (0);
1361 	}
1362 #endif
1363 
1364 	return (ENOTTY);
1365 }
1366 
1367 /*ARGSUSED*/
1368 static int
1369 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
1370 	struct thread *td)
1371 {
1372 	struct kqueue *kq;
1373 	int revents = 0;
1374 	int error;
1375 
1376 	if ((error = kqueue_aquire(fp, &kq)))
1377 		return POLLERR;
1378 
1379 	KQ_LOCK(kq);
1380 	if (events & (POLLIN | POLLRDNORM)) {
1381 		if (kq->kq_count) {
1382 			revents |= events & (POLLIN | POLLRDNORM);
1383 		} else {
1384 			selrecord(td, &kq->kq_sel);
1385 			kq->kq_state |= KQ_SEL;
1386 		}
1387 	}
1388 	kqueue_release(kq, 1);
1389 	KQ_UNLOCK(kq);
1390 	return (revents);
1391 }
1392 
1393 /*ARGSUSED*/
1394 static int
1395 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1396 	struct thread *td)
1397 {
1398 
1399 	bzero((void *)st, sizeof *st);
1400 	/*
1401 	 * We no longer return kq_count because the unlocked value is useless.
1402 	 * If you spent all this time getting the count, why not spend your
1403 	 * syscall better by calling kevent?
1404 	 *
1405 	 * XXX - This is needed for libc_r.
1406 	 */
1407 	st->st_mode = S_IFIFO;
1408 	return (0);
1409 }
1410 
1411 /*ARGSUSED*/
1412 static int
1413 kqueue_close(struct file *fp, struct thread *td)
1414 {
1415 	struct kqueue *kq = fp->f_data;
1416 	struct filedesc *fdp;
1417 	struct knote *kn;
1418 	int i;
1419 	int error;
1420 
1421 	if ((error = kqueue_aquire(fp, &kq)))
1422 		return error;
1423 
1424 	KQ_LOCK(kq);
1425 
1426 	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
1427 	    ("kqueue already closing"));
1428 	kq->kq_state |= KQ_CLOSING;
1429 	if (kq->kq_refcnt > 1)
1430 		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
1431 
1432 	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
1433 	fdp = kq->kq_fdp;
1434 
1435 	KASSERT(knlist_empty(&kq->kq_sel.si_note),
1436 	    ("kqueue's knlist not empty"));
1437 
1438 	for (i = 0; i < kq->kq_knlistsize; i++) {
1439 		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
1440 			KASSERT((kn->kn_status & KN_INFLUX) == 0,
1441 			    ("KN_INFLUX set when not suppose to be"));
1442 			kn->kn_status |= KN_INFLUX;
1443 			KQ_UNLOCK(kq);
1444 			if (!(kn->kn_status & KN_DETACHED))
1445 				kn->kn_fop->f_detach(kn);
1446 			knote_drop(kn, td);
1447 			KQ_LOCK(kq);
1448 		}
1449 	}
1450 	if (kq->kq_knhashmask != 0) {
1451 		for (i = 0; i <= kq->kq_knhashmask; i++) {
1452 			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
1453 				KASSERT((kn->kn_status & KN_INFLUX) == 0,
1454 				    ("KN_INFLUX set when not suppose to be"));
1455 				kn->kn_status |= KN_INFLUX;
1456 				KQ_UNLOCK(kq);
1457 				if (!(kn->kn_status & KN_DETACHED))
1458 					kn->kn_fop->f_detach(kn);
1459 				knote_drop(kn, td);
1460 				KQ_LOCK(kq);
1461 			}
1462 		}
1463 	}
1464 
1465 	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
1466 		kq->kq_state |= KQ_TASKDRAIN;
1467 		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
1468 	}
1469 
1470 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1471 		kq->kq_state &= ~KQ_SEL;
1472 		selwakeuppri(&kq->kq_sel, PSOCK);
1473 	}
1474 
1475 	KQ_UNLOCK(kq);
1476 
1477 	FILEDESC_LOCK_FAST(fdp);
1478 	SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list);
1479 	FILEDESC_UNLOCK_FAST(fdp);
1480 
1481 	knlist_destroy(&kq->kq_sel.si_note);
1482 	mtx_destroy(&kq->kq_lock);
1483 	kq->kq_fdp = NULL;
1484 
1485 	if (kq->kq_knhash != NULL)
1486 		free(kq->kq_knhash, M_KQUEUE);
1487 	if (kq->kq_knlist != NULL)
1488 		free(kq->kq_knlist, M_KQUEUE);
1489 
1490 	funsetown(&kq->kq_sigio);
1491 	free(kq, M_KQUEUE);
1492 	fp->f_data = NULL;
1493 
1494 	return (0);
1495 }
1496 
1497 static void
1498 kqueue_wakeup(struct kqueue *kq)
1499 {
1500 	KQ_OWNED(kq);
1501 
1502 	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
1503 		kq->kq_state &= ~KQ_SLEEP;
1504 		wakeup(kq);
1505 	}
1506 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1507 		kq->kq_state &= ~KQ_SEL;
1508 		selwakeuppri(&kq->kq_sel, PSOCK);
1509 	}
1510 	if (!knlist_empty(&kq->kq_sel.si_note))
1511 		kqueue_schedtask(kq);
1512 	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
1513 		pgsigio(&kq->kq_sigio, SIGIO, 0);
1514 	}
1515 }
1516 
1517 /*
1518  * Walk down a list of knotes, activating them if their event has triggered.
