1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_descrip.c 8.6 (Berkeley) 4/19/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_capsicum.h" 43 #include "opt_ddb.h" 44 #include "opt_ktrace.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 49 #include <sys/capsicum.h> 50 #include <sys/conf.h> 51 #include <sys/fcntl.h> 52 #include <sys/file.h> 53 #include <sys/filedesc.h> 54 #include <sys/filio.h> 55 #include <sys/jail.h> 56 #include <sys/kernel.h> 57 #include <sys/limits.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/mount.h> 61 #include <sys/mutex.h> 62 #include <sys/namei.h> 63 #include <sys/selinfo.h> 64 #include <sys/priv.h> 65 #include <sys/proc.h> 66 #include <sys/protosw.h> 67 #include <sys/racct.h> 68 #include <sys/resourcevar.h> 69 #include <sys/sbuf.h> 70 #include <sys/signalvar.h> 71 #include <sys/kdb.h> 72 #include <sys/stat.h> 73 #include <sys/sx.h> 74 #include <sys/syscallsubr.h> 75 #include <sys/sysctl.h> 76 #include <sys/sysproto.h> 77 #include <sys/unistd.h> 78 #include <sys/user.h> 79 #include <sys/vnode.h> 80 #ifdef KTRACE 81 #include <sys/ktrace.h> 82 #endif 83 84 #include <net/vnet.h> 85 86 #include <security/audit/audit.h> 87 88 #include <vm/uma.h> 89 #include <vm/vm.h> 90 91 #include <ddb/ddb.h> 92 93 static MALLOC_DEFINE(M_FILEDESC, "filedesc", "Open file descriptor table"); 94 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "filedesc_to_leader", 95 "file desc to leader structures"); 96 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures"); 97 MALLOC_DEFINE(M_FILECAPS, "filecaps", "descriptor capabilities"); 98 99 MALLOC_DECLARE(M_FADVISE); 100 101 static __read_mostly uma_zone_t file_zone; 102 static __read_mostly uma_zone_t filedesc0_zone; 103 104 static int closefp(struct filedesc *fdp, int fd, struct file *fp, 105 struct thread *td, int holdleaders); 106 static int fd_first_free(struct filedesc *fdp, int low, int size); 107 static int fd_last_used(struct filedesc *fdp, int size); 108 static void fdgrowtable(struct filedesc *fdp, int nfd); 109 static void fdgrowtable_exp(struct filedesc *fdp, int nfd); 110 static void fdunused(struct filedesc *fdp, int fd); 111 static void fdused(struct filedesc *fdp, int fd); 112 static int getmaxfd(struct thread *td); 113 static u_long *filecaps_copy_prep(const struct filecaps *src); 114 static void filecaps_copy_finish(const struct filecaps *src, 115 struct filecaps *dst, u_long *ioctls); 116 static u_long *filecaps_free_prep(struct filecaps *fcaps); 117 static void filecaps_free_finish(u_long *ioctls); 118 119 /* 120 * Each process has: 121 * 122 * - An array of open file descriptors (fd_ofiles) 123 * - An array of file flags (fd_ofileflags) 124 * - A bitmap recording which descriptors are in use (fd_map) 125 * 126 * A process starts out with NDFILE descriptors. The value of NDFILE has 127 * been selected based the historical limit of 20 open files, and an 128 * assumption that the majority of processes, especially short-lived 129 * processes like shells, will never need more. 130 * 131 * If this initial allocation is exhausted, a larger descriptor table and 132 * map are allocated dynamically, and the pointers in the process's struct 133 * filedesc are updated to point to those. This is repeated every time 134 * the process runs out of file descriptors (provided it hasn't hit its 135 * resource limit). 136 * 137 * Since threads may hold references to individual descriptor table 138 * entries, the tables are never freed. Instead, they are placed on a 139 * linked list and freed only when the struct filedesc is released. 140 */ 141 #define NDFILE 20 142 #define NDSLOTSIZE sizeof(NDSLOTTYPE) 143 #define NDENTRIES (NDSLOTSIZE * __CHAR_BIT) 144 #define NDSLOT(x) ((x) / NDENTRIES) 145 #define NDBIT(x) ((NDSLOTTYPE)1 << ((x) % NDENTRIES)) 146 #define NDSLOTS(x) (((x) + NDENTRIES - 1) / NDENTRIES) 147 148 /* 149 * SLIST entry used to keep track of ofiles which must be reclaimed when 150 * the process exits. 151 */ 152 struct freetable { 153 struct fdescenttbl *ft_table; 154 SLIST_ENTRY(freetable) ft_next; 155 }; 156 157 /* 158 * Initial allocation: a filedesc structure + the head of SLIST used to 159 * keep track of old ofiles + enough space for NDFILE descriptors. 160 */ 161 162 struct fdescenttbl0 { 163 int fdt_nfiles; 164 struct filedescent fdt_ofiles[NDFILE]; 165 }; 166 167 struct filedesc0 { 168 struct filedesc fd_fd; 169 SLIST_HEAD(, freetable) fd_free; 170 struct fdescenttbl0 fd_dfiles; 171 NDSLOTTYPE fd_dmap[NDSLOTS(NDFILE)]; 172 }; 173 174 /* 175 * Descriptor management. 176 */ 177 volatile int __exclusive_cache_line openfiles; /* actual number of open files */ 178 struct mtx sigio_lock; /* mtx to protect pointers to sigio */ 179 void __read_mostly (*mq_fdclose)(struct thread *td, int fd, struct file *fp); 180 181 /* 182 * If low >= size, just return low. Otherwise find the first zero bit in the 183 * given bitmap, starting at low and not exceeding size - 1. Return size if 184 * not found. 185 */ 186 static int 187 fd_first_free(struct filedesc *fdp, int low, int size) 188 { 189 NDSLOTTYPE *map = fdp->fd_map; 190 NDSLOTTYPE mask; 191 int off, maxoff; 192 193 if (low >= size) 194 return (low); 195 196 off = NDSLOT(low); 197 if (low % NDENTRIES) { 198 mask = ~(~(NDSLOTTYPE)0 >> (NDENTRIES - (low % NDENTRIES))); 199 if ((mask &= ~map[off]) != 0UL) 200 return (off * NDENTRIES + ffsl(mask) - 1); 201 ++off; 202 } 203 for (maxoff = NDSLOTS(size); off < maxoff; ++off) 204 if (map[off] != ~0UL) 205 return (off * NDENTRIES + ffsl(~map[off]) - 1); 206 return (size); 207 } 208 209 /* 210 * Find the highest non-zero bit in the given bitmap, starting at 0 and 211 * not exceeding size - 1. Return -1 if not found. 212 */ 213 static int 214 fd_last_used(struct filedesc *fdp, int size) 215 { 216 NDSLOTTYPE *map = fdp->fd_map; 217 NDSLOTTYPE mask; 218 int off, minoff; 219 220 off = NDSLOT(size); 221 if (size % NDENTRIES) { 222 mask = ~(~(NDSLOTTYPE)0 << (size % NDENTRIES)); 223 if ((mask &= map[off]) != 0) 224 return (off * NDENTRIES + flsl(mask) - 1); 225 --off; 226 } 227 for (minoff = NDSLOT(0); off >= minoff; --off) 228 if (map[off] != 0) 229 return (off * NDENTRIES + flsl(map[off]) - 1); 230 return (-1); 231 } 232 233 static int 234 fdisused(struct filedesc *fdp, int fd) 235 { 236 237 KASSERT(fd >= 0 && fd < fdp->fd_nfiles, 238 ("file descriptor %d out of range (0, %d)", fd, fdp->fd_nfiles)); 239 240 return ((fdp->fd_map[NDSLOT(fd)] & NDBIT(fd)) != 0); 241 } 242 243 /* 244 * Mark a file descriptor as used. 245 */ 246 static void 247 fdused_init(struct filedesc *fdp, int fd) 248 { 249 250 KASSERT(!fdisused(fdp, fd), ("fd=%d is already used", fd)); 251 252 fdp->fd_map[NDSLOT(fd)] |= NDBIT(fd); 253 } 254 255 static void 256 fdused(struct filedesc *fdp, int fd) 257 { 258 259 FILEDESC_XLOCK_ASSERT(fdp); 260 261 fdused_init(fdp, fd); 262 if (fd > fdp->fd_lastfile) 263 fdp->fd_lastfile = fd; 264 if (fd == fdp->fd_freefile) 265 fdp->fd_freefile++; 266 } 267 268 /* 269 * Mark a file descriptor as unused. 270 */ 271 static void 272 fdunused(struct filedesc *fdp, int fd) 273 { 274 275 FILEDESC_XLOCK_ASSERT(fdp); 276 277 KASSERT(fdisused(fdp, fd), ("fd=%d is already unused", fd)); 278 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL, 279 ("fd=%d is still in use", fd)); 280 281 fdp->fd_map[NDSLOT(fd)] &= ~NDBIT(fd); 282 if (fd < fdp->fd_freefile) 283 fdp->fd_freefile = fd; 284 if (fd == fdp->fd_lastfile) 285 fdp->fd_lastfile = fd_last_used(fdp, fd); 286 } 287 288 /* 289 * Free a file descriptor. 290 * 291 * Avoid some work if fdp is about to be destroyed. 292 */ 293 static inline void 294 fdefree_last(struct filedescent *fde) 295 { 296 297 filecaps_free(&fde->fde_caps); 298 } 299 300 static inline void 301 fdfree(struct filedesc *fdp, int fd) 302 { 303 struct filedescent *fde; 304 305 fde = &fdp->fd_ofiles[fd]; 306 #ifdef CAPABILITIES 307 seqc_write_begin(&fde->fde_seqc); 308 #endif 309 fde->fde_file = NULL; 310 #ifdef CAPABILITIES 311 seqc_write_end(&fde->fde_seqc); 312 #endif 313 fdefree_last(fde); 314 fdunused(fdp, fd); 315 } 316 317 void 318 pwd_ensure_dirs(void) 319 { 320 struct filedesc *fdp; 321 322 fdp = curproc->p_fd; 323 FILEDESC_XLOCK(fdp); 324 if (fdp->fd_cdir == NULL) { 325 fdp->fd_cdir = rootvnode; 326 vrefact(rootvnode); 327 } 328 if (fdp->fd_rdir == NULL) { 329 fdp->fd_rdir = rootvnode; 330 vrefact(rootvnode); 331 } 332 FILEDESC_XUNLOCK(fdp); 333 } 334 335 /* 336 * System calls on descriptors. 337 */ 338 #ifndef _SYS_SYSPROTO_H_ 339 struct getdtablesize_args { 340 int dummy; 341 }; 342 #endif 343 /* ARGSUSED */ 344 int 345 sys_getdtablesize(struct thread *td, struct getdtablesize_args *uap) 346 { 347 #ifdef RACCT 348 uint64_t lim; 349 #endif 350 351 td->td_retval[0] = getmaxfd(td); 352 #ifdef RACCT 353 PROC_LOCK(td->td_proc); 354 lim = racct_get_limit(td->td_proc, RACCT_NOFILE); 355 PROC_UNLOCK(td->td_proc); 356 if (lim < td->td_retval[0]) 357 td->td_retval[0] = lim; 358 #endif 359 return (0); 360 } 361 362 /* 363 * Duplicate a file descriptor to a particular value. 364 * 365 * Note: keep in mind that a potential race condition exists when closing 366 * descriptors from a shared descriptor table (via rfork). 367 */ 368 #ifndef _SYS_SYSPROTO_H_ 369 struct dup2_args { 370 u_int from; 371 u_int to; 372 }; 373 #endif 374 /* ARGSUSED */ 375 int 376 sys_dup2(struct thread *td, struct dup2_args *uap) 377 { 378 379 return (kern_dup(td, FDDUP_FIXED, 0, (int)uap->from, (int)uap->to)); 380 } 381 382 /* 383 * Duplicate a file descriptor. 384 */ 385 #ifndef _SYS_SYSPROTO_H_ 386 struct dup_args { 387 u_int fd; 388 }; 389 #endif 390 /* ARGSUSED */ 391 int 392 sys_dup(struct thread *td, struct dup_args *uap) 393 { 394 395 return (kern_dup(td, FDDUP_NORMAL, 0, (int)uap->fd, 0)); 396 } 397 398 /* 399 * The file control system call. 400 */ 401 #ifndef _SYS_SYSPROTO_H_ 402 struct fcntl_args { 403 int fd; 404 int cmd; 405 long arg; 406 }; 407 #endif 408 /* ARGSUSED */ 409 int 410 sys_fcntl(struct thread *td, struct fcntl_args *uap) 411 { 412 413 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, uap->arg)); 414 } 415 416 int 417 kern_fcntl_freebsd(struct thread *td, int fd, int cmd, long arg) 418 { 419 struct flock fl; 420 struct __oflock ofl; 421 intptr_t arg1; 422 int error, newcmd; 423 424 error = 0; 425 newcmd = cmd; 426 switch (cmd) { 427 case F_OGETLK: 428 case F_OSETLK: 429 case F_OSETLKW: 430 /* 431 * Convert old flock structure to new. 432 */ 433 error = copyin((void *)(intptr_t)arg, &ofl, sizeof(ofl)); 434 fl.l_start = ofl.l_start; 435 fl.l_len = ofl.l_len; 436 fl.l_pid = ofl.l_pid; 437 fl.l_type = ofl.l_type; 438 fl.l_whence = ofl.l_whence; 439 fl.l_sysid = 0; 440 441 switch (cmd) { 442 case F_OGETLK: 443 newcmd = F_GETLK; 444 break; 445 case F_OSETLK: 446 newcmd = F_SETLK; 447 break; 448 case F_OSETLKW: 449 newcmd = F_SETLKW; 450 break; 451 } 452 arg1 = (intptr_t)&fl; 453 break; 454 case F_GETLK: 455 case F_SETLK: 456 case F_SETLKW: 457 case F_SETLK_REMOTE: 458 error = copyin((void *)(intptr_t)arg, &fl, sizeof(fl)); 459 arg1 = (intptr_t)&fl; 460 break; 461 default: 462 arg1 = arg; 463 break; 464 } 465 if (error) 466 return (error); 467 error = kern_fcntl(td, fd, newcmd, arg1); 468 if (error) 469 return (error); 470 if (cmd == F_OGETLK) { 471 ofl.l_start = fl.l_start; 472 ofl.l_len = fl.l_len; 473 ofl.l_pid = fl.l_pid; 474 ofl.l_type = fl.l_type; 475 ofl.l_whence = fl.l_whence; 476 error = copyout(&ofl, (void *)(intptr_t)arg, sizeof(ofl)); 477 } else if (cmd == F_GETLK) { 478 error = copyout(&fl, (void *)(intptr_t)arg, sizeof(fl)); 479 } 480 return (error); 481 } 482 483 int 484 kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg) 485 { 486 struct filedesc *fdp; 487 struct flock *flp; 488 struct file *fp, *fp2; 489 struct filedescent *fde; 490 struct proc *p; 491 struct vnode *vp; 492 int error, flg, tmp; 493 uint64_t bsize; 494 off_t foffset; 495 496 error = 0; 497 flg = F_POSIX; 498 p = td->td_proc; 499 fdp = p->p_fd; 500 501 AUDIT_ARG_FD(cmd); 502 AUDIT_ARG_CMD(cmd); 503 switch (cmd) { 504 case F_DUPFD: 505 tmp = arg; 506 error = kern_dup(td, FDDUP_FCNTL, 0, fd, tmp); 507 break; 508 509 case F_DUPFD_CLOEXEC: 510 tmp = arg; 511 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOEXEC, fd, tmp); 512 break; 513 514 case F_DUP2FD: 515 tmp = arg; 516 error = kern_dup(td, FDDUP_FIXED, 0, fd, tmp); 517 break; 518 519 case F_DUP2FD_CLOEXEC: 520 tmp = arg; 521 error = kern_dup(td, FDDUP_FIXED, FDDUP_FLAG_CLOEXEC, fd, tmp); 522 break; 523 524 case F_GETFD: 525 error = EBADF; 526 FILEDESC_SLOCK(fdp); 527 fde = fdeget_locked(fdp, fd); 528 if (fde != NULL) { 529 td->td_retval[0] = 530 (fde->fde_flags & UF_EXCLOSE) ? FD_CLOEXEC : 0; 531 error = 0; 532 } 533 FILEDESC_SUNLOCK(fdp); 534 break; 535 536 case F_SETFD: 537 error = EBADF; 538 FILEDESC_XLOCK(fdp); 539 fde = fdeget_locked(fdp, fd); 540 if (fde != NULL) { 541 fde->fde_flags = (fde->fde_flags & ~UF_EXCLOSE) | 542 (arg & FD_CLOEXEC ? UF_EXCLOSE : 0); 543 error = 0; 544 } 545 FILEDESC_XUNLOCK(fdp); 546 break; 547 548 case F_GETFL: 549 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETFL, &fp); 550 if (error != 0) 551 break; 552 td->td_retval[0] = OFLAGS(fp->f_flag); 553 fdrop(fp, td); 554 break; 555 556 case F_SETFL: 557 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETFL, &fp); 558 if (error != 0) 559 break; 560 do { 561 tmp = flg = fp->f_flag; 562 tmp &= ~FCNTLFLAGS; 563 tmp |= FFLAGS(arg & ~O_ACCMODE) & FCNTLFLAGS; 564 } while(atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0); 565 tmp = fp->f_flag & FNONBLOCK; 566 error = fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td); 567 if (error != 0) { 568 fdrop(fp, td); 569 break; 570 } 571 tmp = fp->f_flag & FASYNC; 572 error = fo_ioctl(fp, FIOASYNC, &tmp, td->td_ucred, td); 573 if (error == 0) { 574 fdrop(fp, td); 575 break; 576 } 577 atomic_clear_int(&fp->f_flag, FNONBLOCK); 578 tmp = 0; 579 (void)fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td); 580 fdrop(fp, td); 581 break; 582 583 case F_GETOWN: 584 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETOWN, &fp); 585 if (error != 0) 586 break; 587 error = fo_ioctl(fp, FIOGETOWN, &tmp, td->td_ucred, td); 588 if (error == 0) 589 td->td_retval[0] = tmp; 590 fdrop(fp, td); 591 break; 592 593 case F_SETOWN: 594 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETOWN, &fp); 595 if (error != 0) 596 break; 597 tmp = arg; 598 error = fo_ioctl(fp, FIOSETOWN, &tmp, td->td_ucred, td); 599 fdrop(fp, td); 600 break; 601 602 case F_SETLK_REMOTE: 603 error = priv_check(td, PRIV_NFS_LOCKD); 604 if (error != 0) 605 return (error); 606 flg = F_REMOTE; 607 goto do_setlk; 608 609 case F_SETLKW: 610 flg |= F_WAIT; 611 /* FALLTHROUGH F_SETLK */ 612 613 case F_SETLK: 614 do_setlk: 615 flp = (struct flock *)arg; 616 if ((flg & F_REMOTE) != 0 && flp->l_sysid == 0) { 617 error = EINVAL; 618 break; 619 } 620 621 error = fget_unlocked(fdp, fd, &cap_flock_rights, &fp, NULL); 622 if (error != 0) 623 break; 624 if (fp->f_type != DTYPE_VNODE) { 625 error = EBADF; 626 fdrop(fp, td); 627 break; 628 } 629 630 if (flp->l_whence == SEEK_CUR) { 631 foffset = foffset_get(fp); 632 if (foffset < 0 || 633 (flp->l_start > 0 && 634 foffset > OFF_MAX - flp->l_start)) { 635 error = EOVERFLOW; 636 fdrop(fp, td); 637 break; 638 } 639 flp->l_start += foffset; 640 } 641 642 vp = fp->f_vnode; 643 switch (flp->l_type) { 644 case F_RDLCK: 645 if ((fp->f_flag & FREAD) == 0) { 646 error = EBADF; 647 break; 648 } 649 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) { 650 PROC_LOCK(p->p_leader); 651 p->p_leader->p_flag |= P_ADVLOCK; 652 PROC_UNLOCK(p->p_leader); 653 } 654 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK, 655 flp, flg); 656 break; 657 case F_WRLCK: 658 if ((fp->f_flag & FWRITE) == 0) { 659 error = EBADF; 660 break; 661 } 662 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) { 663 PROC_LOCK(p->p_leader); 664 p->p_leader->p_flag |= P_ADVLOCK; 665 PROC_UNLOCK(p->p_leader); 666 } 667 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK, 668 flp, flg); 669 break; 670 case F_UNLCK: 671 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK, 672 flp, flg); 673 break; 674 case F_UNLCKSYS: 675 if (flg != F_REMOTE) { 676 error = EINVAL; 677 break; 678 } 679 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, 680 F_UNLCKSYS, flp, flg); 681 break; 682 default: 683 error = EINVAL; 684 break; 685 } 686 if (error != 0 || flp->l_type == F_UNLCK || 687 flp->l_type == F_UNLCKSYS) { 688 fdrop(fp, td); 689 break; 690 } 691 692 /* 693 * Check for a race with close. 694 * 695 * The vnode is now advisory locked (or unlocked, but this case 696 * is not really important) as the caller requested. 697 * We had to drop the filedesc lock, so we need to recheck if 698 * the descriptor is still valid, because if it was closed 699 * in the meantime we need to remove advisory lock from the 700 * vnode - close on any descriptor leading to an advisory 701 * locked vnode, removes that lock. 702 * We will return 0 on purpose in that case, as the result of 703 * successful advisory lock might have been externally visible 704 * already. This is fine - effectively we pretend to the caller 705 * that the closing thread was a bit slower and that the 706 * advisory lock succeeded before the close. 707 */ 708 error = fget_unlocked(fdp, fd, &cap_no_rights, &fp2, NULL); 709 if (error != 0) { 710 fdrop(fp, td); 711 break; 712 } 713 if (fp != fp2) { 714 flp->l_whence = SEEK_SET; 715 flp->l_start = 0; 716 flp->l_len = 0; 717 flp->l_type = F_UNLCK; 718 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, 719 F_UNLCK, flp, F_POSIX); 720 } 721 fdrop(fp, td); 722 fdrop(fp2, td); 723 break; 724 725 case F_GETLK: 726 error = fget_unlocked(fdp, fd, &cap_flock_rights, &fp, NULL); 727 if (error != 0) 728 break; 729 if (fp->f_type != DTYPE_VNODE) { 730 error = EBADF; 731 fdrop(fp, td); 732 break; 733 } 734 flp = (struct flock *)arg; 735 if (flp->l_type != F_RDLCK && flp->l_type != F_WRLCK && 736 flp->l_type != F_UNLCK) { 737 error = EINVAL; 738 fdrop(fp, td); 739 break; 740 } 741 if (flp->l_whence == SEEK_CUR) { 742 foffset = foffset_get(fp); 743 if ((flp->l_start > 0 && 744 foffset > OFF_MAX - flp->l_start) || 745 (flp->l_start < 0 && 746 foffset < OFF_MIN - flp->l_start)) { 747 error = EOVERFLOW; 748 fdrop(fp, td); 749 break; 750 } 751 flp->l_start += foffset; 752 } 753 vp = fp->f_vnode; 754 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK, flp, 755 F_POSIX); 756 fdrop(fp, td); 757 break; 758 759 case F_RDAHEAD: 760 arg = arg ? 128 * 1024: 0; 761 /* FALLTHROUGH */ 762 case F_READAHEAD: 763 error = fget_unlocked(fdp, fd, &cap_no_rights, &fp, NULL); 764 if (error != 0) 765 break; 766 if (fp->f_type != DTYPE_VNODE) { 767 fdrop(fp, td); 768 error = EBADF; 769 break; 770 } 771 vp = fp->f_vnode; 772 /* 773 * Exclusive lock synchronizes against f_seqcount reads and 774 * writes in sequential_heuristic(). 775 */ 776 error = vn_lock(vp, LK_EXCLUSIVE); 777 if (error != 0) { 778 fdrop(fp, td); 779 break; 780 } 781 if (arg >= 0) { 782 bsize = fp->f_vnode->v_mount->mnt_stat.f_iosize; 783 arg = MIN(arg, INT_MAX - bsize + 1); 784 fp->f_seqcount = MIN(IO_SEQMAX, 785 (arg + bsize - 1) / bsize); 786 atomic_set_int(&fp->f_flag, FRDAHEAD); 787 } else { 788 atomic_clear_int(&fp->f_flag, FRDAHEAD); 789 } 790 VOP_UNLOCK(vp, 0); 791 fdrop(fp, td); 792 break; 793 794 default: 795 error = EINVAL; 796 break; 797 } 798 return (error); 799 } 800 801 static int 802 getmaxfd(struct thread *td) 803 { 804 805 return (min((int)lim_cur(td, RLIMIT_NOFILE), maxfilesperproc)); 806 } 807 808 /* 809 * Common code for dup, dup2, fcntl(F_DUPFD) and fcntl(F_DUP2FD). 810 */ 811 int 812 kern_dup(struct thread *td, u_int mode, int flags, int old, int new) 813 { 814 struct filedesc *fdp; 815 struct filedescent *oldfde, *newfde; 816 struct proc *p; 817 struct file *delfp; 818 u_long *oioctls, *nioctls; 819 int error, maxfd; 820 821 p = td->td_proc; 822 fdp = p->p_fd; 823 oioctls = NULL; 824 825 MPASS((flags & ~(FDDUP_FLAG_CLOEXEC)) == 0); 826 MPASS(mode < FDDUP_LASTMODE); 827 828 AUDIT_ARG_FD(old); 829 /* XXXRW: if (flags & FDDUP_FIXED) AUDIT_ARG_FD2(new); */ 830 831 /* 832 * Verify we have a valid descriptor to dup from and possibly to 833 * dup to. Unlike dup() and dup2(), fcntl()'s F_DUPFD should 834 * return EINVAL when the new descriptor is out of bounds. 835 */ 836 if (old < 0) 837 return (EBADF); 838 if (new < 0) 839 return (mode == FDDUP_FCNTL ? EINVAL : EBADF); 840 maxfd = getmaxfd(td); 841 if (new >= maxfd) 842 return (mode == FDDUP_FCNTL ? EINVAL : EBADF); 843 844 error = EBADF; 845 FILEDESC_XLOCK(fdp); 846 if (fget_locked(fdp, old) == NULL) 847 goto unlock; 848 if ((mode == FDDUP_FIXED || mode == FDDUP_MUSTREPLACE) && old == new) { 849 td->td_retval[0] = new; 850 if (flags & FDDUP_FLAG_CLOEXEC) 851 fdp->fd_ofiles[new].fde_flags |= UF_EXCLOSE; 852 error = 0; 853 goto unlock; 854 } 855 856 /* 857 * If the caller specified a file descriptor, make sure the file 858 * table is large enough to hold it, and grab it. Otherwise, just 859 * allocate a new descriptor the usual way. 860 */ 861 switch (mode) { 862 case FDDUP_NORMAL: 863 case FDDUP_FCNTL: 864 if ((error = fdalloc(td, new, &new)) != 0) 865 goto unlock; 866 break; 867 case FDDUP_MUSTREPLACE: 868 /* Target file descriptor must exist. */ 869 if (fget_locked(fdp, new) == NULL) 870 goto unlock; 871 break; 872 case FDDUP_FIXED: 873 if (new >= fdp->fd_nfiles) { 874 /* 875 * The resource limits are here instead of e.g. 876 * fdalloc(), because the file descriptor table may be 877 * shared between processes, so we can't really use 878 * racct_add()/racct_sub(). Instead of counting the 879 * number of actually allocated descriptors, just put 880 * the limit on the size of the file descriptor table. 881 */ 882 #ifdef RACCT 883 if (RACCT_ENABLED()) { 884 error = racct_set_unlocked(p, RACCT_NOFILE, new + 1); 885 if (error != 0) { 886 error = EMFILE; 887 goto unlock; 888 } 889 } 890 #endif 891 fdgrowtable_exp(fdp, new + 1); 892 } 893 if (!fdisused(fdp, new)) 894 fdused(fdp, new); 895 break; 896 default: 897 KASSERT(0, ("%s unsupported mode %d", __func__, mode)); 898 } 899 900 KASSERT(old != new, ("new fd is same as old")); 901 902 oldfde = &fdp->fd_ofiles[old]; 903 fhold(oldfde->fde_file); 904 newfde = &fdp->fd_ofiles[new]; 905 delfp = newfde->fde_file; 906 907 oioctls = filecaps_free_prep(&newfde->fde_caps); 908 nioctls = filecaps_copy_prep(&oldfde->fde_caps); 909 910 /* 911 * Duplicate the source descriptor. 912 */ 913 #ifdef CAPABILITIES 914 seqc_write_begin(&newfde->fde_seqc); 915 #endif 916 memcpy(newfde, oldfde, fde_change_size); 917 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps, 918 nioctls); 919 if ((flags & FDDUP_FLAG_CLOEXEC) != 0) 920 newfde->fde_flags = oldfde->fde_flags | UF_EXCLOSE; 921 else 922 newfde->fde_flags = oldfde->fde_flags & ~UF_EXCLOSE; 923 #ifdef CAPABILITIES 924 seqc_write_end(&newfde->fde_seqc); 925 #endif 926 td->td_retval[0] = new; 927 928 error = 0; 929 930 if (delfp != NULL) { 931 (void) closefp(fdp, new, delfp, td, 1); 932 FILEDESC_UNLOCK_ASSERT(fdp); 933 } else { 934 unlock: 935 FILEDESC_XUNLOCK(fdp); 936 } 937 938 filecaps_free_finish(oioctls); 939 return (error); 940 } 941 942 /* 943 * If sigio is on the list associated with a process or process group, 944 * disable signalling from the device, remove sigio from the list and 945 * free sigio. 946 */ 947 void 948 funsetown(struct sigio **sigiop) 949 { 950 struct sigio *sigio; 951 952 if (*sigiop == NULL) 953 return; 954 SIGIO_LOCK(); 955 sigio = *sigiop; 956 if (sigio == NULL) { 957 SIGIO_UNLOCK(); 958 return; 959 } 960 *(sigio->sio_myref) = NULL; 961 if ((sigio)->sio_pgid < 0) { 962 struct pgrp *pg = (sigio)->sio_pgrp; 963 PGRP_LOCK(pg); 964 SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio, 965 sigio, sio_pgsigio); 966 PGRP_UNLOCK(pg); 967 } else { 968 struct proc *p = (sigio)->sio_proc; 969 PROC_LOCK(p); 970 SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio, 971 sigio, sio_pgsigio); 972 PROC_UNLOCK(p); 973 } 974 SIGIO_UNLOCK(); 975 crfree(sigio->sio_ucred); 976 free(sigio, M_SIGIO); 977 } 978 979 /* 980 * Free a list of sigio structures. 