xref: /freebsd/sys/kern/kern_event.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_ktrace.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/proc.h>
39 #include <sys/malloc.h>
40 #include <sys/unistd.h>
41 #include <sys/file.h>
42 #include <sys/filedesc.h>
43 #include <sys/filio.h>
44 #include <sys/fcntl.h>
45 #include <sys/kthread.h>
46 #include <sys/selinfo.h>
47 #include <sys/queue.h>
48 #include <sys/event.h>
49 #include <sys/eventvar.h>
50 #include <sys/poll.h>
51 #include <sys/protosw.h>
52 #include <sys/sigio.h>
53 #include <sys/signalvar.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/stat.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
59 #include <sys/syscallsubr.h>
60 #include <sys/taskqueue.h>
61 #include <sys/uio.h>
62 #ifdef KTRACE
63 #include <sys/ktrace.h>
64 #endif
65 
66 #include <vm/uma.h>
67 
68 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
69 
70 /*
71  * This lock is used if multiple kq locks are required.  This possibly
72  * should be made into a per proc lock.
73  */
74 static struct mtx	kq_global;
75 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
76 #define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
77 	if (!haslck)				\
78 		mtx_lock(lck);			\
79 	haslck = 1;				\
80 } while (0)
81 #define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
82 	if (haslck)				\
83 		mtx_unlock(lck);			\
84 	haslck = 0;				\
85 } while (0)
86 
87 TASKQUEUE_DEFINE_THREAD(kqueue);
88 
89 static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
90 static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
91 static int	kqueue_register(struct kqueue *kq, struct kevent *kev,
92 		    struct thread *td, int waitok);
93 static int	kqueue_acquire(struct file *fp, struct kqueue **kqp);
94 static void	kqueue_release(struct kqueue *kq, int locked);
95 static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
96 		    uintptr_t ident, int waitok);
97 static void	kqueue_task(void *arg, int pending);
98 static int	kqueue_scan(struct kqueue *kq, int maxevents,
99 		    struct kevent_copyops *k_ops,
100 		    const struct timespec *timeout,
101 		    struct kevent *keva, struct thread *td);
102 static void 	kqueue_wakeup(struct kqueue *kq);
103 static struct filterops *kqueue_fo_find(int filt);
104 static void	kqueue_fo_release(int filt);
105 
106 static fo_rdwr_t	kqueue_read;
107 static fo_rdwr_t	kqueue_write;
108 static fo_truncate_t	kqueue_truncate;
109 static fo_ioctl_t	kqueue_ioctl;
110 static fo_poll_t	kqueue_poll;
111 static fo_kqfilter_t	kqueue_kqfilter;
112 static fo_stat_t	kqueue_stat;
113 static fo_close_t	kqueue_close;
114 
115 static struct fileops kqueueops = {
116 	.fo_read = kqueue_read,
117 	.fo_write = kqueue_write,
118 	.fo_truncate = kqueue_truncate,
119 	.fo_ioctl = kqueue_ioctl,
120 	.fo_poll = kqueue_poll,
121 	.fo_kqfilter = kqueue_kqfilter,
122 	.fo_stat = kqueue_stat,
123 	.fo_close = kqueue_close,
124 };
125 
126 static int 	knote_attach(struct knote *kn, struct kqueue *kq);
127 static void 	knote_drop(struct knote *kn, struct thread *td);
128 static void 	knote_enqueue(struct knote *kn);
129 static void 	knote_dequeue(struct knote *kn);
130 static void 	knote_init(void);
131 static struct 	knote *knote_alloc(int waitok);
132 static void 	knote_free(struct knote *kn);
133 
134 static void	filt_kqdetach(struct knote *kn);
135 static int	filt_kqueue(struct knote *kn, long hint);
136 static int	filt_procattach(struct knote *kn);
137 static void	filt_procdetach(struct knote *kn);
138 static int	filt_proc(struct knote *kn, long hint);
139 static int	filt_fileattach(struct knote *kn);
140 static void	filt_timerexpire(void *knx);
141 static int	filt_timerattach(struct knote *kn);
142 static void	filt_timerdetach(struct knote *kn);
143 static int	filt_timer(struct knote *kn, long hint);
144 
145 static struct filterops file_filtops =
146 	{ 1, filt_fileattach, NULL, NULL };
147 static struct filterops kqread_filtops =
148 	{ 1, NULL, filt_kqdetach, filt_kqueue };
149 /* XXX - move to kern_proc.c?  */
150 static struct filterops proc_filtops =
151 	{ 0, filt_procattach, filt_procdetach, filt_proc };
152 static struct filterops timer_filtops =
153 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
154 
155 static uma_zone_t	knote_zone;
156 static int 		kq_ncallouts = 0;
157 static int 		kq_calloutmax = (4 * 1024);
158 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
159     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
160 
161 /* XXX - ensure not KN_INFLUX?? */
162 #define KNOTE_ACTIVATE(kn, islock) do { 				\
163 	if ((islock))							\
164 		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
165 	else								\
166 		KQ_LOCK((kn)->kn_kq);					\
167 	(kn)->kn_status |= KN_ACTIVE;					\
168 	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
169 		knote_enqueue((kn));					\
170 	if (!(islock))							\
171 		KQ_UNLOCK((kn)->kn_kq);					\
172 } while(0)
173 #define KQ_LOCK(kq) do {						\
174 	mtx_lock(&(kq)->kq_lock);					\
175 } while (0)
176 #define KQ_FLUX_WAKEUP(kq) do {						\
177 	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
178 		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
179 		wakeup((kq));						\
180 	}								\
181 } while (0)
182 #define KQ_UNLOCK_FLUX(kq) do {						\
183 	KQ_FLUX_WAKEUP(kq);						\
184 	mtx_unlock(&(kq)->kq_lock);					\
185 } while (0)
186 #define KQ_UNLOCK(kq) do {						\
187 	mtx_unlock(&(kq)->kq_lock);					\
188 } while (0)
189 #define KQ_OWNED(kq) do {						\
190 	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
191 } while (0)
192 #define KQ_NOTOWNED(kq) do {						\
193 	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
194 } while (0)
195 #define KN_LIST_LOCK(kn) do {						\
196 	if (kn->kn_knlist != NULL)					\
197 		kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);	\
198 } while (0)
199 #define KN_LIST_UNLOCK(kn) do {						\
200 	if (kn->kn_knlist != NULL) 					\
201 		kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);	\
202 } while (0)
203 #define	KNL_ASSERT_LOCK(knl, islocked) do {				\
204 	if (islocked)							\
205 		KNL_ASSERT_LOCKED(knl);				\
206 	else								\
207 		KNL_ASSERT_UNLOCKED(knl);				\
208 } while (0)
209 #ifdef INVARIANTS
210 #define	KNL_ASSERT_LOCKED(knl) do {					\
211 	if (!knl->kl_locked((knl)->kl_lockarg))				\
212 			panic("knlist not locked, but should be");	\
213 } while (0)
214 #define	KNL_ASSERT_UNLOCKED(knl) do {				\
215 	if (knl->kl_locked((knl)->kl_lockarg))				\
216 		panic("knlist locked, but should not be");		\
217 } while (0)
218 #else /* !INVARIANTS */
219 #define	KNL_ASSERT_LOCKED(knl) do {} while(0)
220 #define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
221 #endif /* INVARIANTS */
222 
223 #define	KN_HASHSIZE		64		/* XXX should be tunable */
224 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
225 
226 static int
227 filt_nullattach(struct knote *kn)
228 {
229 
230 	return (ENXIO);
231 };
232 
233 struct filterops null_filtops =
234 	{ 0, filt_nullattach, NULL, NULL };
235 
236 /* XXX - make SYSINIT to add these, and move into respective modules. */
237 extern struct filterops sig_filtops;
238 extern struct filterops fs_filtops;
239 
240 /*
241  * Table for for all system-defined filters.