1519  *
1520  * There is a possibility to optimize in the case of one kq watching another.
1521  * Instead of scheduling a task to wake it up, you could pass enough state
1522  * down the chain to make up the parent kqueue.  Make this code functional
1523  * first.
1524  */
1525 void
1526 knote(struct knlist *list, long hint, int islocked)
1527 {
1528 	struct kqueue *kq;
1529 	struct knote *kn;
1530 
1531 	if (list == NULL)
1532 		return;
1533 
1534 	KNL_ASSERT_LOCK(list, islocked);
1535 
1536 	if (!islocked)
1537 		list->kl_lock(list->kl_lockarg);
1538 
1539 	/*
1540 	 * If we unlock the list lock (and set KN_INFLUX), we can eliminate
1541 	 * the kqueue scheduling, but this will introduce four
1542 	 * lock/unlock's for each knote to test.  If we do, continue to use
1543 	 * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
1544 	 * only safe if you want to remove the current item, which we are
1545 	 * not doing.
1546 	 */
1547 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
1548 		kq = kn->kn_kq;
1549 		if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
1550 			KQ_LOCK(kq);
1551 			if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
1552 				kn->kn_status |= KN_HASKQLOCK;
1553 				if (kn->kn_fop->f_event(kn, hint))
1554 					KNOTE_ACTIVATE(kn, 1);
1555 				kn->kn_status &= ~KN_HASKQLOCK;
1556 			}
1557 			KQ_UNLOCK(kq);
1558 		}
1559 		kq = NULL;
1560 	}
1561 	if (!islocked)
1562 		list->kl_unlock(list->kl_lockarg);
1563 }
1564 
1565 /*
1566  * add a knote to a knlist
1567  */
1568 void
1569 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
1570 {
1571 	KNL_ASSERT_LOCK(knl, islocked);
1572 	KQ_NOTOWNED(kn->kn_kq);
1573 	KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
1574 	    (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
1575 	if (!islocked)
1576 		knl->kl_lock(knl->kl_lockarg);
1577 	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
1578 	if (!islocked)
1579 		knl->kl_unlock(knl->kl_lockarg);
1580 	KQ_LOCK(kn->kn_kq);
1581 	kn->kn_knlist = knl;
1582 	kn->kn_status &= ~KN_DETACHED;
1583 	KQ_UNLOCK(kn->kn_kq);
1584 }
1585 
1586 static void
1587 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
1588 {
1589 	KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
1590 	KNL_ASSERT_LOCK(knl, knlislocked);
1591 	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
1592 	if (!kqislocked)
1593 		KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
1594     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
1595 	if (!knlislocked)
1596 		knl->kl_lock(knl->kl_lockarg);
1597 	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
1598 	kn->kn_knlist = NULL;
1599 	if (!knlislocked)
1600 		knl->kl_unlock(knl->kl_lockarg);
1601 	if (!kqislocked)
1602 		KQ_LOCK(kn->kn_kq);
1603 	kn->kn_status |= KN_DETACHED;
1604 	if (!kqislocked)
1605 		KQ_UNLOCK(kn->kn_kq);
1606 }
1607 
1608 /*
1609  * remove all knotes from a specified klist
1610  */
1611 void
1612 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
1613 {
1614 
1615 	knlist_remove_kq(knl, kn, islocked, 0);
1616 }
1617 
1618 /*
1619  * remove knote from a specified klist while in f_event handler.