981 * We only need to lock the SIGIO_LOCK because we have made ourselves 982 * inaccessible to callers of fsetown and therefore do not need to lock 983 * the proc or pgrp struct for the list manipulation. 984 */ 985 void 986 funsetownlst(struct sigiolst *sigiolst) 987 { 988 struct proc *p; 989 struct pgrp *pg; 990 struct sigio *sigio; 991 992 sigio = SLIST_FIRST(sigiolst); 993 if (sigio == NULL) 994 return; 995 p = NULL; 996 pg = NULL; 997 998 /* 999 * Every entry of the list should belong 1000 * to a single proc or pgrp. 1001 */ 1002 if (sigio->sio_pgid < 0) { 1003 pg = sigio->sio_pgrp; 1004 PGRP_LOCK_ASSERT(pg, MA_NOTOWNED); 1005 } else /* if (sigio->sio_pgid > 0) */ { 1006 p = sigio->sio_proc; 1007 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1008 } 1009 1010 SIGIO_LOCK(); 1011 while ((sigio = SLIST_FIRST(sigiolst)) != NULL) { 1012 *(sigio->sio_myref) = NULL; 1013 if (pg != NULL) { 1014 KASSERT(sigio->sio_pgid < 0, 1015 ("Proc sigio in pgrp sigio list")); 1016 KASSERT(sigio->sio_pgrp == pg, 1017 ("Bogus pgrp in sigio list")); 1018 PGRP_LOCK(pg); 1019 SLIST_REMOVE(&pg->pg_sigiolst, sigio, sigio, 1020 sio_pgsigio); 1021 PGRP_UNLOCK(pg); 1022 } else /* if (p != NULL) */ { 1023 KASSERT(sigio->sio_pgid > 0, 1024 ("Pgrp sigio in proc sigio list")); 1025 KASSERT(sigio->sio_proc == p, 1026 ("Bogus proc in sigio list")); 1027 PROC_LOCK(p); 1028 SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, 1029 sio_pgsigio); 1030 PROC_UNLOCK(p); 1031 } 1032 SIGIO_UNLOCK(); 1033 crfree(sigio->sio_ucred); 1034 free(sigio, M_SIGIO); 1035 SIGIO_LOCK(); 1036 } 1037 SIGIO_UNLOCK(); 1038 } 1039 1040 /* 1041 * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg). 1042 * 1043 * After permission checking, add a sigio structure to the sigio list for 1044 * the process or process group. 1045 */ 1046 int 1047 fsetown(pid_t pgid, struct sigio **sigiop) 1048 { 1049 struct proc *proc; 1050 struct pgrp *pgrp; 1051 struct sigio *sigio; 1052 int ret; 1053 1054 if (pgid == 0) { 1055 funsetown(sigiop); 1056 return (0); 1057 } 1058 1059 ret = 0; 1060 1061 /* Allocate and fill in the new sigio out of locks. */ 1062 sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK); 1063 sigio->sio_pgid = pgid; 1064 sigio->sio_ucred = crhold(curthread->td_ucred); 1065 sigio->sio_myref = sigiop; 1066 1067 sx_slock(&proctree_lock); 1068 if (pgid > 0) { 1069 proc = pfind(pgid); 1070 if (proc == NULL) { 1071 ret = ESRCH; 1072 goto fail; 1073 } 1074 1075 /* 1076 * Policy - Don't allow a process to FSETOWN a process 1077 * in another session. 1078 * 1079 * Remove this test to allow maximum flexibility or 1080 * restrict FSETOWN to the current process or process 1081 * group for maximum safety. 1082 */ 1083 PROC_UNLOCK(proc); 1084 if (proc->p_session != curthread->td_proc->p_session) { 1085 ret = EPERM; 1086 goto fail; 1087 } 1088 1089 pgrp = NULL; 1090 } else /* if (pgid < 0) */ { 1091 pgrp = pgfind(-pgid); 1092 if (pgrp == NULL) { 1093 ret = ESRCH; 1094 goto fail; 1095 } 1096 PGRP_UNLOCK(pgrp); 1097 1098 /* 1099 * Policy - Don't allow a process to FSETOWN a process 1100 * in another session. 1101 * 1102 * Remove this test to allow maximum flexibility or 1103 * restrict FSETOWN to the current process or process 1104 * group for maximum safety. 1105 */ 1106 if (pgrp->pg_session != curthread->td_proc->p_session) { 1107 ret = EPERM; 1108 goto fail; 1109 } 1110 1111 proc = NULL; 1112 } 1113 funsetown(sigiop); 1114 if (pgid > 0) { 1115 PROC_LOCK(proc); 1116 /* 1117 * Since funsetownlst() is called without the proctree 1118 * locked, we need to check for P_WEXIT. 1119 * XXX: is ESRCH correct? 1120 */ 1121 if ((proc->p_flag & P_WEXIT) != 0) { 1122 PROC_UNLOCK(proc); 1123 ret = ESRCH; 1124 goto fail; 1125 } 1126 SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio); 1127 sigio->sio_proc = proc; 1128 PROC_UNLOCK(proc); 1129 } else { 1130 PGRP_LOCK(pgrp); 1131 SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio); 1132 sigio->sio_pgrp = pgrp; 1133 PGRP_UNLOCK(pgrp); 1134 } 1135 sx_sunlock(&proctree_lock); 1136 SIGIO_LOCK(); 1137 *sigiop = sigio; 1138 SIGIO_UNLOCK(); 1139 return (0); 1140 1141 fail: 1142 sx_sunlock(&proctree_lock); 1143 crfree(sigio->sio_ucred); 1144 free(sigio, M_SIGIO); 1145 return (ret); 1146 } 1147 1148 /* 1149 * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg). 1150 */ 1151 pid_t 1152 fgetown(struct sigio **sigiop) 1153 { 1154 pid_t pgid; 1155 1156 SIGIO_LOCK(); 1157 pgid = (*sigiop != NULL) ? (*sigiop)->sio_pgid : 0; 1158 SIGIO_UNLOCK(); 1159 return (pgid); 1160 } 1161 1162 /* 1163 * Function drops the filedesc lock on return. 1164 */ 1165 static int 1166 closefp(struct filedesc *fdp, int fd, struct file *fp, struct thread *td, 1167 int holdleaders) 1168 { 1169 int error; 1170 1171 FILEDESC_XLOCK_ASSERT(fdp); 1172 1173 if (holdleaders) { 1174 if (td->td_proc->p_fdtol != NULL) { 1175 /* 1176 * Ask fdfree() to sleep to ensure that all relevant 1177 * process leaders can be traversed in closef(). 1178 */ 1179 fdp->fd_holdleaderscount++; 1180 } else { 1181 holdleaders = 0; 1182 } 1183 } 1184 1185 /* 1186 * We now hold the fp reference that used to be owned by the 1187 * descriptor array. We have to unlock the FILEDESC *AFTER* 1188 * knote_fdclose to prevent a race of the fd getting opened, a knote 1189 * added, and deleteing a knote for the new fd. 1190 */ 1191 if (__predict_false(!TAILQ_EMPTY(&fdp->fd_kqlist))) 1192 knote_fdclose(td, fd); 1193 1194 /* 1195 * We need to notify mqueue if the object is of type mqueue. 1196 */ 1197 if (__predict_false(fp->f_type == DTYPE_MQUEUE)) 1198 mq_fdclose(td, fd, fp); 1199 FILEDESC_XUNLOCK(fdp); 1200 1201 error = closef(fp, td); 1202 if (holdleaders) { 1203 FILEDESC_XLOCK(fdp); 1204 fdp->fd_holdleaderscount--; 1205 if (fdp->fd_holdleaderscount == 0 && 1206 fdp->fd_holdleaderswakeup != 0) { 1207 fdp->fd_holdleaderswakeup = 0; 1208 wakeup(&fdp->fd_holdleaderscount); 1209 } 1210 FILEDESC_XUNLOCK(fdp); 1211 } 1212 return (error); 1213 } 1214 1215 /* 1216 * Close a file descriptor. 1217 */ 1218 #ifndef _SYS_SYSPROTO_H_ 1219 struct close_args { 1220 int fd; 1221 }; 1222 #endif 1223 /* ARGSUSED */ 1224 int 1225 sys_close(struct thread *td, struct close_args *uap) 1226 { 1227 1228 return (kern_close(td, uap->fd)); 1229 } 1230 1231 int 1232 kern_close(struct thread *td, int fd) 1233 { 1234 struct filedesc *fdp; 1235 struct file *fp; 1236 1237 fdp = td->td_proc->p_fd; 1238 1239 AUDIT_SYSCLOSE(td, fd); 1240 1241 FILEDESC_XLOCK(fdp); 1242 if ((fp = fget_locked(fdp, fd)) == NULL) { 1243 FILEDESC_XUNLOCK(fdp); 1244 return (EBADF); 1245 } 1246 fdfree(fdp, fd); 1247 1248 /* closefp() drops the FILEDESC lock for us. */ 1249 return (closefp(fdp, fd, fp, td, 1)); 1250 } 1251 1252 /* 1253 * Close open file descriptors. 1254 */ 1255 #ifndef _SYS_SYSPROTO_H_ 1256 struct closefrom_args { 1257 int lowfd; 1258 }; 1259 #endif 1260 /* ARGSUSED */ 1261 int 1262 sys_closefrom(struct thread *td, struct closefrom_args *uap) 1263 { 1264 struct filedesc *fdp; 1265 int fd; 1266 1267 fdp = td->td_proc->p_fd; 1268 AUDIT_ARG_FD(uap->lowfd); 1269 1270 /* 1271 * Treat negative starting file descriptor values identical to 1272 * closefrom(0) which closes all files. 1273 */ 1274 if (uap->lowfd < 0) 1275 uap->lowfd = 0; 1276 FILEDESC_SLOCK(fdp); 1277 for (fd = uap->lowfd; fd <= fdp->fd_lastfile; fd++) { 1278 if (fdp->fd_ofiles[fd].fde_file != NULL) { 1279 FILEDESC_SUNLOCK(fdp); 1280 (void)kern_close(td, fd); 1281 FILEDESC_SLOCK(fdp); 1282 } 1283 } 1284 FILEDESC_SUNLOCK(fdp); 1285 return (0); 1286 } 1287 1288 #if defined(COMPAT_43) 1289 /* 1290 * Return status information about a file descriptor. 1291 */ 1292 #ifndef _SYS_SYSPROTO_H_ 1293 struct ofstat_args { 1294 int fd; 1295 struct ostat *sb; 1296 }; 1297 #endif 1298 /* ARGSUSED */ 1299 int 1300 ofstat(struct thread *td, struct ofstat_args *uap) 1301 { 1302 struct ostat oub; 1303 struct stat ub; 1304 int error; 1305 1306 error = kern_fstat(td, uap->fd, &ub); 1307 if (error == 0) { 1308 cvtstat(&ub, &oub); 1309 error = copyout(&oub, uap->sb, sizeof(oub)); 1310 } 1311 return (error); 1312 } 1313 #endif /* COMPAT_43 */ 1314 1315 #if defined(COMPAT_FREEBSD11) 1316 int 1317 freebsd11_fstat(struct thread *td, struct freebsd11_fstat_args *uap) 1318 { 1319 struct stat sb; 1320 struct freebsd11_stat osb; 1321 int error; 1322 1323 error = kern_fstat(td, uap->fd, &sb); 1324 if (error != 0) 1325 return (error); 1326 error = freebsd11_cvtstat(&sb, &osb); 1327 if (error == 0) 1328 error = copyout(&osb, uap->sb, sizeof(osb)); 1329 return (error); 1330 } 1331 #endif /* COMPAT_FREEBSD11 */ 1332 1333 /* 1334 * Return status information about a file descriptor. 1335 */ 1336 #ifndef _SYS_SYSPROTO_H_ 1337 struct fstat_args { 1338 int fd; 1339 struct stat *sb; 1340 }; 1341 #endif 1342 /* ARGSUSED */ 1343 int 1344 sys_fstat(struct thread *td, struct fstat_args *uap) 1345 { 1346 struct stat ub; 1347 int error; 1348 1349 error = kern_fstat(td, uap->fd, &ub); 1350 if (error == 0) 1351 error = copyout(&ub, uap->sb, sizeof(ub)); 1352 return (error); 1353 } 1354 1355 int 1356 kern_fstat(struct thread *td, int fd, struct stat *sbp) 1357 { 1358 struct file *fp; 1359 int error; 1360 1361 AUDIT_ARG_FD(fd); 1362 1363 error = fget(td, fd, &cap_fstat_rights, &fp); 1364 if (error != 0) 1365 return (error); 1366 1367 AUDIT_ARG_FILE(td->td_proc, fp); 1368 1369 error = fo_stat(fp, sbp, td->td_ucred, td); 1370 fdrop(fp, td); 1371 #ifdef __STAT_TIME_T_EXT 1372 if (error == 0) { 1373 sbp->st_atim_ext = 0; 1374 sbp->st_mtim_ext = 0; 1375 sbp->st_ctim_ext = 0; 1376 sbp->st_btim_ext = 0; 1377 } 1378 #endif 1379 #ifdef KTRACE 1380 if (error == 0 && KTRPOINT(td, KTR_STRUCT)) 1381 ktrstat(sbp); 1382 #endif 1383 return (error); 1384 } 1385 1386 #if defined(COMPAT_FREEBSD11) 1387 /* 1388 * Return status information about a file descriptor. 1389 */ 1390 #ifndef _SYS_SYSPROTO_H_ 1391 struct freebsd11_nfstat_args { 1392 int fd; 1393 struct nstat *sb; 1394 }; 1395 #endif 1396 /* ARGSUSED */ 1397 int 1398 freebsd11_nfstat(struct thread *td, struct freebsd11_nfstat_args *uap) 1399 { 1400 struct nstat nub; 1401 struct stat ub; 1402 int error; 1403 1404 error = kern_fstat(td, uap->fd, &ub); 1405 if (error == 0) { 1406 freebsd11_cvtnstat(&ub, &nub); 1407 error = copyout(&nub, uap->sb, sizeof(nub)); 1408 } 1409 return (error); 1410 } 1411 #endif /* COMPAT_FREEBSD11 */ 1412 1413 /* 1414 * Return pathconf information about a file descriptor. 1415 */ 1416 #ifndef _SYS_SYSPROTO_H_ 1417 struct fpathconf_args { 1418 int fd; 1419 int name; 1420 }; 1421 #endif 1422 /* ARGSUSED */ 1423 int 1424 sys_fpathconf(struct thread *td, struct fpathconf_args *uap) 1425 { 1426 long value; 1427 int error; 1428 1429 error = kern_fpathconf(td, uap->fd, uap->name, &value); 1430 if (error == 0) 1431 td->td_retval[0] = value; 1432 return (error); 1433 } 1434 1435 int 1436 kern_fpathconf(struct thread *td, int fd, int name, long *valuep) 1437 { 1438 struct file *fp; 1439 struct vnode *vp; 1440 int error; 1441 1442 error = fget(td, fd, &cap_fpathconf_rights, &fp); 1443 if (error != 0) 1444 return (error); 1445 1446 if (name == _PC_ASYNC_IO) { 1447 *valuep = _POSIX_ASYNCHRONOUS_IO; 1448 goto out; 1449 } 1450 vp = fp->f_vnode; 1451 if (vp != NULL) { 1452 vn_lock(vp, LK_SHARED | LK_RETRY); 1453 error = VOP_PATHCONF(vp, name, valuep); 1454 VOP_UNLOCK(vp, 0); 1455 } else if (fp->f_type == DTYPE_PIPE || fp->f_type == DTYPE_SOCKET) { 1456 if (name != _PC_PIPE_BUF) { 1457 error = EINVAL; 1458 } else { 1459 *valuep = PIPE_BUF; 1460 error = 0; 1461 } 1462 } else { 1463 error = EOPNOTSUPP; 1464 } 1465 out: 1466 fdrop(fp, td); 1467 return (error); 1468 } 1469 1470 /* 1471 * Copy filecaps structure allocating memory for ioctls array if needed. 