242  */
243 static struct mtx	filterops_lock;
244 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
245 	MTX_DEF);
246 static struct {
247 	struct filterops *for_fop;
248 	int for_refcnt;
249 } sysfilt_ops[EVFILT_SYSCOUNT] = {
250 	{ &file_filtops },			/* EVFILT_READ */
251 	{ &file_filtops },			/* EVFILT_WRITE */
252 	{ &null_filtops },			/* EVFILT_AIO */
253 	{ &file_filtops },			/* EVFILT_VNODE */
254 	{ &proc_filtops },			/* EVFILT_PROC */
255 	{ &sig_filtops },			/* EVFILT_SIGNAL */
256 	{ &timer_filtops },			/* EVFILT_TIMER */
257 	{ &file_filtops },			/* EVFILT_NETDEV */
258 	{ &fs_filtops },			/* EVFILT_FS */
259 	{ &null_filtops },			/* EVFILT_LIO */
260 };
261 
262 /*
263  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
264  * method.
265  */
266 static int
267 filt_fileattach(struct knote *kn)
268 {
269 
270 	return (fo_kqfilter(kn->kn_fp, kn));
271 }
272 
273 /*ARGSUSED*/
274 static int
275 kqueue_kqfilter(struct file *fp, struct knote *kn)
276 {
277 	struct kqueue *kq = kn->kn_fp->f_data;
278 
279 	if (kn->kn_filter != EVFILT_READ)
280 		return (EINVAL);
281 
282 	kn->kn_status |= KN_KQUEUE;
283 	kn->kn_fop = &kqread_filtops;
284 	knlist_add(&kq->kq_sel.si_note, kn, 0);
285 
286 	return (0);
287 }
288 
289 static void
290 filt_kqdetach(struct knote *kn)
291 {
292 	struct kqueue *kq = kn->kn_fp->f_data;
293 
294 	knlist_remove(&kq->kq_sel.si_note, kn, 0);
295 }
296 
297 /*ARGSUSED*/
298 static int
299 filt_kqueue(struct knote *kn, long hint)
300 {
301 	struct kqueue *kq = kn->kn_fp->f_data;
302 
303 	kn->kn_data = kq->kq_count;
304 	return (kn->kn_data > 0);
305 }
306 
307 /* XXX - move to kern_proc.c?  */
308 static int
309 filt_procattach(struct knote *kn)
310 {
311 	struct proc *p;
312 	int immediate;
313 	int error;
314 
315 	immediate = 0;
316 	p = pfind(kn->kn_id);
317 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
318 		p = zpfind(kn->kn_id);
319 		immediate = 1;
320 	} else if (p != NULL && (p->p_flag & P_WEXIT)) {
321 		immediate = 1;
322 	}
323 
324 	if (p == NULL)
325 		return (ESRCH);
326 	if ((error = p_cansee(curthread, p)))
327 		return (error);
328 
329 	kn->kn_ptr.p_proc = p;
330 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
331 
332 	/*
333 	 * internal flag indicating registration done by kernel
334 	 */
335 	if (kn->kn_flags & EV_FLAG1) {
336 		kn->kn_data = kn->kn_sdata;		/* ppid */
337 		kn->kn_fflags = NOTE_CHILD;
338 		kn->kn_flags &= ~EV_FLAG1;
339 	}
340 
341 	if (immediate == 0)
342 		knlist_add(&p->p_klist, kn, 1);
343 
344 	/*
345 	 * Immediately activate any exit notes if the target process is a
346 	 * zombie.  This is necessary to handle the case where the target
347 	 * process, e.g. a child, dies before the kevent is registered.
348 	 */
349 	if (immediate && filt_proc(kn, NOTE_EXIT))
350 		KNOTE_ACTIVATE(kn, 0);
351 
352 	PROC_UNLOCK(p);
353 
354 	return (0);
355 }
356 
357 /*
358  * The knote may be attached to a different process, which may exit,
359  * leaving nothing for the knote to be attached to.  So when the process
360  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
361  * it will be deleted when read out.  However, as part of the knote deletion,
362  * this routine is called, so a check is needed to avoid actually performing
363  * a detach, because the original process does not exist any more.
364  */
365 /* XXX - move to kern_proc.c?  */
366 static void
367 filt_procdetach(struct knote *kn)
368 {
369 	struct proc *p;
370 
371 	p = kn->kn_ptr.p_proc;
372 	knlist_remove(&p->p_klist, kn, 0);
373 	kn->kn_ptr.p_proc = NULL;
374 }
375 
376 /* XXX - move to kern_proc.c?  */
377 static int
378 filt_proc(struct knote *kn, long hint)
379 {
380 	struct proc *p = kn->kn_ptr.p_proc;
381 	u_int event;
382 
383 	/*
384 	 * mask off extra data
385 	 */
386 	event = (u_int)hint & NOTE_PCTRLMASK;
387 
388 	/*
389 	 * if the user is interested in this event, record it.
390 	 */
391 	if (kn->kn_sfflags & event)
392 		kn->kn_fflags |= event;
393 
394 	/*
395 	 * process is gone, so flag the event as finished.
396 	 */
397 	if (event == NOTE_EXIT) {
398 		if (!(kn->kn_status & KN_DETACHED))
399 			knlist_remove_inevent(&p->p_klist, kn);
400 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
401 		kn->kn_data = p->p_xstat;
402 		kn->kn_ptr.p_proc = NULL;
403 		return (1);
404 	}
405 
406 	/*
407 	 * process forked, and user wants to track the new process,
408 	 * so attach a new knote to it, and immediately report an
409 	 * event with the parent's pid.
410 	 */
411 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
412 		struct kevent kev;
413 		int error;
414 
415 		/*
416 		 * register knote with new process.