1620  */
1621 void
1622 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
1623 {
1624 
1625 	knlist_remove_kq(knl, kn, 1,
1626 	    (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
1627 }
1628 
1629 int
1630 knlist_empty(struct knlist *knl)
1631 {
1632 	KNL_ASSERT_LOCKED(knl);
1633 	return SLIST_EMPTY(&knl->kl_list);
1634 }
1635 
1636 static struct mtx	knlist_lock;
1637 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
1638 	MTX_DEF);
1639 static void knlist_mtx_lock(void *arg);
1640 static void knlist_mtx_unlock(void *arg);
1641 static int knlist_mtx_locked(void *arg);
1642 
1643 static void
1644 knlist_mtx_lock(void *arg)
1645 {
1646 	mtx_lock((struct mtx *)arg);
1647 }
1648 
1649 static void
1650 knlist_mtx_unlock(void *arg)
1651 {
1652 	mtx_unlock((struct mtx *)arg);
1653 }
1654 
1655 static int
1656 knlist_mtx_locked(void *arg)
1657 {
1658 	return (mtx_owned((struct mtx *)arg));
1659 }
1660 
1661 void
1662 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
1663     void (*kl_unlock)(void *), int (*kl_locked)(void *))
1664 {
1665 
1666 	if (lock == NULL)
1667 		knl->kl_lockarg = &knlist_lock;
1668 	else
1669 		knl->kl_lockarg = lock;
1670 
1671 	if (kl_lock == NULL)
1672 		knl->kl_lock = knlist_mtx_lock;
1673 	else
1674 		knl->kl_lock = kl_lock;
1675 	if (kl_lock == NULL)
1676 		knl->kl_unlock = knlist_mtx_unlock;
1677 	else
1678 		knl->kl_unlock = kl_unlock;
1679 	if (kl_locked == NULL)
1680 		knl->kl_locked = knlist_mtx_locked;
1681 	else
1682 		knl->kl_locked = kl_locked;
1683 
1684 	SLIST_INIT(&knl->kl_list);
1685 }
1686 
1687 void
1688 knlist_destroy(struct knlist *knl)
1689 {
1690 
1691 #ifdef INVARIANTS
1692 	/*
1693 	 * if we run across this error, we need to find the offending
1694 	 * driver and have it call knlist_clear.
1695 	 */
1696 	if (!SLIST_EMPTY(&knl->kl_list))
1697 		printf("WARNING: destroying knlist w/ knotes on it!\n");
1698 #endif
1699 
1700 	knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
1701 	SLIST_INIT(&knl->kl_list);
1702 }
1703 
1704 /*
1705  * Even if we are locked, we may need to drop the lock to allow any influx
1706  * knotes time to "settle".
1707  */
1708 void
1709 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
1710 {
1711 	struct knote *kn;
1712 	struct kqueue *kq;
1713 
1714 	if (islocked)
1715 		KNL_ASSERT_LOCKED(knl);
1716 	else {
1717 		KNL_ASSERT_UNLOCKED(knl);
1718 again:		/* need to reaquire lock since we have dropped it */
1719 		knl->kl_lock(knl->kl_lockarg);
1720 	}
1721 
1722 	SLIST_FOREACH(kn, &knl->kl_list, kn_selnext) {
1723 		kq = kn->kn_kq;
1724 		KQ_LOCK(kq);
1725 		if ((kn->kn_status & KN_INFLUX)) {
1726 			KQ_UNLOCK(kq);
1727 			continue;
1728 		}
1729 		knlist_remove_kq(knl, kn, 1, 1);
1730 		if (killkn) {
1731 			kn->kn_status |= KN_INFLUX | KN_DETACHED;
1732 			KQ_UNLOCK(kq);
1733 			knote_drop(kn, td);
1734 		} else {
1735 			/* Make sure cleared knotes disappear soon */
1736 			kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1737 			KQ_UNLOCK(kq);
1738 		}
1739 		kq = NULL;
1740 	}
1741 
1742 	if (!SLIST_EMPTY(&knl->kl_list)) {
1743 		/* there are still KN_INFLUX remaining */
1744 		kn = SLIST_FIRST(&knl->kl_list);
1745 		kq = kn->kn_kq;
1746 		KQ_LOCK(kq);
1747 		KASSERT(kn->kn_status & KN_INFLUX,
1748 		    ("knote removed w/o list lock"));
1749 		knl->kl_unlock(knl->kl_lockarg);
1750 		kq->kq_state |= KQ_FLUXWAIT;
1751 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
1752 		kq = NULL;
1753 		goto again;
1754 	}
1755 
1756 	if (islocked)
1757 		KNL_ASSERT_LOCKED(knl);
1758 	else {
1759 		knl->kl_unlock(knl->kl_lockarg);
1760 		KNL_ASSERT_UNLOCKED(knl);
1761 	}
1762 }
1763 
1764 /*
1765  * remove all knotes referencing a specified fd
1766  * must be called with FILEDESC lock.  This prevents a race where a new fd
1767  * comes along and occupies the entry and we attach a knote to the fd.