1472 * 1473 * The last parameter indicates whether the fdtable is locked. If it is not and 1474 * ioctls are encountered, copying fails and the caller must lock the table. 1475 * 1476 * Note that if the table was not locked, the caller has to check the relevant 1477 * sequence counter to determine whether the operation was successful. 1478 */ 1479 bool 1480 filecaps_copy(const struct filecaps *src, struct filecaps *dst, bool locked) 1481 { 1482 size_t size; 1483 1484 if (src->fc_ioctls != NULL && !locked) 1485 return (false); 1486 memcpy(dst, src, sizeof(*src)); 1487 if (src->fc_ioctls == NULL) 1488 return (true); 1489 1490 KASSERT(src->fc_nioctls > 0, 1491 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls)); 1492 1493 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls; 1494 dst->fc_ioctls = malloc(size, M_FILECAPS, M_WAITOK); 1495 memcpy(dst->fc_ioctls, src->fc_ioctls, size); 1496 return (true); 1497 } 1498 1499 static u_long * 1500 filecaps_copy_prep(const struct filecaps *src) 1501 { 1502 u_long *ioctls; 1503 size_t size; 1504 1505 if (__predict_true(src->fc_ioctls == NULL)) 1506 return (NULL); 1507 1508 KASSERT(src->fc_nioctls > 0, 1509 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls)); 1510 1511 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls; 1512 ioctls = malloc(size, M_FILECAPS, M_WAITOK); 1513 return (ioctls); 1514 } 1515 1516 static void 1517 filecaps_copy_finish(const struct filecaps *src, struct filecaps *dst, 1518 u_long *ioctls) 1519 { 1520 size_t size; 1521 1522 *dst = *src; 1523 if (__predict_true(src->fc_ioctls == NULL)) { 1524 MPASS(ioctls == NULL); 1525 return; 1526 } 1527 1528 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls; 1529 dst->fc_ioctls = ioctls; 1530 bcopy(src->fc_ioctls, dst->fc_ioctls, size); 1531 } 1532 1533 /* 1534 * Move filecaps structure to the new place and clear the old place. 1535 */ 1536 void 1537 filecaps_move(struct filecaps *src, struct filecaps *dst) 1538 { 1539 1540 *dst = *src; 1541 bzero(src, sizeof(*src)); 1542 } 1543 1544 /* 1545 * Fill the given filecaps structure with full rights. 1546 */ 1547 static void 1548 filecaps_fill(struct filecaps *fcaps) 1549 { 1550 1551 CAP_ALL(&fcaps->fc_rights); 1552 fcaps->fc_ioctls = NULL; 1553 fcaps->fc_nioctls = -1; 1554 fcaps->fc_fcntls = CAP_FCNTL_ALL; 1555 } 1556 1557 /* 1558 * Free memory allocated within filecaps structure. 1559 */ 1560 void 1561 filecaps_free(struct filecaps *fcaps) 1562 { 1563 1564 free(fcaps->fc_ioctls, M_FILECAPS); 1565 bzero(fcaps, sizeof(*fcaps)); 1566 } 1567 1568 static u_long * 1569 filecaps_free_prep(struct filecaps *fcaps) 1570 { 1571 u_long *ioctls; 1572 1573 ioctls = fcaps->fc_ioctls; 1574 bzero(fcaps, sizeof(*fcaps)); 1575 return (ioctls); 1576 } 1577 1578 static void 1579 filecaps_free_finish(u_long *ioctls) 1580 { 1581 1582 free(ioctls, M_FILECAPS); 1583 } 1584 1585 /* 1586 * Validate the given filecaps structure. 1587 */ 1588 static void 1589 filecaps_validate(const struct filecaps *fcaps, const char *func) 1590 { 1591 1592 KASSERT(cap_rights_is_valid(&fcaps->fc_rights), 1593 ("%s: invalid rights", func)); 1594 KASSERT((fcaps->fc_fcntls & ~CAP_FCNTL_ALL) == 0, 1595 ("%s: invalid fcntls", func)); 1596 KASSERT(fcaps->fc_fcntls == 0 || 1597 cap_rights_is_set(&fcaps->fc_rights, CAP_FCNTL), 1598 ("%s: fcntls without CAP_FCNTL", func)); 1599 KASSERT(fcaps->fc_ioctls != NULL ? fcaps->fc_nioctls > 0 : 1600 (fcaps->fc_nioctls == -1 || fcaps->fc_nioctls == 0), 1601 ("%s: invalid ioctls", func)); 1602 KASSERT(fcaps->fc_nioctls == 0 || 1603 cap_rights_is_set(&fcaps->fc_rights, CAP_IOCTL), 1604 ("%s: ioctls without CAP_IOCTL", func)); 1605 } 1606 1607 static void 1608 fdgrowtable_exp(struct filedesc *fdp, int nfd) 1609 { 1610 int nfd1; 1611 1612 FILEDESC_XLOCK_ASSERT(fdp); 1613 1614 nfd1 = fdp->fd_nfiles * 2; 1615 if (nfd1 < nfd) 1616 nfd1 = nfd; 1617 fdgrowtable(fdp, nfd1); 1618 } 1619 1620 /* 1621 * Grow the file table to accommodate (at least) nfd descriptors. 1622 */ 1623 static void 1624 fdgrowtable(struct filedesc *fdp, int nfd) 1625 { 1626 struct filedesc0 *fdp0; 1627 struct freetable *ft; 1628 struct fdescenttbl *ntable; 1629 struct fdescenttbl *otable; 1630 int nnfiles, onfiles; 1631 NDSLOTTYPE *nmap, *omap; 1632 1633 /* 1634 * If lastfile is -1 this struct filedesc was just allocated and we are 1635 * growing it to accommodate for the one we are going to copy from. There 1636 * is no need to have a lock on this one as it's not visible to anyone. 1637 */ 1638 if (fdp->fd_lastfile != -1) 1639 FILEDESC_XLOCK_ASSERT(fdp); 1640 1641 KASSERT(fdp->fd_nfiles > 0, ("zero-length file table")); 1642 1643 /* save old values */ 1644 onfiles = fdp->fd_nfiles; 1645 otable = fdp->fd_files; 1646 omap = fdp->fd_map; 1647 1648 /* compute the size of the new table */ 1649 nnfiles = NDSLOTS(nfd) * NDENTRIES; /* round up */ 1650 if (nnfiles <= onfiles) 1651 /* the table is already large enough */ 1652 return; 1653 1654 /* 1655 * Allocate a new table. We need enough space for the number of 1656 * entries, file entries themselves and the struct freetable we will use 1657 * when we decommission the table and place it on the freelist. 1658 * We place the struct freetable in the middle so we don't have 1659 * to worry about padding. 1660 */ 1661 ntable = malloc(offsetof(struct fdescenttbl, fdt_ofiles) + 1662 nnfiles * sizeof(ntable->fdt_ofiles[0]) + 1663 sizeof(struct freetable), 1664 M_FILEDESC, M_ZERO | M_WAITOK); 1665 /* copy the old data */ 1666 ntable->fdt_nfiles = nnfiles; 1667 memcpy(ntable->fdt_ofiles, otable->fdt_ofiles, 1668 onfiles * sizeof(ntable->fdt_ofiles[0])); 1669 1670 /* 1671 * Allocate a new map only if the old is not large enough. It will 1672 * grow at a slower rate than the table as it can map more 1673 * entries than the table can hold. 1674 */ 1675 if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) { 1676 nmap = malloc(NDSLOTS(nnfiles) * NDSLOTSIZE, M_FILEDESC, 1677 M_ZERO | M_WAITOK); 1678 /* copy over the old data and update the pointer */ 1679 memcpy(nmap, omap, NDSLOTS(onfiles) * sizeof(*omap)); 1680 fdp->fd_map = nmap; 1681 } 1682 1683 /* 1684 * Make sure that ntable is correctly initialized before we replace 1685 * fd_files poiner. Otherwise fget_unlocked() may see inconsistent 1686 * data. 1687 */ 1688 atomic_store_rel_ptr((volatile void *)&fdp->fd_files, (uintptr_t)ntable); 1689 1690 /* 1691 * Do not free the old file table, as some threads may still 1692 * reference entries within it. Instead, place it on a freelist 1693 * which will be processed when the struct filedesc is released. 1694 * 1695 * Note that if onfiles == NDFILE, we're dealing with the original 1696 * static allocation contained within (struct filedesc0 *)fdp, 1697 * which must not be freed. 1698 */ 1699 if (onfiles > NDFILE) { 1700 ft = (struct freetable *)&otable->fdt_ofiles[onfiles]; 1701 fdp0 = (struct filedesc0 *)fdp; 1702 ft->ft_table = otable; 1703 SLIST_INSERT_HEAD(&fdp0->fd_free, ft, ft_next); 1704 } 1705 /* 1706 * The map does not have the same possibility of threads still 1707 * holding references to it. So always free it as long as it 1708 * does not reference the original static allocation. 1709 */ 1710 if (NDSLOTS(onfiles) > NDSLOTS(NDFILE)) 1711 free(omap, M_FILEDESC); 1712 } 1713 1714 /* 1715 * Allocate a file descriptor for the process. 1716 */ 1717 int 1718 fdalloc(struct thread *td, int minfd, int *result) 1719 { 1720 struct proc *p = td->td_proc; 1721 struct filedesc *fdp = p->p_fd; 1722 int fd, maxfd, allocfd; 1723 #ifdef RACCT 1724 int error; 1725 #endif 1726 1727 FILEDESC_XLOCK_ASSERT(fdp); 1728 1729 if (fdp->fd_freefile > minfd) 1730 minfd = fdp->fd_freefile; 1731 1732 maxfd = getmaxfd(td); 1733 1734 /* 1735 * Search the bitmap for a free descriptor starting at minfd. 1736 * If none is found, grow the file table. 1737 */ 1738 fd = fd_first_free(fdp, minfd, fdp->fd_nfiles); 1739 if (fd >= maxfd) 1740 return (EMFILE); 1741 if (fd >= fdp->fd_nfiles) { 1742 allocfd = min(fd * 2, maxfd); 1743 #ifdef RACCT 1744 if (RACCT_ENABLED()) { 1745 error = racct_set_unlocked(p, RACCT_NOFILE, allocfd); 1746 if (error != 0) 1747 return (EMFILE); 1748 } 1749 #endif 1750 /* 1751 * fd is already equal to first free descriptor >= minfd, so 1752 * we only need to grow the table and we are done. 1753 */ 1754 fdgrowtable_exp(fdp, allocfd); 1755 } 1756 1757 /* 1758 * Perform some sanity checks, then mark the file descriptor as 1759 * used and return it to the caller. 1760 */ 1761 KASSERT(fd >= 0 && fd < min(maxfd, fdp->fd_nfiles), 1762 ("invalid descriptor %d", fd)); 1763 KASSERT(!fdisused(fdp, fd), 1764 ("fd_first_free() returned non-free descriptor")); 1765 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL, 1766 ("file descriptor isn't free")); 1767 fdused(fdp, fd); 1768 *result = fd; 1769 return (0); 1770 } 1771 1772 /* 1773 * Allocate n file descriptors for the process. 1774 */ 1775 int 1776 fdallocn(struct thread *td, int minfd, int *fds, int n) 1777 { 1778 struct proc *p = td->td_proc; 1779 struct filedesc *fdp = p->p_fd; 1780 int i; 1781 1782 FILEDESC_XLOCK_ASSERT(fdp); 1783 1784 for (i = 0; i < n; i++) 1785 if (fdalloc(td, 0, &fds[i]) != 0) 1786 break; 1787 1788 if (i < n) { 1789 for (i--; i >= 0; i--) 1790 fdunused(fdp, fds[i]); 1791 return (EMFILE); 1792 } 1793 1794 return (0); 1795 } 1796 1797 /* 1798 * Create a new open file structure and allocate a file descriptor for the 1799 * process that refers to it. We add one reference to the file for the 1800 * descriptor table and one reference for resultfp. This is to prevent us 1801 * being preempted and the entry in the descriptor table closed after we 1802 * release the FILEDESC lock. 1803 */ 1804 int 1805 falloc_caps(struct thread *td, struct file **resultfp, int *resultfd, int flags, 1806 struct filecaps *fcaps) 1807 { 1808 struct file *fp; 1809 int error, fd; 1810 1811 error = falloc_noinstall(td, &fp); 1812 if (error) 1813 return (error); /* no reference held on error */ 1814 1815 error = finstall(td, fp, &fd, flags, fcaps); 1816 if (error) { 1817 fdrop(fp, td); /* one reference (fp only) */ 1818 return (error); 1819 } 1820 1821 if (resultfp != NULL) 1822 *resultfp = fp; /* copy out result */ 1823 else 1824 fdrop(fp, td); /* release local reference */ 1825 1826 if (resultfd != NULL) 1827 *resultfd = fd; 1828 1829 return (0); 1830 } 1831 1832 /* 1833 * Create a new open file structure without allocating a file descriptor. 1834 */ 1835 int 1836 falloc_noinstall(struct thread *td, struct file **resultfp) 1837 { 1838 struct file *fp; 1839 int maxuserfiles = maxfiles - (maxfiles / 20); 1840 int openfiles_new; 1841 static struct timeval lastfail; 1842 static int curfail; 1843 1844 KASSERT(resultfp != NULL, ("%s: resultfp == NULL", __func__)); 1845 1846 openfiles_new = atomic_fetchadd_int(&openfiles, 1) + 1; 1847 if ((openfiles_new >= maxuserfiles && 1848 priv_check(td, PRIV_MAXFILES) != 0) || 1849 openfiles_new >= maxfiles) { 1850 atomic_subtract_int(&openfiles, 1); 1851 if (ppsratecheck(&lastfail, &curfail, 1)) { 1852 printf("kern.maxfiles limit exceeded by uid %i, (%s) " 1853 "please see tuning(7).\n", td->td_ucred->cr_ruid, td->td_proc->p_comm); 1854 } 1855 return (ENFILE); 1856 } 1857 fp = uma_zalloc(file_zone, M_WAITOK); 1858 bzero(fp, sizeof(*fp)); 1859 refcount_init(&fp->f_count, 1); 1860 fp->f_cred = crhold(td->td_ucred); 1861 fp->f_ops = &badfileops; 1862 *resultfp = fp; 1863 return (0); 1864 } 1865 1866 /* 1867 * Install a file in a file descriptor table. 