417 		 */
418 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
419 		kev.filter = kn->kn_filter;
420 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
421 		kev.fflags = kn->kn_sfflags;
422 		kev.data = kn->kn_id;			/* parent */
423 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
424 		error = kqueue_register(kn->kn_kq, &kev, NULL, 0);
425 		if (error)
426 			kn->kn_fflags |= NOTE_TRACKERR;
427 	}
428 
429 	return (kn->kn_fflags != 0);
430 }
431 
432 static int
433 timertoticks(intptr_t data)
434 {
435 	struct timeval tv;
436 	int tticks;
437 
438 	tv.tv_sec = data / 1000;
439 	tv.tv_usec = (data % 1000) * 1000;
440 	tticks = tvtohz(&tv);
441 
442 	return tticks;
443 }
444 
445 /* XXX - move to kern_timeout.c? */
446 static void
447 filt_timerexpire(void *knx)
448 {
449 	struct knote *kn = knx;
450 	struct callout *calloutp;
451 
452 	kn->kn_data++;
453 	KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
454 
455 	if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
456 		calloutp = (struct callout *)kn->kn_hook;
457 		callout_reset(calloutp, timertoticks(kn->kn_sdata),
458 		    filt_timerexpire, kn);
459 	}
460 }
461 
462 /*
463  * data contains amount of time to sleep, in milliseconds
464  */
465 /* XXX - move to kern_timeout.c? */
466 static int
467 filt_timerattach(struct knote *kn)
468 {
469 	struct callout *calloutp;
470 
471 	atomic_add_int(&kq_ncallouts, 1);
472 
473 	if (kq_ncallouts >= kq_calloutmax) {
474 		atomic_add_int(&kq_ncallouts, -1);
475 		return (ENOMEM);
476 	}
477 
478 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
479 	kn->kn_status &= ~KN_DETACHED;		/* knlist_add usually sets it */
480 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
481 	    M_KQUEUE, M_WAITOK);
482 	callout_init(calloutp, CALLOUT_MPSAFE);
483 	kn->kn_hook = calloutp;
484 	callout_reset(calloutp, timertoticks(kn->kn_sdata), filt_timerexpire,
485 	    kn);
486 
487 	return (0);
488 }
489 
490 /* XXX - move to kern_timeout.c? */
491 static void
492 filt_timerdetach(struct knote *kn)
493 {
494 	struct callout *calloutp;
495 
496 	calloutp = (struct callout *)kn->kn_hook;
497 	callout_drain(calloutp);
498 	FREE(calloutp, M_KQUEUE);
499 	atomic_add_int(&kq_ncallouts, -1);
500 	kn->kn_status |= KN_DETACHED;	/* knlist_remove usually clears it */
501 }
502 
503 /* XXX - move to kern_timeout.c? */
504 static int
505 filt_timer(struct knote *kn, long hint)
506 {
507 
508 	return (kn->kn_data != 0);
509 }
510 
511 int
512 kqueue(struct thread *td, struct kqueue_args *uap)
513 {
514 	struct filedesc *fdp;
515 	struct kqueue *kq;
516 	struct file *fp;
517 	int fd, error;
518 
519 	fdp = td->td_proc->p_fd;
520 	error = falloc(td, &fp, &fd);
521 	if (error)
522 		goto done2;
523 
524 	/* An extra reference on `nfp' has been held for us by falloc(). */
525 	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
526 	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
527 	TAILQ_INIT(&kq->kq_head);
528 	kq->kq_fdp = fdp;
529 	knlist_init(&kq->kq_sel.si_note, &kq->kq_lock, NULL, NULL, NULL);
530 	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
531 
532 	FILEDESC_XLOCK(fdp);
533 	SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
534 	FILEDESC_XUNLOCK(fdp);
535 
536 	finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
537 	fdrop(fp, td);
538 
539 	td->td_retval[0] = fd;
540 done2:
541 	return (error);
542 }
543 
544 #ifndef _SYS_SYSPROTO_H_
545 struct kevent_args {
546 	int	fd;
547 	const struct kevent *changelist;
548 	int	nchanges;
549 	struct	kevent *eventlist;
550 	int	nevents;
551 	const struct timespec *timeout;
552 };
553 #endif
554 int
555 kevent(struct thread *td, struct kevent_args *uap)
556 {
557 	struct timespec ts, *tsp;
558 	struct kevent_copyops k_ops = { uap,
559 					kevent_copyout,
560 					kevent_copyin};
561 	int error;
562 #ifdef KTRACE
563 	struct uio ktruio;
564 	struct iovec ktriov;
565 	struct uio *ktruioin = NULL;
566 	struct uio *ktruioout = NULL;
567 #endif
568 
569 	if (uap->timeout != NULL) {
570 		error = copyin(uap->timeout, &ts, sizeof(ts));
571 		if (error)
572 			return (error);
573 		tsp = &ts;
574 	} else
575 		tsp = NULL;
576 
577 #ifdef KTRACE
578 	if (KTRPOINT(td, KTR_GENIO)) {
579 		ktriov.iov_base = uap->changelist;
580 		ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
581 		ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
582 		    .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
583 		    .uio_td = td };
584 		ktruioin = cloneuio(&ktruio);
585 		ktriov.iov_base = uap->eventlist;
586 		ktriov.iov_len = uap->nevents * sizeof(struct kevent);
587 		ktruioout = cloneuio(&ktruio);
588 	}
589 #endif
590 
591 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
592 	    &k_ops, tsp);
593 
594 #ifdef KTRACE
595 	if (ktruioin != NULL) {
596 		ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
597 		ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
598 		ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
599 		ktrgenio(uap->fd, UIO_READ, ktruioout, error);
600 	}
601 #endif
602 
603 	return (error);
604 }
605 
606 /*
607  * Copy 'count' items into the destination list pointed to by uap->eventlist.
608  */
609 static int
610 kevent_copyout(void *arg, struct kevent *kevp, int count)
611 {
612 	struct kevent_args *uap;
613 	int error;
614 
615 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
616 	uap = (struct kevent_args *)arg;
617 
618 	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
619 	if (error == 0)
620 		uap->eventlist += count;
621 	return (error);
622 }
623 
624 /*
625  * Copy 'count' items from the list pointed to by uap->changelist.
626  */
627 static int
628 kevent_copyin(void *arg, struct kevent *kevp, int count)
629 {
630 	struct kevent_args *uap;
631 	int error;
632 
633 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
634 	uap = (struct kevent_args *)arg;
635 
636 	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
637 	if (error == 0)
638 		uap->changelist += count;
639 	return (error);
640 }
641 
642 int
643 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
644     struct kevent_copyops *k_ops, const struct timespec *timeout)
645 {
646 	struct kevent keva[KQ_NEVENTS];
647 	struct kevent *kevp, *changes;
648 	struct kqueue *kq;
649 	struct file *fp;
650 	int i, n, nerrors, error;
651 
652 	if ((error = fget(td, fd, &fp)) != 0)
653 		return (error);
654 	if ((error = kqueue_acquire(fp, &kq)) != 0)
655 		goto done_norel;
656 
657 	nerrors = 0;
658 
659 	while (nchanges > 0) {
660 		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
661 		error = k_ops->k_copyin(k_ops->arg, keva, n);
662 		if (error)
663 			goto done;
664 		changes = keva;
665 		for (i = 0; i < n; i++) {
666 			kevp = &changes[i];
667 			if (!kevp->filter)
668 				continue;
669 			kevp->flags &= ~EV_SYSFLAGS;
670 			error = kqueue_register(kq, kevp, td, 1);
671 			if (error) {
672 				if (nevents != 0) {
673 					kevp->flags = EV_ERROR;
674 					kevp->data = error;
675 					(void) k_ops->k_copyout(k_ops->arg,
676 					    kevp, 1);
677 					nevents--;
678 					nerrors++;
679 				} else {
680 					goto done;
681 				}
682 			}
683 		}
684 		nchanges -= n;
685 	}
686 	if (nerrors) {
687 		td->td_retval[0] = nerrors;
688 		error = 0;
689 		goto done;
690 	}
691 
692 	error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
693 done:
694 	kqueue_release(kq, 0);
695 done_norel:
696 	fdrop(fp, td);
697 	return (error);
698 }
699 
700 int
701 kqueue_add_filteropts(int filt, struct filterops *filtops)
702 {
703 	int error;
704 
705 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
706 		printf(
707 "trying to add a filterop that is out of range: %d is beyond %d\n",
708 		    ~filt, EVFILT_SYSCOUNT);
709 		return EINVAL;
710 	}
711 	mtx_lock(&filterops_lock);
712 	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
713 	    sysfilt_ops[~filt].for_fop != NULL)
714 		error = EEXIST;
715 	else {
716 		sysfilt_ops[~filt].for_fop = filtops;
717 		sysfilt_ops[~filt].for_refcnt = 0;
718 	}
719 	mtx_unlock(&filterops_lock);
720 
721 	return (0);
722 }
723 
724 int
725 kqueue_del_filteropts(int filt)
726 {
727 	int error;
728 
729 	error = 0;
730 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
731 		return EINVAL;
732 
733 	mtx_lock(&filterops_lock);
734 	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
735 	    sysfilt_ops[~filt].for_fop == NULL)
736 		error = EINVAL;
737 	else if (sysfilt_ops[~filt].for_refcnt != 0)
738 		error = EBUSY;
739 	else {
740 		sysfilt_ops[~filt].for_fop = &null_filtops;
741 		sysfilt_ops[~filt].for_refcnt = 0;
742 	}
743 	mtx_unlock(&filterops_lock);
744 
745 	return error;
746 }
747 
748 static struct filterops *
749 kqueue_fo_find(int filt)
750 {
751 
752 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
753 		return NULL;
754 
755 	mtx_lock(&filterops_lock);
756 	sysfilt_ops[~filt].for_refcnt++;
757 	if (sysfilt_ops[~filt].for_fop == NULL)
758 		sysfilt_ops[~filt].for_fop = &null_filtops;
759 	mtx_unlock(&filterops_lock);
760 
761 	return sysfilt_ops[~filt].for_fop;
762 }
763 
764 static void
765 kqueue_fo_release(int filt)
766 {
767 
768 	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
769 		return;
770 
771 	mtx_lock(&filterops_lock);
772 	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
773 	    ("filter object refcount not valid on release"));
774 	sysfilt_ops[~filt].for_refcnt--;
775 	mtx_unlock(&filterops_lock);
776 }
777 
778 /*
779  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
780  * influence if memory allocation should wait.  Make sure it is 0 if you
781  * hold any mutexes.