1768  */
1769 void
1770 knote_fdclose(struct thread *td, int fd)
1771 {
1772 	struct filedesc *fdp = td->td_proc->p_fd;
1773 	struct kqueue *kq;
1774 	struct knote *kn;
1775 	int influx;
1776 
1777 	FILEDESC_LOCK_ASSERT(fdp, MA_OWNED);
1778 
1779 	/*
1780 	 * We shouldn't have to worry about new kevents appearing on fd
1781 	 * since filedesc is locked.
1782 	 */
1783 	SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
1784 		KQ_LOCK(kq);
1785 
1786 again:
1787 		influx = 0;
1788 		while (kq->kq_knlistsize > fd &&
1789 		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
1790 			if (kn->kn_status & KN_INFLUX) {
1791 				/* someone else might be waiting on our knote */
1792 				if (influx)
1793 					wakeup(kq);
1794 				kq->kq_state |= KQ_FLUXWAIT;
1795 				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
1796 				goto again;
1797 			}
1798 			kn->kn_status |= KN_INFLUX;
1799 			KQ_UNLOCK(kq);
1800 			if (!(kn->kn_status & KN_DETACHED))
1801 				kn->kn_fop->f_detach(kn);
1802 			knote_drop(kn, td);
1803 			influx = 1;
1804 			KQ_LOCK(kq);
1805 		}
1806 		KQ_UNLOCK_FLUX(kq);
1807 	}
1808 }
1809 
1810 static int
1811 knote_attach(struct knote *kn, struct kqueue *kq)
1812 {
1813 	struct klist *list;
1814 
1815 	KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
1816 	KQ_OWNED(kq);
1817 
1818 	if (kn->kn_fop->f_isfd) {
1819 		if (kn->kn_id >= kq->kq_knlistsize)
1820 			return ENOMEM;
1821 		list = &kq->kq_knlist[kn->kn_id];
1822 	} else {
1823 		if (kq->kq_knhash == NULL)
1824 			return ENOMEM;
1825 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1826 	}
1827 
1828 	SLIST_INSERT_HEAD(list, kn, kn_link);
1829 
1830 	return 0;
1831 }
1832 
1833 /*
1834  * knote must already have been detached using the f_detach method.
1835  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
1836  * to prevent other removal.
1837  */
1838 static void
1839 knote_drop(struct knote *kn, struct thread *td)
1840 {
1841 	struct kqueue *kq;
1842 	struct klist *list;
1843 
1844 	kq = kn->kn_kq;
1845 
1846 	KQ_NOTOWNED(kq);
1847 	KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
1848 	    ("knote_drop called without KN_INFLUX set in kn_status"));
1849 
1850 	KQ_LOCK(kq);
1851 	if (kn->kn_fop->f_isfd)
1852 		list = &kq->kq_knlist[kn->kn_id];
1853 	else
1854 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1855 
1856 	if (!SLIST_EMPTY(list))
1857 		SLIST_REMOVE(list, kn, knote, kn_link);
1858 	if (kn->kn_status & KN_QUEUED)
1859 		knote_dequeue(kn);
1860 	KQ_UNLOCK_FLUX(kq);
1861 
1862 	if (kn->kn_fop->f_isfd) {
1863 		fdrop(kn->kn_fp, td);
1864 		kn->kn_fp = NULL;
1865 	}
1866 	kqueue_fo_release(kn->kn_kevent.filter);
1867 	kn->kn_fop = NULL;
1868 	knote_free(kn);
1869 }
1870 
1871 static void
1872 knote_enqueue(struct knote *kn)
1873 {
1874 	struct kqueue *kq = kn->kn_kq;
1875 
1876 	KQ_OWNED(kn->kn_kq);
1877 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1878 
1879 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1880 	kn->kn_status |= KN_QUEUED;
1881 	kq->kq_count++;
1882 	kqueue_wakeup(kq);
1883 }
1884 
1885 static void
1886 knote_dequeue(struct knote *kn)
1887 {
1888 	struct kqueue *kq = kn->kn_kq;
1889 
1890 	KQ_OWNED(kn->kn_kq);
1891 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1892 
1893 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1894 	kn->kn_status &= ~KN_QUEUED;
1895 	kq->kq_count--;
1896 }
1897 
1898 static void
1899 knote_init(void)
1900 {
1901 
1902 	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
1903 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1904 }
1905 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
1906 
1907 static struct knote *
1908 knote_alloc(int waitok)
1909 {
1910 	return ((struct knote *)uma_zalloc(knote_zone,
1911 	    (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
1912 }
1913 
1914 static void
1915 knote_free(struct knote *kn)
1916 {
1917 	if (kn != NULL)
1918 		uma_zfree(knote_zone, kn);
1919 }
1920