1868 */ 1869 void 1870 _finstall(struct filedesc *fdp, struct file *fp, int fd, int flags, 1871 struct filecaps *fcaps) 1872 { 1873 struct filedescent *fde; 1874 1875 MPASS(fp != NULL); 1876 if (fcaps != NULL) 1877 filecaps_validate(fcaps, __func__); 1878 FILEDESC_XLOCK_ASSERT(fdp); 1879 1880 fde = &fdp->fd_ofiles[fd]; 1881 #ifdef CAPABILITIES 1882 seqc_write_begin(&fde->fde_seqc); 1883 #endif 1884 fde->fde_file = fp; 1885 fde->fde_flags = (flags & O_CLOEXEC) != 0 ? UF_EXCLOSE : 0; 1886 if (fcaps != NULL) 1887 filecaps_move(fcaps, &fde->fde_caps); 1888 else 1889 filecaps_fill(&fde->fde_caps); 1890 #ifdef CAPABILITIES 1891 seqc_write_end(&fde->fde_seqc); 1892 #endif 1893 } 1894 1895 int 1896 finstall(struct thread *td, struct file *fp, int *fd, int flags, 1897 struct filecaps *fcaps) 1898 { 1899 struct filedesc *fdp = td->td_proc->p_fd; 1900 int error; 1901 1902 MPASS(fd != NULL); 1903 1904 FILEDESC_XLOCK(fdp); 1905 if ((error = fdalloc(td, 0, fd))) { 1906 FILEDESC_XUNLOCK(fdp); 1907 return (error); 1908 } 1909 fhold(fp); 1910 _finstall(fdp, fp, *fd, flags, fcaps); 1911 FILEDESC_XUNLOCK(fdp); 1912 return (0); 1913 } 1914 1915 /* 1916 * Build a new filedesc structure from another. 1917 * Copy the current, root, and jail root vnode references. 1918 * 1919 * If fdp is not NULL, return with it shared locked. 1920 */ 1921 struct filedesc * 1922 fdinit(struct filedesc *fdp, bool prepfiles) 1923 { 1924 struct filedesc0 *newfdp0; 1925 struct filedesc *newfdp; 1926 1927 newfdp0 = uma_zalloc(filedesc0_zone, M_WAITOK | M_ZERO); 1928 newfdp = &newfdp0->fd_fd; 1929 1930 /* Create the file descriptor table. */ 1931 FILEDESC_LOCK_INIT(newfdp); 1932 refcount_init(&newfdp->fd_refcnt, 1); 1933 refcount_init(&newfdp->fd_holdcnt, 1); 1934 newfdp->fd_cmask = CMASK; 1935 newfdp->fd_map = newfdp0->fd_dmap; 1936 newfdp->fd_lastfile = -1; 1937 newfdp->fd_files = (struct fdescenttbl *)&newfdp0->fd_dfiles; 1938 newfdp->fd_files->fdt_nfiles = NDFILE; 1939 1940 if (fdp == NULL) 1941 return (newfdp); 1942 1943 if (prepfiles && fdp->fd_lastfile >= newfdp->fd_nfiles) 1944 fdgrowtable(newfdp, fdp->fd_lastfile + 1); 1945 1946 FILEDESC_SLOCK(fdp); 1947 newfdp->fd_cdir = fdp->fd_cdir; 1948 if (newfdp->fd_cdir) 1949 vrefact(newfdp->fd_cdir); 1950 newfdp->fd_rdir = fdp->fd_rdir; 1951 if (newfdp->fd_rdir) 1952 vrefact(newfdp->fd_rdir); 1953 newfdp->fd_jdir = fdp->fd_jdir; 1954 if (newfdp->fd_jdir) 1955 vrefact(newfdp->fd_jdir); 1956 1957 if (!prepfiles) { 1958 FILEDESC_SUNLOCK(fdp); 1959 } else { 1960 while (fdp->fd_lastfile >= newfdp->fd_nfiles) { 1961 FILEDESC_SUNLOCK(fdp); 1962 fdgrowtable(newfdp, fdp->fd_lastfile + 1); 1963 FILEDESC_SLOCK(fdp); 1964 } 1965 } 1966 1967 return (newfdp); 1968 } 1969 1970 static struct filedesc * 1971 fdhold(struct proc *p) 1972 { 1973 struct filedesc *fdp; 1974 1975 PROC_LOCK_ASSERT(p, MA_OWNED); 1976 fdp = p->p_fd; 1977 if (fdp != NULL) 1978 refcount_acquire(&fdp->fd_holdcnt); 1979 return (fdp); 1980 } 1981 1982 static void 1983 fddrop(struct filedesc *fdp) 1984 { 1985 1986 if (fdp->fd_holdcnt > 1) { 1987 if (refcount_release(&fdp->fd_holdcnt) == 0) 1988 return; 1989 } 1990 1991 FILEDESC_LOCK_DESTROY(fdp); 1992 uma_zfree(filedesc0_zone, fdp); 1993 } 1994 1995 /* 1996 * Share a filedesc structure. 1997 */ 1998 struct filedesc * 1999 fdshare(struct filedesc *fdp) 2000 { 2001 2002 refcount_acquire(&fdp->fd_refcnt); 2003 return (fdp); 2004 } 2005 2006 /* 2007 * Unshare a filedesc structure, if necessary by making a copy 2008 */ 2009 void 2010 fdunshare(struct thread *td) 2011 { 2012 struct filedesc *tmp; 2013 struct proc *p = td->td_proc; 2014 2015 if (p->p_fd->fd_refcnt == 1) 2016 return; 2017 2018 tmp = fdcopy(p->p_fd); 2019 fdescfree(td); 2020 p->p_fd = tmp; 2021 } 2022 2023 void 2024 fdinstall_remapped(struct thread *td, struct filedesc *fdp) 2025 { 2026 2027 fdescfree(td); 2028 td->td_proc->p_fd = fdp; 2029 } 2030 2031 /* 2032 * Copy a filedesc structure. A NULL pointer in returns a NULL reference, 2033 * this is to ease callers, not catch errors. 2034 */ 2035 struct filedesc * 2036 fdcopy(struct filedesc *fdp) 2037 { 2038 struct filedesc *newfdp; 2039 struct filedescent *nfde, *ofde; 2040 int i; 2041 2042 MPASS(fdp != NULL); 2043 2044 newfdp = fdinit(fdp, true); 2045 /* copy all passable descriptors (i.e. not kqueue) */ 2046 newfdp->fd_freefile = -1; 2047 for (i = 0; i <= fdp->fd_lastfile; ++i) { 2048 ofde = &fdp->fd_ofiles[i]; 2049 if (ofde->fde_file == NULL || 2050 (ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0) { 2051 if (newfdp->fd_freefile == -1) 2052 newfdp->fd_freefile = i; 2053 continue; 2054 } 2055 nfde = &newfdp->fd_ofiles[i]; 2056 *nfde = *ofde; 2057 filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true); 2058 fhold(nfde->fde_file); 2059 fdused_init(newfdp, i); 2060 newfdp->fd_lastfile = i; 2061 } 2062 if (newfdp->fd_freefile == -1) 2063 newfdp->fd_freefile = i; 2064 newfdp->fd_cmask = fdp->fd_cmask; 2065 FILEDESC_SUNLOCK(fdp); 2066 return (newfdp); 2067 } 2068 2069 /* 2070 * Copies a filedesc structure, while remapping all file descriptors 2071 * stored inside using a translation table. 2072 * 2073 * File descriptors are copied over to the new file descriptor table, 2074 * regardless of whether the close-on-exec flag is set. 2075 */ 2076 int 2077 fdcopy_remapped(struct filedesc *fdp, const int *fds, size_t nfds, 2078 struct filedesc **ret) 2079 { 2080 struct filedesc *newfdp; 2081 struct filedescent *nfde, *ofde; 2082 int error, i; 2083 2084 MPASS(fdp != NULL); 2085 2086 newfdp = fdinit(fdp, true); 2087 if (nfds > fdp->fd_lastfile + 1) { 2088 /* New table cannot be larger than the old one. */ 2089 error = E2BIG; 2090 goto bad; 2091 } 2092 /* Copy all passable descriptors (i.e. not kqueue). */ 2093 newfdp->fd_freefile = nfds; 2094 for (i = 0; i < nfds; ++i) { 2095 if (fds[i] < 0 || fds[i] > fdp->fd_lastfile) { 2096 /* File descriptor out of bounds. */ 2097 error = EBADF; 2098 goto bad; 2099 } 2100 ofde = &fdp->fd_ofiles[fds[i]]; 2101 if (ofde->fde_file == NULL) { 2102 /* Unused file descriptor. */ 2103 error = EBADF; 2104 goto bad; 2105 } 2106 if ((ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0) { 2107 /* File descriptor cannot be passed. */ 2108 error = EINVAL; 2109 goto bad; 2110 } 2111 nfde = &newfdp->fd_ofiles[i]; 2112 *nfde = *ofde; 2113 filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true); 2114 fhold(nfde->fde_file); 2115 fdused_init(newfdp, i); 2116 newfdp->fd_lastfile = i; 2117 } 2118 newfdp->fd_cmask = fdp->fd_cmask; 2119 FILEDESC_SUNLOCK(fdp); 2120 *ret = newfdp; 2121 return (0); 2122 bad: 2123 FILEDESC_SUNLOCK(fdp); 2124 fdescfree_remapped(newfdp); 2125 return (error); 2126 } 2127 2128 /* 2129 * Clear POSIX style locks. This is only used when fdp looses a reference (i.e. 2130 * one of processes using it exits) and the table used to be shared. 2131 */ 2132 static void 2133 fdclearlocks(struct thread *td) 2134 { 2135 struct filedesc *fdp; 2136 struct filedesc_to_leader *fdtol; 2137 struct flock lf; 2138 struct file *fp; 2139 struct proc *p; 2140 struct vnode *vp; 2141 int i; 2142 2143 p = td->td_proc; 2144 fdp = p->p_fd; 2145 fdtol = p->p_fdtol; 2146 MPASS(fdtol != NULL); 2147 2148 FILEDESC_XLOCK(fdp); 2149 KASSERT(fdtol->fdl_refcount > 0, 2150 ("filedesc_to_refcount botch: fdl_refcount=%d", 2151 fdtol->fdl_refcount)); 2152 if (fdtol->fdl_refcount == 1 && 2153 (p->p_leader->p_flag & P_ADVLOCK) != 0) { 2154 for (i = 0; i <= fdp->fd_lastfile; i++) { 2155 fp = fdp->fd_ofiles[i].fde_file; 2156 if (fp == NULL || fp->f_type != DTYPE_VNODE) 2157 continue; 2158 fhold(fp); 2159 FILEDESC_XUNLOCK(fdp); 2160 lf.l_whence = SEEK_SET; 2161 lf.l_start = 0; 2162 lf.l_len = 0; 2163 lf.l_type = F_UNLCK; 2164 vp = fp->f_vnode; 2165 (void) VOP_ADVLOCK(vp, 2166 (caddr_t)p->p_leader, F_UNLCK, 2167 &lf, F_POSIX); 2168 FILEDESC_XLOCK(fdp); 2169 fdrop(fp, td); 2170 } 2171 } 2172 retry: 2173 if (fdtol->fdl_refcount == 1) { 2174 if (fdp->fd_holdleaderscount > 0 && 2175 (p->p_leader->p_flag & P_ADVLOCK) != 0) { 2176 /* 2177 * close() or kern_dup() has cleared a reference 2178 * in a shared file descriptor table. 2179 */ 2180 fdp->fd_holdleaderswakeup = 1; 2181 sx_sleep(&fdp->fd_holdleaderscount, 2182 FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0); 2183 goto retry; 2184 } 2185 if (fdtol->fdl_holdcount > 0) { 2186 /* 2187 * Ensure that fdtol->fdl_leader remains 2188 * valid in closef(). 2189 */ 2190 fdtol->fdl_wakeup = 1; 2191 sx_sleep(fdtol, FILEDESC_LOCK(fdp), PLOCK, 2192 "fdlhold", 0); 2193 goto retry; 2194 } 2195 } 2196 fdtol->fdl_refcount--; 2197 if (fdtol->fdl_refcount == 0 && 2198 fdtol->fdl_holdcount == 0) { 2199 fdtol->fdl_next->fdl_prev = fdtol->fdl_prev; 2200 fdtol->fdl_prev->fdl_next = fdtol->fdl_next; 2201 } else 2202 fdtol = NULL; 2203 p->p_fdtol = NULL; 2204 FILEDESC_XUNLOCK(fdp); 2205 if (fdtol != NULL) 2206 free(fdtol, M_FILEDESC_TO_LEADER); 2207 } 2208 2209 /* 2210 * Release a filedesc structure. 2211 */ 2212 static void 2213 fdescfree_fds(struct thread *td, struct filedesc *fdp, bool needclose) 2214 { 2215 struct filedesc0 *fdp0; 2216 struct freetable *ft, *tft; 2217 struct filedescent *fde; 2218 struct file *fp; 2219 int i; 2220 2221 for (i = 0; i <= fdp->fd_lastfile; i++) { 2222 fde = &fdp->fd_ofiles[i]; 2223 fp = fde->fde_file; 2224 if (fp != NULL) { 2225 fdefree_last(fde); 2226 if (needclose) 2227 (void) closef(fp, td); 2228 else 2229 fdrop(fp, td); 2230 } 2231 } 2232 2233 if (NDSLOTS(fdp->fd_nfiles) > NDSLOTS(NDFILE)) 2234 free(fdp->fd_map, M_FILEDESC); 2235 if (fdp->fd_nfiles > NDFILE) 2236 free(fdp->fd_files, M_FILEDESC); 2237 2238 fdp0 = (struct filedesc0 *)fdp; 2239 SLIST_FOREACH_SAFE(ft, &fdp0->fd_free, ft_next, tft) 2240 free(ft->ft_table, M_FILEDESC); 2241 2242 fddrop(fdp); 2243 } 2244 2245 void 2246 fdescfree(struct thread *td) 2247 { 2248 struct proc *p; 2249 struct filedesc *fdp; 2250 struct vnode *cdir, *jdir, *rdir; 2251 2252 p = td->td_proc; 2253 fdp = p->p_fd; 2254 MPASS(fdp != NULL); 2255 2256 #ifdef RACCT 2257 if (RACCT_ENABLED()) 2258 racct_set_unlocked(p, RACCT_NOFILE, 0); 2259 #endif 2260 2261 if (p->p_fdtol != NULL) 2262 fdclearlocks(td); 2263 2264 PROC_LOCK(p); 2265 p->p_fd = NULL; 2266 PROC_UNLOCK(p); 2267 2268 if (refcount_release(&fdp->fd_refcnt) == 0) 2269 return; 2270 2271 FILEDESC_XLOCK(fdp); 2272 cdir = fdp->fd_cdir; 2273 fdp->fd_cdir = NULL; 2274 rdir = fdp->fd_rdir; 2275 fdp->fd_rdir = NULL; 2276 jdir = fdp->fd_jdir; 2277 fdp->fd_jdir = NULL; 2278 FILEDESC_XUNLOCK(fdp); 2279 2280 if (cdir != NULL) 2281 vrele(cdir); 2282 if (rdir != NULL) 2283 vrele(rdir); 2284 if (jdir != NULL) 2285 vrele(jdir); 2286 2287 fdescfree_fds(td, fdp, 1); 2288 } 2289 2290 void 2291 fdescfree_remapped(struct filedesc *fdp) 2292 { 2293 2294 if (fdp->fd_cdir != NULL) 2295 vrele(fdp->fd_cdir); 2296 if (fdp->fd_rdir != NULL) 2297 vrele(fdp->fd_rdir); 2298 if (fdp->fd_jdir != NULL) 2299 vrele(fdp->fd_jdir); 2300 2301 fdescfree_fds(curthread, fdp, 0); 2302 } 2303 2304 /* 2305 * For setugid programs, we don't want to people to use that setugidness 2306 * to generate error messages which write to a file which otherwise would 2307 * otherwise be off-limits to the process. We check for filesystems where 2308 * the vnode can change out from under us after execve (like [lin]procfs). 2309 * 2310 * Since fdsetugidsafety calls this only for fd 0, 1 and 2, this check is 2311 * sufficient. We also don't check for setugidness since we know we are. 2312 */ 2313 static bool 2314 is_unsafe(struct file *fp) 2315 { 2316 struct vnode *vp; 2317 2318 if (fp->f_type != DTYPE_VNODE) 2319 return (false); 2320 2321 vp = fp->f_vnode; 2322 return ((vp->v_vflag & VV_PROCDEP) != 0); 2323 } 2324 2325 /* 2326 * Make this setguid thing safe, if at all possible. 2327 */ 2328 void 2329 fdsetugidsafety(struct thread *td) 2330 { 2331 struct filedesc *fdp; 2332 struct file *fp; 2333 int i; 2334 2335 fdp = td->td_proc->p_fd; 2336 KASSERT(fdp->fd_refcnt == 1, ("the fdtable should not be shared")); 2337 MPASS(fdp->fd_nfiles >= 3); 2338 for (i = 0; i <= 2; i++) { 2339 fp = fdp->fd_ofiles[i].fde_file; 2340 if (fp != NULL && is_unsafe(fp)) { 2341 FILEDESC_XLOCK(fdp); 2342 knote_fdclose(td, i); 2343 /* 2344 * NULL-out descriptor prior to close to avoid 2345 * a race while close blocks. 