782  */
783 static int
784 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
785 {
786 	struct filterops *fops;
787 	struct file *fp;
788 	struct knote *kn, *tkn;
789 	int error, filt, event;
790 	int haskqglobal;
791 
792 	fp = NULL;
793 	kn = NULL;
794 	error = 0;
795 	haskqglobal = 0;
796 
797 	filt = kev->filter;
798 	fops = kqueue_fo_find(filt);
799 	if (fops == NULL)
800 		return EINVAL;
801 
802 	tkn = knote_alloc(waitok);		/* prevent waiting with locks */
803 
804 findkn:
805 	if (fops->f_isfd) {
806 		KASSERT(td != NULL, ("td is NULL"));
807 		error = fget(td, kev->ident, &fp);
808 		if (error)
809 			goto done;
810 
811 		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
812 		    kev->ident, 0) != 0) {
813 			/* try again */
814 			fdrop(fp, td);
815 			fp = NULL;
816 			error = kqueue_expand(kq, fops, kev->ident, waitok);
817 			if (error)
818 				goto done;
819 			goto findkn;
820 		}
821 
822 		if (fp->f_type == DTYPE_KQUEUE) {
823 			/*
824 			 * if we add some inteligence about what we are doing,
825 			 * we should be able to support events on ourselves.
826 			 * We need to know when we are doing this to prevent
827 			 * getting both the knlist lock and the kq lock since
828 			 * they are the same thing.
829 			 */
830 			if (fp->f_data == kq) {
831 				error = EINVAL;
832 				goto done;
833 			}
834 
835 			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
836 		}
837 
838 		KQ_LOCK(kq);
839 		if (kev->ident < kq->kq_knlistsize) {
840 			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
841 				if (kev->filter == kn->kn_filter)
842 					break;
843 		}
844 	} else {
845 		if ((kev->flags & EV_ADD) == EV_ADD)
846 			kqueue_expand(kq, fops, kev->ident, waitok);
847 
848 		KQ_LOCK(kq);
849 		if (kq->kq_knhashmask != 0) {
850 			struct klist *list;
851 
852 			list = &kq->kq_knhash[
853 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
854 			SLIST_FOREACH(kn, list, kn_link)
855 				if (kev->ident == kn->kn_id &&
856 				    kev->filter == kn->kn_filter)
857 					break;
858 		}
859 	}
860 
861 	/* knote is in the process of changing, wait for it to stablize. */
862 	if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
863 		if (fp != NULL) {
864 			fdrop(fp, td);
865 			fp = NULL;
866 		}
867 		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
868 		kq->kq_state |= KQ_FLUXWAIT;
869 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
870 		goto findkn;
871 	}
872 
873 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
874 		KQ_UNLOCK(kq);
875 		error = ENOENT;
876 		goto done;
877 	}
878 
879 	/*
880 	 * kn now contains the matching knote, or NULL if no match
881 	 */
882 	if (kev->flags & EV_ADD) {
883 		if (kn == NULL) {
884 			kn = tkn;
885 			tkn = NULL;
886 			if (kn == NULL) {
887 				KQ_UNLOCK(kq);
888 				error = ENOMEM;
889 				goto done;
890 			}
891 			kn->kn_fp = fp;
892 			kn->kn_kq = kq;
893 			kn->kn_fop = fops;
894 			/*
895 			 * apply reference counts to knote structure, and
896 			 * do not release it at the end of this routine.
897 			 */
898 			fops = NULL;
899 			fp = NULL;
900 
901 			kn->kn_sfflags = kev->fflags;
902 			kn->kn_sdata = kev->data;
903 			kev->fflags = 0;
904 			kev->data = 0;
905 			kn->kn_kevent = *kev;
906 			kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
907 			    EV_ENABLE | EV_DISABLE);
908 			kn->kn_status = KN_INFLUX|KN_DETACHED;
909 
910 			error = knote_attach(kn, kq);
911 			KQ_UNLOCK(kq);
912 			if (error != 0) {
913 				tkn = kn;
914 				goto done;
915 			}
916 
917 			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
918 				knote_drop(kn, td);
919 				goto done;
920 			}
921 			KN_LIST_LOCK(kn);
922 		} else {
923 			/*
924 			 * The user may change some filter values after the
925 			 * initial EV_ADD, but doing so will not reset any
926 			 * filter which has already been triggered.
927 			 */
928 			kn->kn_status |= KN_INFLUX;
929 			KQ_UNLOCK(kq);
930 			KN_LIST_LOCK(kn);
931 			kn->kn_sfflags = kev->fflags;
932 			kn->kn_sdata = kev->data;
933 			kn->kn_kevent.udata = kev->udata;
934 		}
935 
936 		/*
937 		 * We can get here with kn->kn_knlist == NULL.
938 		 * This can happen when the initial attach event decides that
939 		 * the event is "completed" already.  i.e. filt_procattach
940 		 * is called on a zombie process.  It will call filt_proc
941 		 * which will remove it from the list, and NULL kn_knlist.
942 		 */
943 		event = kn->kn_fop->f_event(kn, 0);
944 		KQ_LOCK(kq);
945 		if (event)
946 			KNOTE_ACTIVATE(kn, 1);
947 		kn->kn_status &= ~KN_INFLUX;
948 		KN_LIST_UNLOCK(kn);
949 	} else if (kev->flags & EV_DELETE) {
950 		kn->kn_status |= KN_INFLUX;
951 		KQ_UNLOCK(kq);
952 		if (!(kn->kn_status & KN_DETACHED))
953 			kn->kn_fop->f_detach(kn);
954 		knote_drop(kn, td);
955 		goto done;
956 	}
957 
958 	if ((kev->flags & EV_DISABLE) &&
959 	    ((kn->kn_status & KN_DISABLED) == 0)) {
960 		kn->kn_status |= KN_DISABLED;
961 	}
962 
963 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
964 		kn->kn_status &= ~KN_DISABLED;
965 		if ((kn->kn_status & KN_ACTIVE) &&
966 		    ((kn->kn_status & KN_QUEUED) == 0))
967 			knote_enqueue(kn);
968 	}
969 	KQ_UNLOCK_FLUX(kq);
970 
971 done:
972 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
973 	if (fp != NULL)
974 		fdrop(fp, td);
975 	if (tkn != NULL)
976 		knote_free(tkn);
977 	if (fops != NULL)
978 		kqueue_fo_release(filt);
979 	return (error);
980 }
981 
982 static int
983 kqueue_acquire(struct file *fp, struct kqueue **kqp)
984 {
985 	int error;
986 	struct kqueue *kq;
987 
988 	error = 0;
989 
990 	kq = fp->f_data;
991 	if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
992 		return (EBADF);
993 	*kqp = kq;
994 	KQ_LOCK(kq);
995 	if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
996 		KQ_UNLOCK(kq);
997 		return (EBADF);
998 	}
999 	kq->kq_refcnt++;
1000 	KQ_UNLOCK(kq);
1001 
1002 	return error;
1003 }
1004 
1005 static void
1006 kqueue_release(struct kqueue *kq, int locked)
1007 {
1008 	if (locked)
1009 		KQ_OWNED(kq);
1010 	else
1011 		KQ_LOCK(kq);
1012 	kq->kq_refcnt--;
1013 	if (kq->kq_refcnt == 1)
1014 		wakeup(&kq->kq_refcnt);
1015 	if (!locked)
1016 		KQ_UNLOCK(kq);
1017 }
1018 
1019 static void
1020 kqueue_schedtask(struct kqueue *kq)
1021 {
1022 
1023 	KQ_OWNED(kq);
1024 	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1025 	    ("scheduling kqueue task while draining"));
1026 
1027 	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1028 		taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
1029 		kq->kq_state |= KQ_TASKSCHED;
1030 	}
1031 }
1032 
1033 /*
1034  * Expand the kq to make sure we have storage for fops/ident pair.
1035  *
1036  * Return 0 on success (or no work necessary), return errno on failure.
1037  *
1038  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
1039  * If kqueue_register is called from a non-fd context, there usually/should
1040  * be no locks held.
1041  */
1042 static int
1043 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1044 	int waitok)
1045 {
1046 	struct klist *list, *tmp_knhash;
1047 	u_long tmp_knhashmask;
1048 	int size;
1049 	int fd;
1050 	int mflag = waitok ? M_WAITOK : M_NOWAIT;
1051 
1052 	KQ_NOTOWNED(kq);
1053 
1054 	if (fops->f_isfd) {
1055 		fd = ident;
1056 		if (kq->kq_knlistsize <= fd) {
1057 			size = kq->kq_knlistsize;
1058 			while (size <= fd)
1059 				size += KQEXTENT;
1060 			MALLOC(list, struct klist *,
1061 			    size * sizeof list, M_KQUEUE, mflag);
1062 			if (list == NULL)
1063 				return ENOMEM;
1064 			KQ_LOCK(kq);
1065 			if (kq->kq_knlistsize > fd) {
1066 				FREE(list, M_KQUEUE);
1067 				list = NULL;
1068 			} else {
1069 				if (kq->kq_knlist != NULL) {
1070 					bcopy(kq->kq_knlist, list,
1071 					    kq->kq_knlistsize * sizeof list);
1072 					FREE(kq->kq_knlist, M_KQUEUE);
1073 					kq->kq_knlist = NULL;
1074 				}
1075 				bzero((caddr_t)list +
1076 				    kq->kq_knlistsize * sizeof list,
1077 				    (size - kq->kq_knlistsize) * sizeof list);
1078 				kq->kq_knlistsize = size;
1079 				kq->kq_knlist = list;
1080 			}
1081 			KQ_UNLOCK(kq);
1082 		}
1083 	} else {
1084 		if (kq->kq_knhashmask == 0) {
1085 			tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1086 			    &tmp_knhashmask);
1087 			if (tmp_knhash == NULL)
1088 				return ENOMEM;
1089 			KQ_LOCK(kq);
1090 			if (kq->kq_knhashmask == 0) {
1091 				kq->kq_knhash = tmp_knhash;
1092 				kq->kq_knhashmask = tmp_knhashmask;
1093 			} else {
1094 				free(tmp_knhash, M_KQUEUE);
1095 			}
1096 			KQ_UNLOCK(kq);
1097 		}
1098 	}
1099 
1100 	KQ_NOTOWNED(kq);
1101 	return 0;
1102 }
1103 
1104 static void
1105 kqueue_task(void *arg, int pending)
1106 {
1107 	struct kqueue *kq;
1108 	int haskqglobal;
1109 
1110 	haskqglobal = 0;
1111 	kq = arg;
1112 
1113 	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1114 	KQ_LOCK(kq);
1115 
1116 	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1117 
1118 	kq->kq_state &= ~KQ_TASKSCHED;
1119 	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1120 		wakeup(&kq->kq_state);
1121 	}
1122 	KQ_UNLOCK(kq);
1123 	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1124 }
1125 
1126 /*
1127  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1128  * We treat KN_MARKER knotes as if they are INFLUX.
1129  */
1130 static int
1131 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1132     const struct timespec *tsp, struct kevent *keva, struct thread *td)
1133 {
1134 	struct kevent *kevp;
1135 	struct timeval atv, rtv, ttv;
1136 	struct knote *kn, *marker;
1137 	int count, timeout, nkev, error;
1138 	int haskqglobal;
1139 
1140 	count = maxevents;
1141 	nkev = 0;
1142 	error = 0;
1143 	haskqglobal = 0;
1144 
1145 	if (maxevents == 0)
1146 		goto done_nl;
1147 
1148 	if (tsp != NULL) {
1149 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
1150 		if (itimerfix(&atv)) {
1151 			error = EINVAL;
1152 			goto done_nl;
1153 		}
1154 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1155 			timeout = -1;
1156 		else
1157 			timeout = atv.tv_sec > 24 * 60 * 60 ?
1158 			    24 * 60 * 60 * hz : tvtohz(&atv);
1159 		getmicrouptime(&rtv);
1160 		timevaladd(&atv, &rtv);
1161 	} else {
1162 		atv.tv_sec = 0;
1163 		atv.tv_usec = 0;
1164 		timeout = 0;
1165 	}
1166 	marker = knote_alloc(1);
1167 	if (marker == NULL) {
1168 		error = ENOMEM;
1169 		goto done_nl;
1170 	}
1171 	marker->kn_status = KN_MARKER;
1172 	KQ_LOCK(kq);
1173 	goto start;
1174 
1175 retry:
1176 	if (atv.tv_sec || atv.tv_usec) {
1177 		getmicrouptime(&rtv);
1178 		if (timevalcmp(&rtv, &atv, >=))
1179 			goto done;
1180 		ttv = atv;
1181 		timevalsub(&ttv, &rtv);
1182 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
1183 			24 * 60 * 60 * hz : tvtohz(&ttv);
1184 	}
1185 
1186 start:
1187 	kevp = keva;
1188 	if (kq->kq_count == 0) {
1189 		if (timeout < 0) {
1190 			error = EWOULDBLOCK;
1191 		} else {
1192 			kq->kq_state |= KQ_SLEEP;
1193 			error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH,
1194 			    "kqread", timeout);
1195 		}
1196 		if (error == 0)
1197 			goto retry;
1198 		/* don't restart after signals... */
1199 		if (error == ERESTART)
1200 			error = EINTR;
1201 		else if (error == EWOULDBLOCK)
1202 			error = 0;
1203 		goto done;
1204 	}
1205 
1206 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1207 	while (count) {
1208 		KQ_OWNED(kq);
1209 		kn = TAILQ_FIRST(&kq->kq_head);
1210 
1211 		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1212 		    (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1213 			kq->kq_state |= KQ_FLUXWAIT;
1214 			error = msleep(kq, &kq->kq_lock, PSOCK,
1215 			    "kqflxwt", 0);
1216 			continue;
1217 		}
1218 
1219 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1220 		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1221 			kn->kn_status &= ~KN_QUEUED;
1222 			kq->kq_count--;
1223 			continue;
1224 		}
1225 		if (kn == marker) {
1226 			KQ_FLUX_WAKEUP(kq);
1227 			if (count == maxevents)
1228 				goto retry;
1229 			goto done;
1230 		}
1231 		KASSERT((kn->kn_status & KN_INFLUX) == 0,
1232 		    ("KN_INFLUX set when not suppose to be"));
1233 
1234 		if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1235 			kn->kn_status &= ~KN_QUEUED;
1236 			kn->kn_status |= KN_INFLUX;
1237 			kq->kq_count--;
1238 			KQ_UNLOCK(kq);
1239 			/*
1240 			 * We don't need to lock the list since we've marked
1241 			 * it _INFLUX.