2346 */ 2347 fdfree(fdp, i); 2348 FILEDESC_XUNLOCK(fdp); 2349 (void) closef(fp, td); 2350 } 2351 } 2352 } 2353 2354 /* 2355 * If a specific file object occupies a specific file descriptor, close the 2356 * file descriptor entry and drop a reference on the file object. This is a 2357 * convenience function to handle a subsequent error in a function that calls 2358 * falloc() that handles the race that another thread might have closed the 2359 * file descriptor out from under the thread creating the file object. 2360 */ 2361 void 2362 fdclose(struct thread *td, struct file *fp, int idx) 2363 { 2364 struct filedesc *fdp = td->td_proc->p_fd; 2365 2366 FILEDESC_XLOCK(fdp); 2367 if (fdp->fd_ofiles[idx].fde_file == fp) { 2368 fdfree(fdp, idx); 2369 FILEDESC_XUNLOCK(fdp); 2370 fdrop(fp, td); 2371 } else 2372 FILEDESC_XUNLOCK(fdp); 2373 } 2374 2375 /* 2376 * Close any files on exec? 2377 */ 2378 void 2379 fdcloseexec(struct thread *td) 2380 { 2381 struct filedesc *fdp; 2382 struct filedescent *fde; 2383 struct file *fp; 2384 int i; 2385 2386 fdp = td->td_proc->p_fd; 2387 KASSERT(fdp->fd_refcnt == 1, ("the fdtable should not be shared")); 2388 for (i = 0; i <= fdp->fd_lastfile; i++) { 2389 fde = &fdp->fd_ofiles[i]; 2390 fp = fde->fde_file; 2391 if (fp != NULL && (fp->f_type == DTYPE_MQUEUE || 2392 (fde->fde_flags & UF_EXCLOSE))) { 2393 FILEDESC_XLOCK(fdp); 2394 fdfree(fdp, i); 2395 (void) closefp(fdp, i, fp, td, 0); 2396 FILEDESC_UNLOCK_ASSERT(fdp); 2397 } 2398 } 2399 } 2400 2401 /* 2402 * It is unsafe for set[ug]id processes to be started with file 2403 * descriptors 0..2 closed, as these descriptors are given implicit 2404 * significance in the Standard C library. fdcheckstd() will create a 2405 * descriptor referencing /dev/null for each of stdin, stdout, and 2406 * stderr that is not already open. 2407 */ 2408 int 2409 fdcheckstd(struct thread *td) 2410 { 2411 struct filedesc *fdp; 2412 register_t save; 2413 int i, error, devnull; 2414 2415 fdp = td->td_proc->p_fd; 2416 KASSERT(fdp->fd_refcnt == 1, ("the fdtable should not be shared")); 2417 MPASS(fdp->fd_nfiles >= 3); 2418 devnull = -1; 2419 for (i = 0; i <= 2; i++) { 2420 if (fdp->fd_ofiles[i].fde_file != NULL) 2421 continue; 2422 2423 save = td->td_retval[0]; 2424 if (devnull != -1) { 2425 error = kern_dup(td, FDDUP_FIXED, 0, devnull, i); 2426 } else { 2427 error = kern_openat(td, AT_FDCWD, "/dev/null", 2428 UIO_SYSSPACE, O_RDWR, 0); 2429 if (error == 0) { 2430 devnull = td->td_retval[0]; 2431 KASSERT(devnull == i, ("we didn't get our fd")); 2432 } 2433 } 2434 td->td_retval[0] = save; 2435 if (error != 0) 2436 return (error); 2437 } 2438 return (0); 2439 } 2440 2441 /* 2442 * Internal form of close. Decrement reference count on file structure. 2443 * Note: td may be NULL when closing a file that was being passed in a 2444 * message. 2445 */ 2446 int 2447 closef(struct file *fp, struct thread *td) 2448 { 2449 struct vnode *vp; 2450 struct flock lf; 2451 struct filedesc_to_leader *fdtol; 2452 struct filedesc *fdp; 2453 2454 /* 2455 * POSIX record locking dictates that any close releases ALL 2456 * locks owned by this process. This is handled by setting 2457 * a flag in the unlock to free ONLY locks obeying POSIX 2458 * semantics, and not to free BSD-style file locks. 2459 * If the descriptor was in a message, POSIX-style locks 2460 * aren't passed with the descriptor, and the thread pointer 2461 * will be NULL. Callers should be careful only to pass a 2462 * NULL thread pointer when there really is no owning 2463 * context that might have locks, or the locks will be 2464 * leaked. 2465 */ 2466 if (fp->f_type == DTYPE_VNODE && td != NULL) { 2467 vp = fp->f_vnode; 2468 if ((td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) { 2469 lf.l_whence = SEEK_SET; 2470 lf.l_start = 0; 2471 lf.l_len = 0; 2472 lf.l_type = F_UNLCK; 2473 (void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc->p_leader, 2474 F_UNLCK, &lf, F_POSIX); 2475 } 2476 fdtol = td->td_proc->p_fdtol; 2477 if (fdtol != NULL) { 2478 /* 2479 * Handle special case where file descriptor table is 2480 * shared between multiple process leaders. 2481 */ 2482 fdp = td->td_proc->p_fd; 2483 FILEDESC_XLOCK(fdp); 2484 for (fdtol = fdtol->fdl_next; 2485 fdtol != td->td_proc->p_fdtol; 2486 fdtol = fdtol->fdl_next) { 2487 if ((fdtol->fdl_leader->p_flag & 2488 P_ADVLOCK) == 0) 2489 continue; 2490 fdtol->fdl_holdcount++; 2491 FILEDESC_XUNLOCK(fdp); 2492 lf.l_whence = SEEK_SET; 2493 lf.l_start = 0; 2494 lf.l_len = 0; 2495 lf.l_type = F_UNLCK; 2496 vp = fp->f_vnode; 2497 (void) VOP_ADVLOCK(vp, 2498 (caddr_t)fdtol->fdl_leader, F_UNLCK, &lf, 2499 F_POSIX); 2500 FILEDESC_XLOCK(fdp); 2501 fdtol->fdl_holdcount--; 2502 if (fdtol->fdl_holdcount == 0 && 2503 fdtol->fdl_wakeup != 0) { 2504 fdtol->fdl_wakeup = 0; 2505 wakeup(fdtol); 2506 } 2507 } 2508 FILEDESC_XUNLOCK(fdp); 2509 } 2510 } 2511 return (fdrop(fp, td)); 2512 } 2513 2514 /* 2515 * Initialize the file pointer with the specified properties. 2516 * 2517 * The ops are set with release semantics to be certain that the flags, type, 2518 * and data are visible when ops is. This is to prevent ops methods from being 2519 * called with bad data. 2520 */ 2521 void 2522 finit(struct file *fp, u_int flag, short type, void *data, struct fileops *ops) 2523 { 2524 fp->f_data = data; 2525 fp->f_flag = flag; 2526 fp->f_type = type; 2527 atomic_store_rel_ptr((volatile uintptr_t *)&fp->f_ops, (uintptr_t)ops); 2528 } 2529 2530 int 2531 fget_cap_locked(struct filedesc *fdp, int fd, cap_rights_t *needrightsp, 2532 struct file **fpp, struct filecaps *havecapsp) 2533 { 2534 struct filedescent *fde; 2535 int error; 2536 2537 FILEDESC_LOCK_ASSERT(fdp); 2538 2539 fde = fdeget_locked(fdp, fd); 2540 if (fde == NULL) { 2541 error = EBADF; 2542 goto out; 2543 } 2544 2545 #ifdef CAPABILITIES 2546 error = cap_check(cap_rights_fde_inline(fde), needrightsp); 2547 if (error != 0) 2548 goto out; 2549 #endif 2550 2551 if (havecapsp != NULL) 2552 filecaps_copy(&fde->fde_caps, havecapsp, true); 2553 2554 *fpp = fde->fde_file; 2555 2556 error = 0; 2557 out: 2558 return (error); 2559 } 2560 2561 int 2562 fget_cap(struct thread *td, int fd, cap_rights_t *needrightsp, 2563 struct file **fpp, struct filecaps *havecapsp) 2564 { 2565 struct filedesc *fdp = td->td_proc->p_fd; 2566 int error; 2567 #ifndef CAPABILITIES 2568 error = fget_unlocked(fdp, fd, needrightsp, fpp, NULL); 2569 if (error == 0 && havecapsp != NULL) 2570 filecaps_fill(havecapsp); 2571 #else 2572 struct file *fp; 2573 seqc_t seq; 2574 2575 for (;;) { 2576 error = fget_unlocked(fdp, fd, needrightsp, &fp, &seq); 2577 if (error != 0) 2578 return (error); 2579 2580 if (havecapsp != NULL) { 2581 if (!filecaps_copy(&fdp->fd_ofiles[fd].fde_caps, 2582 havecapsp, false)) { 2583 fdrop(fp, td); 2584 goto get_locked; 2585 } 2586 } 2587 2588 if (!fd_modified(fdp, fd, seq)) 2589 break; 2590 fdrop(fp, td); 2591 } 2592 2593 *fpp = fp; 2594 return (0); 2595 2596 get_locked: 2597 FILEDESC_SLOCK(fdp); 2598 error = fget_cap_locked(fdp, fd, needrightsp, fpp, havecapsp); 2599 if (error == 0) 2600 fhold(*fpp); 2601 FILEDESC_SUNLOCK(fdp); 2602 #endif 2603 return (error); 2604 } 2605 2606 int 2607 fget_unlocked(struct filedesc *fdp, int fd, cap_rights_t *needrightsp, 2608 struct file **fpp, seqc_t *seqp) 2609 { 2610 #ifdef CAPABILITIES 2611 const struct filedescent *fde; 2612 #endif 2613 const struct fdescenttbl *fdt; 2614 struct file *fp; 2615 u_int count; 2616 #ifdef CAPABILITIES 2617 seqc_t seq; 2618 cap_rights_t haverights; 2619 int error; 2620 #endif 2621 2622 fdt = fdp->fd_files; 2623 if (__predict_false((u_int)fd >= fdt->fdt_nfiles)) 2624 return (EBADF); 2625 /* 2626 * Fetch the descriptor locklessly. We avoid fdrop() races by 2627 * never raising a refcount above 0. To accomplish this we have 2628 * to use a cmpset loop rather than an atomic_add. The descriptor 2629 * must be re-verified once we acquire a reference to be certain 2630 * that the identity is still correct and we did not lose a race 2631 * due to preemption. 2632 */ 2633 for (;;) { 2634 #ifdef CAPABILITIES 2635 seq = seqc_read(fd_seqc(fdt, fd)); 2636 fde = &fdt->fdt_ofiles[fd]; 2637 haverights = *cap_rights_fde_inline(fde); 2638 fp = fde->fde_file; 2639 if (!seqc_consistent(fd_seqc(fdt, fd), seq)) 2640 continue; 2641 #else 2642 fp = fdt->fdt_ofiles[fd].fde_file; 2643 #endif 2644 if (fp == NULL) 2645 return (EBADF); 2646 #ifdef CAPABILITIES 2647 error = cap_check(&haverights, needrightsp); 2648 if (error != 0) 2649 return (error); 2650 #endif 2651 count = fp->f_count; 2652 retry: 2653 if (count == 0) { 2654 /* 2655 * Force a reload. Other thread could reallocate the 2656 * table before this fd was closed, so it possible that 2657 * there is a stale fp pointer in cached version. 2658 */ 2659 fdt = *(const struct fdescenttbl * const volatile *)&(fdp->fd_files); 2660 continue; 2661 } 2662 /* 2663 * Use an acquire barrier to force re-reading of fdt so it is 2664 * refreshed for verification. 2665 */ 2666 if (atomic_fcmpset_acq_int(&fp->f_count, &count, count + 1) == 0) 2667 goto retry; 2668 fdt = fdp->fd_files; 2669 #ifdef CAPABILITIES 2670 if (seqc_consistent_nomb(fd_seqc(fdt, fd), seq)) 2671 #else 2672 if (fp == fdt->fdt_ofiles[fd].fde_file) 2673 #endif 2674 break; 2675 fdrop(fp, curthread); 2676 } 2677 *fpp = fp; 2678 if (seqp != NULL) { 2679 #ifdef CAPABILITIES 2680 *seqp = seq; 2681 #endif 2682 } 2683 return (0); 2684 } 2685 2686 /* 2687 * Extract the file pointer associated with the specified descriptor for the 2688 * current user process. 2689 * 2690 * If the descriptor doesn't exist or doesn't match 'flags', EBADF is 2691 * returned. 2692 * 2693 * File's rights will be checked against the capability rights mask. 2694 * 2695 * If an error occurred the non-zero error is returned and *fpp is set to 2696 * NULL. Otherwise *fpp is held and set and zero is returned. Caller is 2697 * responsible for fdrop(). 2698 */ 2699 static __inline int 2700 _fget(struct thread *td, int fd, struct file **fpp, int flags, 2701 cap_rights_t *needrightsp, seqc_t *seqp) 2702 { 2703 struct filedesc *fdp; 2704 struct file *fp; 2705 int error; 2706 2707 *fpp = NULL; 2708 fdp = td->td_proc->p_fd; 2709 error = fget_unlocked(fdp, fd, needrightsp, &fp, seqp); 2710 if (error != 0) 2711 return (error); 2712 if (fp->f_ops == &badfileops) { 2713 fdrop(fp, td); 2714 return (EBADF); 2715 } 2716 2717 /* 2718 * FREAD and FWRITE failure return EBADF as per POSIX. 2719 */ 2720 error = 0; 2721 switch (flags) { 2722 case FREAD: 2723 case FWRITE: 2724 if ((fp->f_flag & flags) == 0) 2725 error = EBADF; 2726 break; 2727 case FEXEC: 2728 if ((fp->f_flag & (FREAD | FEXEC)) == 0 || 2729 ((fp->f_flag & FWRITE) != 0)) 2730 error = EBADF; 2731 break; 2732 case 0: 2733 break; 2734 default: 2735 KASSERT(0, ("wrong flags")); 2736 } 2737 2738 if (error != 0) { 2739 fdrop(fp, td); 2740 return (error); 2741 } 2742 2743 *fpp = fp; 2744 return (0); 2745 } 2746 2747 int 2748 fget(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp) 2749 { 2750 2751 return (_fget(td, fd, fpp, 0, rightsp, NULL)); 2752 } 2753 2754 int 2755 fget_mmap(struct thread *td, int fd, cap_rights_t *rightsp, u_char *maxprotp, 2756 struct file **fpp) 2757 { 2758 int error; 2759 #ifndef CAPABILITIES 2760 error = _fget(td, fd, fpp, 0, rightsp, NULL); 2761 if (maxprotp != NULL) 2762 *maxprotp = VM_PROT_ALL; 2763 #else 2764 struct filedesc *fdp = td->td_proc->p_fd; 2765 seqc_t seq; 2766 2767 MPASS(cap_rights_is_set(rightsp, CAP_MMAP)); 2768 for (;;) { 2769 error = _fget(td, fd, fpp, 0, rightsp, &seq); 2770 if (error != 0) 2771 return (error); 2772 /* 2773 * If requested, convert capability rights to access flags. 