1242 			 */
1243 			*kevp = kn->kn_kevent;
1244 			if (!(kn->kn_status & KN_DETACHED))
1245 				kn->kn_fop->f_detach(kn);
1246 			knote_drop(kn, td);
1247 			KQ_LOCK(kq);
1248 			kn = NULL;
1249 		} else {
1250 			kn->kn_status |= KN_INFLUX;
1251 			KQ_UNLOCK(kq);
1252 			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1253 				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1254 			KN_LIST_LOCK(kn);
1255 			if (kn->kn_fop->f_event(kn, 0) == 0) {
1256 				KQ_LOCK(kq);
1257 				KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1258 				kn->kn_status &=
1259 				    ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX);
1260 				kq->kq_count--;
1261 				KN_LIST_UNLOCK(kn);
1262 				continue;
1263 			}
1264 			*kevp = kn->kn_kevent;
1265 			KQ_LOCK(kq);
1266 			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1267 			if (kn->kn_flags & EV_CLEAR) {
1268 				kn->kn_data = 0;
1269 				kn->kn_fflags = 0;
1270 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1271 				kq->kq_count--;
1272 			} else
1273 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1274 
1275 			kn->kn_status &= ~(KN_INFLUX);
1276 			KN_LIST_UNLOCK(kn);
1277 		}
1278 
1279 		/* we are returning a copy to the user */
1280 		kevp++;
1281 		nkev++;
1282 		count--;
1283 
1284 		if (nkev == KQ_NEVENTS) {
1285 			KQ_UNLOCK_FLUX(kq);
1286 			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1287 			nkev = 0;
1288 			kevp = keva;
1289 			KQ_LOCK(kq);
1290 			if (error)
1291 				break;
1292 		}
1293 	}
1294 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1295 done:
1296 	KQ_OWNED(kq);
1297 	KQ_UNLOCK_FLUX(kq);
1298 	knote_free(marker);
1299 done_nl:
1300 	KQ_NOTOWNED(kq);
1301 	if (nkev != 0)
1302 		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1303 	td->td_retval[0] = maxevents - count;
1304 	return (error);
1305 }
1306 
1307 /*
1308  * XXX
1309  * This could be expanded to call kqueue_scan, if desired.
1310  */
1311 /*ARGSUSED*/
1312 static int
1313 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1314 	int flags, struct thread *td)
1315 {
1316 	return (ENXIO);
1317 }
1318 
1319 /*ARGSUSED*/
1320 static int
1321 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1322 	 int flags, struct thread *td)
1323 {
1324 	return (ENXIO);
1325 }
1326 
1327 /*ARGSUSED*/
1328 static int
1329 kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1330 	struct thread *td)
1331 {
1332 
1333 	return (EINVAL);
1334 }
1335 
1336 /*ARGSUSED*/
1337 static int
1338 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
1339 	struct ucred *active_cred, struct thread *td)
1340 {
1341 	/*
1342 	 * Enabling sigio causes two major problems:
1343 	 * 1) infinite recursion:
1344 	 * Synopsys: kevent is being used to track signals and have FIOASYNC
1345 	 * set.  On receipt of a signal this will cause a kqueue to recurse
1346 	 * into itself over and over.  Sending the sigio causes the kqueue
1347 	 * to become ready, which in turn posts sigio again, forever.
1348 	 * Solution: this can be solved by setting a flag in the kqueue that
1349 	 * we have a SIGIO in progress.
1350 	 * 2) locking problems:
1351 	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
1352 	 * us above the proc and pgrp locks.
1353 	 * Solution: Post a signal using an async mechanism, being sure to
1354 	 * record a generation count in the delivery so that we do not deliver
1355 	 * a signal to the wrong process.
1356 	 *
1357 	 * Note, these two mechanisms are somewhat mutually exclusive!
1358 	 */
1359 #if 0
1360 	struct kqueue *kq;
1361 
1362 	kq = fp->f_data;
1363 	switch (cmd) {
1364 	case FIOASYNC:
1365 		if (*(int *)data) {
1366 			kq->kq_state |= KQ_ASYNC;
1367 		} else {
1368 			kq->kq_state &= ~KQ_ASYNC;
1369 		}
1370 		return (0);
1371 
1372 	case FIOSETOWN:
1373 		return (fsetown(*(int *)data, &kq->kq_sigio));
1374 
1375 	case FIOGETOWN:
1376 		*(int *)data = fgetown(&kq->kq_sigio);
1377 		return (0);
1378 	}
1379 #endif
1380 
1381 	return (ENOTTY);
1382 }
1383 
1384 /*ARGSUSED*/
1385 static int
1386 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
1387 	struct thread *td)
1388 {
1389 	struct kqueue *kq;
1390 	int revents = 0;
1391 	int error;
1392 
1393 	if ((error = kqueue_acquire(fp, &kq)))
1394 		return POLLERR;
1395 
1396 	KQ_LOCK(kq);
1397 	if (events & (POLLIN | POLLRDNORM)) {
1398 		if (kq->kq_count) {
1399 			revents |= events & (POLLIN | POLLRDNORM);
1400 		} else {
1401 			selrecord(td, &kq->kq_sel);
1402 			if (SEL_WAITING(&kq->kq_sel))
1403 				kq->kq_state |= KQ_SEL;
1404 		}
1405 	}
1406 	kqueue_release(kq, 1);
1407 	KQ_UNLOCK(kq);
1408 	return (revents);
1409 }
1410 
1411 /*ARGSUSED*/
1412 static int
1413 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1414 	struct thread *td)
1415 {
1416 
1417 	bzero((void *)st, sizeof *st);
1418 	/*
1419 	 * We no longer return kq_count because the unlocked value is useless.
1420 	 * If you spent all this time getting the count, why not spend your
1421 	 * syscall better by calling kevent?
1422 	 *
1423 	 * XXX - This is needed for libc_r.
1424 	 */
1425 	st->st_mode = S_IFIFO;
1426 	return (0);
1427 }
1428 
1429 /*ARGSUSED*/
1430 static int
1431 kqueue_close(struct file *fp, struct thread *td)
1432 {
1433 	struct kqueue *kq = fp->f_data;
1434 	struct filedesc *fdp;
1435 	struct knote *kn;
1436 	int i;
1437 	int error;
1438 
1439 	if ((error = kqueue_acquire(fp, &kq)))
1440 		return error;
1441 
1442 	KQ_LOCK(kq);
1443 
1444 	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
1445 	    ("kqueue already closing"));
1446 	kq->kq_state |= KQ_CLOSING;
1447 	if (kq->kq_refcnt > 1)
1448 		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
1449 
1450 	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
1451 	fdp = kq->kq_fdp;
1452 
1453 	KASSERT(knlist_empty(&kq->kq_sel.si_note),
1454 	    ("kqueue's knlist not empty"));
1455 
1456 	for (i = 0; i < kq->kq_knlistsize; i++) {
1457 		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
1458 			KASSERT((kn->kn_status & KN_INFLUX) == 0,
1459 			    ("KN_INFLUX set when not suppose to be"));
1460 			kn->kn_status |= KN_INFLUX;
1461 			KQ_UNLOCK(kq);
1462 			if (!(kn->kn_status & KN_DETACHED))
1463 				kn->kn_fop->f_detach(kn);
1464 			knote_drop(kn, td);
1465 			KQ_LOCK(kq);
1466 		}
1467 	}
1468 	if (kq->kq_knhashmask != 0) {
1469 		for (i = 0; i <= kq->kq_knhashmask; i++) {
1470 			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
1471 				KASSERT((kn->kn_status & KN_INFLUX) == 0,
1472 				    ("KN_INFLUX set when not suppose to be"));
1473 				kn->kn_status |= KN_INFLUX;
1474 				KQ_UNLOCK(kq);
1475 				if (!(kn->kn_status & KN_DETACHED))
1476 					kn->kn_fop->f_detach(kn);
1477 				knote_drop(kn, td);
1478 				KQ_LOCK(kq);
1479 			}
1480 		}
1481 	}
1482 
1483 	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
1484 		kq->kq_state |= KQ_TASKDRAIN;
1485 		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
1486 	}
1487 
1488 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1489 		selwakeuppri(&kq->kq_sel, PSOCK);
1490 		if (!SEL_WAITING(&kq->kq_sel))
1491 			kq->kq_state &= ~KQ_SEL;
1492 	}
1493 
1494 	KQ_UNLOCK(kq);
1495 
1496 	FILEDESC_XLOCK(fdp);
1497 	SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list);
1498 	FILEDESC_XUNLOCK(fdp);
1499 
1500 	knlist_destroy(&kq->kq_sel.si_note);
1501 	mtx_destroy(&kq->kq_lock);
1502 	kq->kq_fdp = NULL;
1503 
1504 	if (kq->kq_knhash != NULL)
1505 		free(kq->kq_knhash, M_KQUEUE);
1506 	if (kq->kq_knlist != NULL)
1507 		free(kq->kq_knlist, M_KQUEUE);
1508 
1509 	funsetown(&kq->kq_sigio);
1510 	free(kq, M_KQUEUE);
1511 	fp->f_data = NULL;
1512 
1513 	return (0);
1514 }
1515 
1516 static void
1517 kqueue_wakeup(struct kqueue *kq)
1518 {
1519 	KQ_OWNED(kq);
1520 
1521 	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
1522 		kq->kq_state &= ~KQ_SLEEP;
1523 		wakeup(kq);
1524 	}
1525 	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1526 		selwakeuppri(&kq->kq_sel, PSOCK);
1527 		if (!SEL_WAITING(&kq->kq_sel))
1528 			kq->kq_state &= ~KQ_SEL;
1529 	}
1530 	if (!knlist_empty(&kq->kq_sel.si_note))
1531 		kqueue_schedtask(kq);
1532 	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
1533 		pgsigio(&kq->kq_sigio, SIGIO, 0);
1534 	}
1535 }
1536 
1537 /*
1538  * Walk down a list of knotes, activating them if their event has triggered.
1539  *
1540  * There is a possibility to optimize in the case of one kq watching another.
1541  * Instead of scheduling a task to wake it up, you could pass enough state
1542  * down the chain to make up the parent kqueue.  Make this code functional
1543  * first.
1544  */
1545 void
1546 knote(struct knlist *list, long hint, int islocked)
1547 {
1548 	struct kqueue *kq;
1549 	struct knote *kn;
1550 
1551 	if (list == NULL)
1552 		return;
1553 
1554 	KNL_ASSERT_LOCK(list, islocked);
1555 
1556 	if (!islocked)
1557 		list->kl_lock(list->kl_lockarg);
1558 
1559 	/*
1560 	 * If we unlock the list lock (and set KN_INFLUX), we can eliminate
1561 	 * the kqueue scheduling, but this will introduce four
1562 	 * lock/unlock's for each knote to test.  If we do, continue to use
1563 	 * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
1564 	 * only safe if you want to remove the current item, which we are
1565 	 * not doing.
1566 	 */
1567 	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
1568 		kq = kn->kn_kq;
1569 		if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
1570 			KQ_LOCK(kq);
1571 			if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
1572 				kn->kn_status |= KN_HASKQLOCK;
1573 				if (kn->kn_fop->f_event(kn, hint))
1574 					KNOTE_ACTIVATE(kn, 1);
1575 				kn->kn_status &= ~KN_HASKQLOCK;
1576 			}
1577 			KQ_UNLOCK(kq);
1578 		}
1579 		kq = NULL;
1580 	}
1581 	if (!islocked)
1582 		list->kl_unlock(list->kl_lockarg);
1583 }
1584 
1585 /*
1586  * add a knote to a knlist
1587  */
1588 void
1589 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
1590 {
1591 	KNL_ASSERT_LOCK(knl, islocked);
1592 	KQ_NOTOWNED(kn->kn_kq);
1593 	KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
1594 	    (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
1595 	if (!islocked)
1596 		knl->kl_lock(knl->kl_lockarg);
1597 	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
1598 	if (!islocked)
1599 		knl->kl_unlock(knl->kl_lockarg);
1600 	KQ_LOCK(kn->kn_kq);
1601 	kn->kn_knlist = knl;
1602 	kn->kn_status &= ~KN_DETACHED;
1603 	KQ_UNLOCK(kn->kn_kq);
1604 }
1605 
1606 static void
1607 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
1608 {
1609 	KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
1610 	KNL_ASSERT_LOCK(knl, knlislocked);
1611 	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
1612 	if (!kqislocked)
1613 		KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
1614     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
1615 	if (!knlislocked)
1616 		knl->kl_lock(knl->kl_lockarg);
1617 	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
1618 	kn->kn_knlist = NULL;
1619 	if (!knlislocked)
1620 		knl->kl_unlock(knl->kl_lockarg);
1621 	if (!kqislocked)
1622 		KQ_LOCK(kn->kn_kq);
1623 	kn->kn_status |= KN_DETACHED;
1624 	if (!kqislocked)
1625 		KQ_UNLOCK(kn->kn_kq);
1626 }
1627 
1628 /*
1629  * remove all knotes from a specified klist
1630  */
1631 void
1632 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
1633 {
1634 
1635 	knlist_remove_kq(knl, kn, islocked, 0);
1636 }
1637 
1638 /*
1639  * remove knote from a specified klist while in f_event handler.
1640  */
1641 void
1642 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
1643 {
1644 
1645 	knlist_remove_kq(knl, kn, 1,
1646 	    (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
1647 }
1648 
1649 int
1650 knlist_empty(struct knlist *knl)
1651 {
1652 	KNL_ASSERT_LOCKED(knl);
1653 	return SLIST_EMPTY(&knl->kl_list);
1654 }
1655 
1656 static struct mtx	knlist_lock;
1657 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
1658 	MTX_DEF);
1659 static void knlist_mtx_lock(void *arg);
1660 static void knlist_mtx_unlock(void *arg);
1661 static int knlist_mtx_locked(void *arg);
1662 
1663 static void
1664 knlist_mtx_lock(void *arg)
1665 {
1666 	mtx_lock((struct mtx *)arg);
1667 }
1668 
1669 static void
1670 knlist_mtx_unlock(void *arg)
1671 {
1672 	mtx_unlock((struct mtx *)arg);
1673 }
1674 
1675 static int
1676 knlist_mtx_locked(void *arg)
1677 {
1678 	return (mtx_owned((struct mtx *)arg));
1679 }
1680 
1681 void
1682 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
1683     void (*kl_unlock)(void *), int (*kl_locked)(void *))
1684 {
1685 
1686 	if (lock == NULL)
1687 		knl->kl_lockarg = &knlist_lock;
1688 	else
1689 		knl->kl_lockarg = lock;
1690 
1691 	if (kl_lock == NULL)
1692 		knl->kl_lock = knlist_mtx_lock;
1693 	else
1694 		knl->kl_lock = kl_lock;
1695 	if (kl_unlock == NULL)
1696 		knl->kl_unlock = knlist_mtx_unlock;
1697 	else
1698 		knl->kl_unlock = kl_unlock;
1699 	if (kl_locked == NULL)
1700 		knl->kl_locked = knlist_mtx_locked;
1701 	else
1702 		knl->kl_locked = kl_locked;
1703 
1704 	SLIST_INIT(&knl->kl_list);
1705 }
1706 
1707 void
1708 knlist_destroy(struct knlist *knl)
1709 {
1710 
1711 #ifdef INVARIANTS
1712 	/*
1713 	 * if we run across this error, we need to find the offending
1714 	 * driver and have it call knlist_clear.