2774 */ 2775 if (maxprotp != NULL) 2776 *maxprotp = cap_rights_to_vmprot(cap_rights(fdp, fd)); 2777 if (!fd_modified(fdp, fd, seq)) 2778 break; 2779 fdrop(*fpp, td); 2780 } 2781 #endif 2782 return (error); 2783 } 2784 2785 int 2786 fget_read(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp) 2787 { 2788 2789 return (_fget(td, fd, fpp, FREAD, rightsp, NULL)); 2790 } 2791 2792 int 2793 fget_write(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp) 2794 { 2795 2796 return (_fget(td, fd, fpp, FWRITE, rightsp, NULL)); 2797 } 2798 2799 int 2800 fget_fcntl(struct thread *td, int fd, cap_rights_t *rightsp, int needfcntl, 2801 struct file **fpp) 2802 { 2803 struct filedesc *fdp = td->td_proc->p_fd; 2804 #ifndef CAPABILITIES 2805 return (fget_unlocked(fdp, fd, rightsp, fpp, NULL)); 2806 #else 2807 int error; 2808 seqc_t seq; 2809 2810 MPASS(cap_rights_is_set(rightsp, CAP_FCNTL)); 2811 for (;;) { 2812 error = fget_unlocked(fdp, fd, rightsp, fpp, &seq); 2813 if (error != 0) 2814 return (error); 2815 error = cap_fcntl_check(fdp, fd, needfcntl); 2816 if (!fd_modified(fdp, fd, seq)) 2817 break; 2818 fdrop(*fpp, td); 2819 } 2820 if (error != 0) { 2821 fdrop(*fpp, td); 2822 *fpp = NULL; 2823 } 2824 return (error); 2825 #endif 2826 } 2827 2828 /* 2829 * Like fget() but loads the underlying vnode, or returns an error if the 2830 * descriptor does not represent a vnode. Note that pipes use vnodes but 2831 * never have VM objects. The returned vnode will be vref()'d. 2832 * 2833 * XXX: what about the unused flags ? 2834 */ 2835 static __inline int 2836 _fgetvp(struct thread *td, int fd, int flags, cap_rights_t *needrightsp, 2837 struct vnode **vpp) 2838 { 2839 struct file *fp; 2840 int error; 2841 2842 *vpp = NULL; 2843 error = _fget(td, fd, &fp, flags, needrightsp, NULL); 2844 if (error != 0) 2845 return (error); 2846 if (fp->f_vnode == NULL) { 2847 error = EINVAL; 2848 } else { 2849 *vpp = fp->f_vnode; 2850 vrefact(*vpp); 2851 } 2852 fdrop(fp, td); 2853 2854 return (error); 2855 } 2856 2857 int 2858 fgetvp(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp) 2859 { 2860 2861 return (_fgetvp(td, fd, 0, rightsp, vpp)); 2862 } 2863 2864 int 2865 fgetvp_rights(struct thread *td, int fd, cap_rights_t *needrightsp, 2866 struct filecaps *havecaps, struct vnode **vpp) 2867 { 2868 struct filedesc *fdp; 2869 struct filecaps caps; 2870 struct file *fp; 2871 int error; 2872 2873 fdp = td->td_proc->p_fd; 2874 error = fget_cap_locked(fdp, fd, needrightsp, &fp, &caps); 2875 if (error != 0) 2876 return (error); 2877 if (fp->f_ops == &badfileops) { 2878 error = EBADF; 2879 goto out; 2880 } 2881 if (fp->f_vnode == NULL) { 2882 error = EINVAL; 2883 goto out; 2884 } 2885 2886 *havecaps = caps; 2887 *vpp = fp->f_vnode; 2888 vrefact(*vpp); 2889 2890 return (0); 2891 out: 2892 filecaps_free(&caps); 2893 return (error); 2894 } 2895 2896 int 2897 fgetvp_read(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp) 2898 { 2899 2900 return (_fgetvp(td, fd, FREAD, rightsp, vpp)); 2901 } 2902 2903 int 2904 fgetvp_exec(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp) 2905 { 2906 2907 return (_fgetvp(td, fd, FEXEC, rightsp, vpp)); 2908 } 2909 2910 #ifdef notyet 2911 int 2912 fgetvp_write(struct thread *td, int fd, cap_rights_t *rightsp, 2913 struct vnode **vpp) 2914 { 2915 2916 return (_fgetvp(td, fd, FWRITE, rightsp, vpp)); 2917 } 2918 #endif 2919 2920 /* 2921 * Handle the last reference to a file being closed. 2922 * 2923 * Without the noinline attribute clang keeps inlining the func thorough this 2924 * file when fdrop is used. 2925 */ 2926 int __noinline 2927 _fdrop(struct file *fp, struct thread *td) 2928 { 2929 int error; 2930 2931 if (fp->f_count != 0) 2932 panic("fdrop: count %d", fp->f_count); 2933 error = fo_close(fp, td); 2934 atomic_subtract_int(&openfiles, 1); 2935 crfree(fp->f_cred); 2936 free(fp->f_advice, M_FADVISE); 2937 uma_zfree(file_zone, fp); 2938 2939 return (error); 2940 } 2941 2942 /* 2943 * Apply an advisory lock on a file descriptor. 2944 * 2945 * Just attempt to get a record lock of the requested type on the entire file 2946 * (l_whence = SEEK_SET, l_start = 0, l_len = 0). 2947 */ 2948 #ifndef _SYS_SYSPROTO_H_ 2949 struct flock_args { 2950 int fd; 2951 int how; 2952 }; 2953 #endif 2954 /* ARGSUSED */ 2955 int 2956 sys_flock(struct thread *td, struct flock_args *uap) 2957 { 2958 struct file *fp; 2959 struct vnode *vp; 2960 struct flock lf; 2961 int error; 2962 2963 error = fget(td, uap->fd, &cap_flock_rights, &fp); 2964 if (error != 0) 2965 return (error); 2966 if (fp->f_type != DTYPE_VNODE) { 2967 fdrop(fp, td); 2968 return (EOPNOTSUPP); 2969 } 2970 2971 vp = fp->f_vnode; 2972 lf.l_whence = SEEK_SET; 2973 lf.l_start = 0; 2974 lf.l_len = 0; 2975 if (uap->how & LOCK_UN) { 2976 lf.l_type = F_UNLCK; 2977 atomic_clear_int(&fp->f_flag, FHASLOCK); 2978 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK); 2979 goto done2; 2980 } 2981 if (uap->how & LOCK_EX) 2982 lf.l_type = F_WRLCK; 2983 else if (uap->how & LOCK_SH) 2984 lf.l_type = F_RDLCK; 2985 else { 2986 error = EBADF; 2987 goto done2; 2988 } 2989 atomic_set_int(&fp->f_flag, FHASLOCK); 2990 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 2991 (uap->how & LOCK_NB) ? F_FLOCK : F_FLOCK | F_WAIT); 2992 done2: 2993 fdrop(fp, td); 2994 return (error); 2995 } 2996 /* 2997 * Duplicate the specified descriptor to a free descriptor. 2998 */ 2999 int 3000 dupfdopen(struct thread *td, struct filedesc *fdp, int dfd, int mode, 3001 int openerror, int *indxp) 3002 { 3003 struct filedescent *newfde, *oldfde; 3004 struct file *fp; 3005 u_long *ioctls; 3006 int error, indx; 3007 3008 KASSERT(openerror == ENODEV || openerror == ENXIO, 3009 ("unexpected error %d in %s", openerror, __func__)); 3010 3011 /* 3012 * If the to-be-dup'd fd number is greater than the allowed number 3013 * of file descriptors, or the fd to be dup'd has already been 3014 * closed, then reject. 3015 */ 3016 FILEDESC_XLOCK(fdp); 3017 if ((fp = fget_locked(fdp, dfd)) == NULL) { 3018 FILEDESC_XUNLOCK(fdp); 3019 return (EBADF); 3020 } 3021 3022 error = fdalloc(td, 0, &indx); 3023 if (error != 0) { 3024 FILEDESC_XUNLOCK(fdp); 3025 return (error); 3026 } 3027 3028 /* 3029 * There are two cases of interest here. 3030 * 3031 * For ENODEV simply dup (dfd) to file descriptor (indx) and return. 3032 * 3033 * For ENXIO steal away the file structure from (dfd) and store it in 3034 * (indx). (dfd) is effectively closed by this operation. 3035 */ 3036 switch (openerror) { 3037 case ENODEV: 3038 /* 3039 * Check that the mode the file is being opened for is a 3040 * subset of the mode of the existing descriptor. 3041 */ 3042 if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) { 3043 fdunused(fdp, indx); 3044 FILEDESC_XUNLOCK(fdp); 3045 return (EACCES); 3046 } 3047 fhold(fp); 3048 newfde = &fdp->fd_ofiles[indx]; 3049 oldfde = &fdp->fd_ofiles[dfd]; 3050 ioctls = filecaps_copy_prep(&oldfde->fde_caps); 3051 #ifdef CAPABILITIES 3052 seqc_write_begin(&newfde->fde_seqc); 3053 #endif 3054 memcpy(newfde, oldfde, fde_change_size); 3055 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps, 3056 ioctls); 3057 #ifdef CAPABILITIES 3058 seqc_write_end(&newfde->fde_seqc); 3059 #endif 3060 break; 3061 case ENXIO: 3062 /* 3063 * Steal away the file pointer from dfd and stuff it into indx. 3064 */ 3065 newfde = &fdp->fd_ofiles[indx]; 3066 oldfde = &fdp->fd_ofiles[dfd]; 3067 #ifdef CAPABILITIES 3068 seqc_write_begin(&newfde->fde_seqc); 3069 #endif 3070 memcpy(newfde, oldfde, fde_change_size); 3071 oldfde->fde_file = NULL; 3072 fdunused(fdp, dfd); 3073 #ifdef CAPABILITIES 3074 seqc_write_end(&newfde->fde_seqc); 3075 #endif 3076 break; 3077 } 3078 FILEDESC_XUNLOCK(fdp); 3079 *indxp = indx; 3080 return (0); 3081 } 3082 3083 /* 3084 * This sysctl determines if we will allow a process to chroot(2) if it 3085 * has a directory open: 3086 * 0: disallowed for all processes. 3087 * 1: allowed for processes that were not already chroot(2)'ed. 3088 * 2: allowed for all processes. 3089 */ 3090 3091 static int chroot_allow_open_directories = 1; 3092 3093 SYSCTL_INT(_kern, OID_AUTO, chroot_allow_open_directories, CTLFLAG_RW, 3094 &chroot_allow_open_directories, 0, 3095 "Allow a process to chroot(2) if it has a directory open"); 3096 3097 /* 3098 * Helper function for raised chroot(2) security function: Refuse if 3099 * any filedescriptors are open directories. 3100 */ 3101 static int 3102 chroot_refuse_vdir_fds(struct filedesc *fdp) 3103 { 3104 struct vnode *vp; 3105 struct file *fp; 3106 int fd; 3107 3108 FILEDESC_LOCK_ASSERT(fdp); 3109 3110 for (fd = 0; fd <= fdp->fd_lastfile; fd++) { 3111 fp = fget_locked(fdp, fd); 3112 if (fp == NULL) 3113 continue; 3114 if (fp->f_type == DTYPE_VNODE) { 3115 vp = fp->f_vnode; 3116 if (vp->v_type == VDIR) 3117 return (EPERM); 3118 } 3119 } 3120 return (0); 3121 } 3122 3123 /* 3124 * Common routine for kern_chroot() and jail_attach(). The caller is 3125 * responsible for invoking priv_check() and mac_vnode_check_chroot() to 3126 * authorize this operation. 3127 */ 3128 int 3129 pwd_chroot(struct thread *td, struct vnode *vp) 3130 { 3131 struct filedesc *fdp; 3132 struct vnode *oldvp; 3133 int error; 3134 3135 fdp = td->td_proc->p_fd; 3136 FILEDESC_XLOCK(fdp); 3137 if (chroot_allow_open_directories == 0 || 3138 (chroot_allow_open_directories == 1 && fdp->fd_rdir != rootvnode)) { 3139 error = chroot_refuse_vdir_fds(fdp); 3140 if (error != 0) { 3141 FILEDESC_XUNLOCK(fdp); 3142 return (error); 3143 } 3144 } 3145 oldvp = fdp->fd_rdir; 3146 vrefact(vp); 3147 fdp->fd_rdir = vp; 3148 if (fdp->fd_jdir == NULL) { 3149 vrefact(vp); 3150 fdp->fd_jdir = vp; 3151 } 3152 FILEDESC_XUNLOCK(fdp); 3153 vrele(oldvp); 3154 return (0); 3155 } 3156 3157 void 3158 pwd_chdir(struct thread *td, struct vnode *vp) 3159 { 3160 struct filedesc *fdp; 3161 struct vnode *oldvp; 3162 3163 fdp = td->td_proc->p_fd; 3164 FILEDESC_XLOCK(fdp); 3165 VNASSERT(vp->v_usecount > 0, vp, 3166 ("chdir to a vnode with zero usecount")); 3167 oldvp = fdp->fd_cdir; 3168 fdp->fd_cdir = vp; 3169 FILEDESC_XUNLOCK(fdp); 3170 vrele(oldvp); 3171 } 3172 3173 /* 3174 * Scan all active processes and prisons to see if any of them have a current 3175 * or root directory of `olddp'. If so, replace them with the new mount point. 3176 */ 3177 void 3178 mountcheckdirs(struct vnode *olddp, struct vnode *newdp) 3179 { 3180 struct filedesc *fdp; 3181 struct prison *pr; 3182 struct proc *p; 3183 int nrele; 3184 3185 if (vrefcnt(olddp) == 1) 3186 return; 3187 nrele = 0; 3188 sx_slock(&allproc_lock); 3189 FOREACH_PROC_IN_SYSTEM(p) { 3190 PROC_LOCK(p); 3191 fdp = fdhold(p); 3192 PROC_UNLOCK(p); 3193 if (fdp == NULL) 3194 continue; 3195 FILEDESC_XLOCK(fdp); 3196 if (fdp->fd_cdir == olddp) { 3197 vrefact(newdp); 3198 fdp->fd_cdir = newdp; 3199 nrele++; 3200 } 3201 if (fdp->fd_rdir == olddp) { 3202 vrefact(newdp); 3203 fdp->fd_rdir = newdp; 3204 nrele++; 3205 } 3206 if (fdp->fd_jdir == olddp) { 3207 vrefact(newdp); 3208 fdp->fd_jdir = newdp; 3209 nrele++; 3210 } 3211 FILEDESC_XUNLOCK(fdp); 3212 fddrop(fdp); 3213 } 3214 sx_sunlock(&allproc_lock); 3215 if (rootvnode == olddp) { 3216 vrefact(newdp); 3217 rootvnode = newdp; 3218 nrele++; 3219 } 3220 mtx_lock(&prison0.pr_mtx); 3221 if (prison0.pr_root == olddp) { 3222 vrefact(newdp); 3223 prison0.pr_root = newdp; 3224 nrele++; 3225 } 3226 mtx_unlock(&prison0.pr_mtx); 3227 sx_slock(&allprison_lock); 3228 TAILQ_FOREACH(pr, &allprison, pr_list) { 3229 mtx_lock(&pr->pr_mtx); 3230 if (pr->pr_root == olddp) { 3231 vrefact(newdp); 3232 pr->pr_root = newdp; 3233 nrele++; 3234 } 3235 mtx_unlock(&pr->pr_mtx); 3236 } 3237 sx_sunlock(&allprison_lock); 3238 while (nrele--) 3239 vrele(olddp); 3240 } 3241 3242 struct filedesc_to_leader * 3243 filedesc_to_leader_alloc(struct filedesc_to_leader *old, struct filedesc *fdp, struct proc *leader) 3244 { 3245 struct filedesc_to_leader *fdtol; 3246 3247 fdtol = malloc(sizeof(struct filedesc_to_leader), 3248 M_FILEDESC_TO_LEADER, M_WAITOK); 3249 fdtol->fdl_refcount = 1; 3250 fdtol->fdl_holdcount = 0; 3251 fdtol->fdl_wakeup = 0; 3252 fdtol->fdl_leader = leader; 3253 if (old != NULL) { 3254 FILEDESC_XLOCK(fdp); 3255 fdtol->fdl_next = old->fdl_next; 3256 fdtol->fdl_prev = old; 3257 old->fdl_next = fdtol; 3258 fdtol->fdl_next->fdl_prev = fdtol; 3259 FILEDESC_XUNLOCK(fdp); 3260 } else { 3261 fdtol->fdl_next = fdtol; 3262 fdtol->fdl_prev = fdtol; 3263 } 3264 return (fdtol); 3265 } 3266 3267 static int 3268 sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS) 3269 { 3270 struct filedesc *fdp; 3271 int i, count, slots; 3272 3273 if (*(int *)arg1 != 0) 3274 return (EINVAL); 3275 3276 fdp = curproc->p_fd; 3277 count = 0; 3278 FILEDESC_SLOCK(fdp); 3279 slots = NDSLOTS(fdp->fd_lastfile + 1); 3280 for (i = 0; i < slots; i++) 3281 count += bitcountl(fdp->fd_map[i]); 3282 FILEDESC_SUNLOCK(fdp); 3283 3284 return (SYSCTL_OUT(req, &count, sizeof(count))); 3285 } 3286 3287 static SYSCTL_NODE(_kern_proc, KERN_PROC_NFDS, nfds, 3288 CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, sysctl_kern_proc_nfds, 3289 "Number of open file descriptors"); 3290 3291 /* 3292 * Get file structures globally. 