1715 	 */
1716 	if (!SLIST_EMPTY(&knl->kl_list))
1717 		printf("WARNING: destroying knlist w/ knotes on it!\n");
1718 #endif
1719 
1720 	knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
1721 	SLIST_INIT(&knl->kl_list);
1722 }
1723 
1724 /*
1725  * Even if we are locked, we may need to drop the lock to allow any influx
1726  * knotes time to "settle".
1727  */
1728 void
1729 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
1730 {
1731 	struct knote *kn, *kn2;
1732 	struct kqueue *kq;
1733 
1734 	if (islocked)
1735 		KNL_ASSERT_LOCKED(knl);
1736 	else {
1737 		KNL_ASSERT_UNLOCKED(knl);
1738 again:		/* need to reacquire lock since we have dropped it */
1739 		knl->kl_lock(knl->kl_lockarg);
1740 	}
1741 
1742 	SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
1743 		kq = kn->kn_kq;
1744 		KQ_LOCK(kq);
1745 		if ((kn->kn_status & KN_INFLUX)) {
1746 			KQ_UNLOCK(kq);
1747 			continue;
1748 		}
1749 		knlist_remove_kq(knl, kn, 1, 1);
1750 		if (killkn) {
1751 			kn->kn_status |= KN_INFLUX | KN_DETACHED;
1752 			KQ_UNLOCK(kq);
1753 			knote_drop(kn, td);
1754 		} else {
1755 			/* Make sure cleared knotes disappear soon */
1756 			kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1757 			KQ_UNLOCK(kq);
1758 		}
1759 		kq = NULL;
1760 	}
1761 
1762 	if (!SLIST_EMPTY(&knl->kl_list)) {
1763 		/* there are still KN_INFLUX remaining */
1764 		kn = SLIST_FIRST(&knl->kl_list);
1765 		kq = kn->kn_kq;
1766 		KQ_LOCK(kq);
1767 		KASSERT(kn->kn_status & KN_INFLUX,
1768 		    ("knote removed w/o list lock"));
1769 		knl->kl_unlock(knl->kl_lockarg);
1770 		kq->kq_state |= KQ_FLUXWAIT;
1771 		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
1772 		kq = NULL;
1773 		goto again;
1774 	}
1775 
1776 	if (islocked)
1777 		KNL_ASSERT_LOCKED(knl);
1778 	else {
1779 		knl->kl_unlock(knl->kl_lockarg);
1780 		KNL_ASSERT_UNLOCKED(knl);
1781 	}
1782 }
1783 
1784 /*
1785  * Remove all knotes referencing a specified fd must be called with FILEDESC
1786  * lock.  This prevents a race where a new fd comes along and occupies the
1787  * entry and we attach a knote to the fd.
1788  */
1789 void
1790 knote_fdclose(struct thread *td, int fd)
1791 {
1792 	struct filedesc *fdp = td->td_proc->p_fd;
1793 	struct kqueue *kq;
1794 	struct knote *kn;
1795 	int influx;
1796 
1797 	FILEDESC_XLOCK_ASSERT(fdp);
1798 
1799 	/*
1800 	 * We shouldn't have to worry about new kevents appearing on fd
1801 	 * since filedesc is locked.
1802 	 */
1803 	SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
1804 		KQ_LOCK(kq);
1805 
1806 again:
1807 		influx = 0;
1808 		while (kq->kq_knlistsize > fd &&
1809 		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
1810 			if (kn->kn_status & KN_INFLUX) {
1811 				/* someone else might be waiting on our knote */
1812 				if (influx)
1813 					wakeup(kq);
1814 				kq->kq_state |= KQ_FLUXWAIT;
1815 				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
1816 				goto again;
1817 			}
1818 			kn->kn_status |= KN_INFLUX;
1819 			KQ_UNLOCK(kq);
1820 			if (!(kn->kn_status & KN_DETACHED))
1821 				kn->kn_fop->f_detach(kn);
1822 			knote_drop(kn, td);
1823 			influx = 1;
1824 			KQ_LOCK(kq);
1825 		}
1826 		KQ_UNLOCK_FLUX(kq);
1827 	}
1828 }
1829 
1830 static int
1831 knote_attach(struct knote *kn, struct kqueue *kq)
1832 {
1833 	struct klist *list;
1834 
1835 	KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
1836 	KQ_OWNED(kq);
1837 
1838 	if (kn->kn_fop->f_isfd) {
1839 		if (kn->kn_id >= kq->kq_knlistsize)
1840 			return ENOMEM;
1841 		list = &kq->kq_knlist[kn->kn_id];
1842 	} else {
1843 		if (kq->kq_knhash == NULL)
1844 			return ENOMEM;
1845 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1846 	}
1847 
1848 	SLIST_INSERT_HEAD(list, kn, kn_link);
1849 
1850 	return 0;
1851 }
1852 
1853 /*
1854  * knote must already have been detached using the f_detach method.
1855  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
1856  * to prevent other removal.
1857  */
1858 static void
1859 knote_drop(struct knote *kn, struct thread *td)
1860 {
1861 	struct kqueue *kq;
1862 	struct klist *list;
1863 
1864 	kq = kn->kn_kq;
1865 
1866 	KQ_NOTOWNED(kq);
1867 	KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
1868 	    ("knote_drop called without KN_INFLUX set in kn_status"));
1869 
1870 	KQ_LOCK(kq);
1871 	if (kn->kn_fop->f_isfd)
1872 		list = &kq->kq_knlist[kn->kn_id];
1873 	else
1874 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1875 
1876 	if (!SLIST_EMPTY(list))
1877 		SLIST_REMOVE(list, kn, knote, kn_link);
1878 	if (kn->kn_status & KN_QUEUED)
1879 		knote_dequeue(kn);
1880 	KQ_UNLOCK_FLUX(kq);
1881 
1882 	if (kn->kn_fop->f_isfd) {
1883 		fdrop(kn->kn_fp, td);
1884 		kn->kn_fp = NULL;
1885 	}
1886 	kqueue_fo_release(kn->kn_kevent.filter);
1887 	kn->kn_fop = NULL;
1888 	knote_free(kn);
1889 }
1890 
1891 static void
1892 knote_enqueue(struct knote *kn)
1893 {
1894 	struct kqueue *kq = kn->kn_kq;
1895 
1896 	KQ_OWNED(kn->kn_kq);
1897 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1898 
1899 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1900 	kn->kn_status |= KN_QUEUED;
1901 	kq->kq_count++;
1902 	kqueue_wakeup(kq);
1903 }
1904 
1905 static void
1906 knote_dequeue(struct knote *kn)
1907 {
1908 	struct kqueue *kq = kn->kn_kq;
1909 
1910 	KQ_OWNED(kn->kn_kq);
1911 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1912 
1913 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1914 	kn->kn_status &= ~KN_QUEUED;
1915 	kq->kq_count--;
1916 }
1917 
1918 static void
1919 knote_init(void)
1920 {
1921 
1922 	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
1923 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1924 }
1925 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
1926 
1927 static struct knote *
1928 knote_alloc(int waitok)
1929 {
1930 	return ((struct knote *)uma_zalloc(knote_zone,
1931 	    (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
1932 }
1933 
1934 static void
1935 knote_free(struct knote *kn)
1936 {
1937 	if (kn != NULL)
1938 		uma_zfree(knote_zone, kn);
1939 }
1940 
1941 /*
1942  * Register the kev w/ the kq specified by fd.
1943  */
1944 int
1945 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
1946 {
1947 	struct kqueue *kq;
1948 	struct file *fp;
1949 	int error;
1950 
1951 	if ((error = fget(td, fd, &fp)) != 0)
1952 		return (error);
1953 	if ((error = kqueue_acquire(fp, &kq)) != 0)
1954 		goto noacquire;
1955 
1956 	error = kqueue_register(kq, kev, td, waitok);
1957 
1958 	kqueue_release(kq, 0);
1959 
1960 noacquire:
1961 	fdrop(fp, td);
1962 
1963 	return error;
1964 }
1965