3293 */ 3294 static int 3295 sysctl_kern_file(SYSCTL_HANDLER_ARGS) 3296 { 3297 struct xfile xf; 3298 struct filedesc *fdp; 3299 struct file *fp; 3300 struct proc *p; 3301 int error, n; 3302 3303 error = sysctl_wire_old_buffer(req, 0); 3304 if (error != 0) 3305 return (error); 3306 if (req->oldptr == NULL) { 3307 n = 0; 3308 sx_slock(&allproc_lock); 3309 FOREACH_PROC_IN_SYSTEM(p) { 3310 PROC_LOCK(p); 3311 if (p->p_state == PRS_NEW) { 3312 PROC_UNLOCK(p); 3313 continue; 3314 } 3315 fdp = fdhold(p); 3316 PROC_UNLOCK(p); 3317 if (fdp == NULL) 3318 continue; 3319 /* overestimates sparse tables. */ 3320 if (fdp->fd_lastfile > 0) 3321 n += fdp->fd_lastfile; 3322 fddrop(fdp); 3323 } 3324 sx_sunlock(&allproc_lock); 3325 return (SYSCTL_OUT(req, 0, n * sizeof(xf))); 3326 } 3327 error = 0; 3328 bzero(&xf, sizeof(xf)); 3329 xf.xf_size = sizeof(xf); 3330 sx_slock(&allproc_lock); 3331 FOREACH_PROC_IN_SYSTEM(p) { 3332 PROC_LOCK(p); 3333 if (p->p_state == PRS_NEW) { 3334 PROC_UNLOCK(p); 3335 continue; 3336 } 3337 if (p_cansee(req->td, p) != 0) { 3338 PROC_UNLOCK(p); 3339 continue; 3340 } 3341 xf.xf_pid = p->p_pid; 3342 xf.xf_uid = p->p_ucred->cr_uid; 3343 fdp = fdhold(p); 3344 PROC_UNLOCK(p); 3345 if (fdp == NULL) 3346 continue; 3347 FILEDESC_SLOCK(fdp); 3348 for (n = 0; fdp->fd_refcnt > 0 && n <= fdp->fd_lastfile; ++n) { 3349 if ((fp = fdp->fd_ofiles[n].fde_file) == NULL) 3350 continue; 3351 xf.xf_fd = n; 3352 xf.xf_file = (uintptr_t)fp; 3353 xf.xf_data = (uintptr_t)fp->f_data; 3354 xf.xf_vnode = (uintptr_t)fp->f_vnode; 3355 xf.xf_type = (uintptr_t)fp->f_type; 3356 xf.xf_count = fp->f_count; 3357 xf.xf_msgcount = 0; 3358 xf.xf_offset = foffset_get(fp); 3359 xf.xf_flag = fp->f_flag; 3360 error = SYSCTL_OUT(req, &xf, sizeof(xf)); 3361 if (error) 3362 break; 3363 } 3364 FILEDESC_SUNLOCK(fdp); 3365 fddrop(fdp); 3366 if (error) 3367 break; 3368 } 3369 sx_sunlock(&allproc_lock); 3370 return (error); 3371 } 3372 3373 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE, 3374 0, 0, sysctl_kern_file, "S,xfile", "Entire file table"); 3375 3376 #ifdef KINFO_FILE_SIZE 3377 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 3378 #endif 3379 3380 static int 3381 xlate_fflags(int fflags) 3382 { 3383 static const struct { 3384 int fflag; 3385 int kf_fflag; 3386 } fflags_table[] = { 3387 { FAPPEND, KF_FLAG_APPEND }, 3388 { FASYNC, KF_FLAG_ASYNC }, 3389 { FFSYNC, KF_FLAG_FSYNC }, 3390 { FHASLOCK, KF_FLAG_HASLOCK }, 3391 { FNONBLOCK, KF_FLAG_NONBLOCK }, 3392 { FREAD, KF_FLAG_READ }, 3393 { FWRITE, KF_FLAG_WRITE }, 3394 { O_CREAT, KF_FLAG_CREAT }, 3395 { O_DIRECT, KF_FLAG_DIRECT }, 3396 { O_EXCL, KF_FLAG_EXCL }, 3397 { O_EXEC, KF_FLAG_EXEC }, 3398 { O_EXLOCK, KF_FLAG_EXLOCK }, 3399 { O_NOFOLLOW, KF_FLAG_NOFOLLOW }, 3400 { O_SHLOCK, KF_FLAG_SHLOCK }, 3401 { O_TRUNC, KF_FLAG_TRUNC } 3402 }; 3403 unsigned int i; 3404 int kflags; 3405 3406 kflags = 0; 3407 for (i = 0; i < nitems(fflags_table); i++) 3408 if (fflags & fflags_table[i].fflag) 3409 kflags |= fflags_table[i].kf_fflag; 3410 return (kflags); 3411 } 3412 3413 /* Trim unused data from kf_path by truncating the structure size. */ 3414 void 3415 pack_kinfo(struct kinfo_file *kif) 3416 { 3417 3418 kif->kf_structsize = offsetof(struct kinfo_file, kf_path) + 3419 strlen(kif->kf_path) + 1; 3420 kif->kf_structsize = roundup(kif->kf_structsize, sizeof(uint64_t)); 3421 } 3422 3423 static void 3424 export_file_to_kinfo(struct file *fp, int fd, cap_rights_t *rightsp, 3425 struct kinfo_file *kif, struct filedesc *fdp, int flags) 3426 { 3427 int error; 3428 3429 bzero(kif, sizeof(*kif)); 3430 3431 /* Set a default type to allow for empty fill_kinfo() methods. */ 3432 kif->kf_type = KF_TYPE_UNKNOWN; 3433 kif->kf_flags = xlate_fflags(fp->f_flag); 3434 if (rightsp != NULL) 3435 kif->kf_cap_rights = *rightsp; 3436 else 3437 cap_rights_init(&kif->kf_cap_rights); 3438 kif->kf_fd = fd; 3439 kif->kf_ref_count = fp->f_count; 3440 kif->kf_offset = foffset_get(fp); 3441 3442 /* 3443 * This may drop the filedesc lock, so the 'fp' cannot be 3444 * accessed after this call. 3445 */ 3446 error = fo_fill_kinfo(fp, kif, fdp); 3447 if (error == 0) 3448 kif->kf_status |= KF_ATTR_VALID; 3449 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0) 3450 pack_kinfo(kif); 3451 else 3452 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t)); 3453 } 3454 3455 static void 3456 export_vnode_to_kinfo(struct vnode *vp, int fd, int fflags, 3457 struct kinfo_file *kif, int flags) 3458 { 3459 int error; 3460 3461 bzero(kif, sizeof(*kif)); 3462 3463 kif->kf_type = KF_TYPE_VNODE; 3464 error = vn_fill_kinfo_vnode(vp, kif); 3465 if (error == 0) 3466 kif->kf_status |= KF_ATTR_VALID; 3467 kif->kf_flags = xlate_fflags(fflags); 3468 cap_rights_init(&kif->kf_cap_rights); 3469 kif->kf_fd = fd; 3470 kif->kf_ref_count = -1; 3471 kif->kf_offset = -1; 3472 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0) 3473 pack_kinfo(kif); 3474 else 3475 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t)); 3476 vrele(vp); 3477 } 3478 3479 struct export_fd_buf { 3480 struct filedesc *fdp; 3481 struct sbuf *sb; 3482 ssize_t remainder; 3483 struct kinfo_file kif; 3484 int flags; 3485 }; 3486 3487 static int 3488 export_kinfo_to_sb(struct export_fd_buf *efbuf) 3489 { 3490 struct kinfo_file *kif; 3491 3492 kif = &efbuf->kif; 3493 if (efbuf->remainder != -1) { 3494 if (efbuf->remainder < kif->kf_structsize) { 3495 /* Terminate export. */ 3496 efbuf->remainder = 0; 3497 return (0); 3498 } 3499 efbuf->remainder -= kif->kf_structsize; 3500 } 3501 return (sbuf_bcat(efbuf->sb, kif, kif->kf_structsize) == 0 ? 0 : ENOMEM); 3502 } 3503 3504 static int 3505 export_file_to_sb(struct file *fp, int fd, cap_rights_t *rightsp, 3506 struct export_fd_buf *efbuf) 3507 { 3508 int error; 3509 3510 if (efbuf->remainder == 0) 3511 return (0); 3512 export_file_to_kinfo(fp, fd, rightsp, &efbuf->kif, efbuf->fdp, 3513 efbuf->flags); 3514 FILEDESC_SUNLOCK(efbuf->fdp); 3515 error = export_kinfo_to_sb(efbuf); 3516 FILEDESC_SLOCK(efbuf->fdp); 3517 return (error); 3518 } 3519 3520 static int 3521 export_vnode_to_sb(struct vnode *vp, int fd, int fflags, 3522 struct export_fd_buf *efbuf) 3523 { 3524 int error; 3525 3526 if (efbuf->remainder == 0) 3527 return (0); 3528 if (efbuf->fdp != NULL) 3529 FILEDESC_SUNLOCK(efbuf->fdp); 3530 export_vnode_to_kinfo(vp, fd, fflags, &efbuf->kif, efbuf->flags); 3531 error = export_kinfo_to_sb(efbuf); 3532 if (efbuf->fdp != NULL) 3533 FILEDESC_SLOCK(efbuf->fdp); 3534 return (error); 3535 } 3536 3537 /* 3538 * Store a process file descriptor information to sbuf. 3539 * 3540 * Takes a locked proc as argument, and returns with the proc unlocked. 3541 */ 3542 int 3543 kern_proc_filedesc_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, 3544 int flags) 3545 { 3546 struct file *fp; 3547 struct filedesc *fdp; 3548 struct export_fd_buf *efbuf; 3549 struct vnode *cttyvp, *textvp, *tracevp; 3550 int error, i; 3551 cap_rights_t rights; 3552 3553 PROC_LOCK_ASSERT(p, MA_OWNED); 3554 3555 /* ktrace vnode */ 3556 tracevp = p->p_tracevp; 3557 if (tracevp != NULL) 3558 vrefact(tracevp); 3559 /* text vnode */ 3560 textvp = p->p_textvp; 3561 if (textvp != NULL) 3562 vrefact(textvp); 3563 /* Controlling tty. */ 3564 cttyvp = NULL; 3565 if (p->p_pgrp != NULL && p->p_pgrp->pg_session != NULL) { 3566 cttyvp = p->p_pgrp->pg_session->s_ttyvp; 3567 if (cttyvp != NULL) 3568 vrefact(cttyvp); 3569 } 3570 fdp = fdhold(p); 3571 PROC_UNLOCK(p); 3572 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK); 3573 efbuf->fdp = NULL; 3574 efbuf->sb = sb; 3575 efbuf->remainder = maxlen; 3576 efbuf->flags = flags; 3577 if (tracevp != NULL) 3578 export_vnode_to_sb(tracevp, KF_FD_TYPE_TRACE, FREAD | FWRITE, 3579 efbuf); 3580 if (textvp != NULL) 3581 export_vnode_to_sb(textvp, KF_FD_TYPE_TEXT, FREAD, efbuf); 3582 if (cttyvp != NULL) 3583 export_vnode_to_sb(cttyvp, KF_FD_TYPE_CTTY, FREAD | FWRITE, 3584 efbuf); 3585 error = 0; 3586 if (fdp == NULL) 3587 goto fail; 3588 efbuf->fdp = fdp; 3589 FILEDESC_SLOCK(fdp); 3590 /* working directory */ 3591 if (fdp->fd_cdir != NULL) { 3592 vrefact(fdp->fd_cdir); 3593 export_vnode_to_sb(fdp->fd_cdir, KF_FD_TYPE_CWD, FREAD, efbuf); 3594 } 3595 /* root directory */ 3596 if (fdp->fd_rdir != NULL) { 3597 vrefact(fdp->fd_rdir); 3598 export_vnode_to_sb(fdp->fd_rdir, KF_FD_TYPE_ROOT, FREAD, efbuf); 3599 } 3600 /* jail directory */ 3601 if (fdp->fd_jdir != NULL) { 3602 vrefact(fdp->fd_jdir); 3603 export_vnode_to_sb(fdp->fd_jdir, KF_FD_TYPE_JAIL, FREAD, efbuf); 3604 } 3605 for (i = 0; fdp->fd_refcnt > 0 && i <= fdp->fd_lastfile; i++) { 3606 if ((fp = fdp->fd_ofiles[i].fde_file) == NULL) 3607 continue; 3608 #ifdef CAPABILITIES 3609 rights = *cap_rights(fdp, i); 3610 #else /* !CAPABILITIES */ 3611 rights = cap_no_rights; 3612 #endif 3613 /* 3614 * Create sysctl entry. It is OK to drop the filedesc 3615 * lock inside of export_file_to_sb() as we will 3616 * re-validate and re-evaluate its properties when the 3617 * loop continues. 3618 */ 3619 error = export_file_to_sb(fp, i, &rights, efbuf); 3620 if (error != 0 || efbuf->remainder == 0) 3621 break; 3622 } 3623 FILEDESC_SUNLOCK(fdp); 3624 fddrop(fdp); 3625 fail: 3626 free(efbuf, M_TEMP); 3627 return (error); 3628 } 3629 3630 #define FILEDESC_SBUF_SIZE (sizeof(struct kinfo_file) * 5) 3631 3632 /* 3633 * Get per-process file descriptors for use by procstat(1), et al. 3634 */ 3635 static int 3636 sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS) 3637 { 3638 struct sbuf sb; 3639 struct proc *p; 3640 ssize_t maxlen; 3641 int error, error2, *name; 3642 3643 name = (int *)arg1; 3644 3645 sbuf_new_for_sysctl(&sb, NULL, FILEDESC_SBUF_SIZE, req); 3646 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 3647 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 3648 if (error != 0) { 3649 sbuf_delete(&sb); 3650 return (error); 3651 } 3652 maxlen = req->oldptr != NULL ? req->oldlen : -1; 3653 error = kern_proc_filedesc_out(p, &sb, maxlen, 3654 KERN_FILEDESC_PACK_KINFO); 3655 error2 = sbuf_finish(&sb); 3656 sbuf_delete(&sb); 3657 return (error != 0 ? error : error2); 3658 } 3659 3660 #ifdef COMPAT_FREEBSD7 3661 #ifdef KINFO_OFILE_SIZE 3662 CTASSERT(sizeof(struct kinfo_ofile) == KINFO_OFILE_SIZE); 3663 #endif 3664 3665 static void 3666 kinfo_to_okinfo(struct kinfo_file *kif, struct kinfo_ofile *okif) 3667 { 3668 3669 okif->kf_structsize = sizeof(*okif); 3670 okif->kf_type = kif->kf_type; 3671 okif->kf_fd = kif->kf_fd; 3672 okif->kf_ref_count = kif->kf_ref_count; 3673 okif->kf_flags = kif->kf_flags & (KF_FLAG_READ | KF_FLAG_WRITE | 3674 KF_FLAG_APPEND | KF_FLAG_ASYNC | KF_FLAG_FSYNC | KF_FLAG_NONBLOCK | 3675 KF_FLAG_DIRECT | KF_FLAG_HASLOCK); 3676 okif->kf_offset = kif->kf_offset; 3677 if (kif->kf_type == KF_TYPE_VNODE) 3678 okif->kf_vnode_type = kif->kf_un.kf_file.kf_file_type; 3679 else 3680 okif->kf_vnode_type = KF_VTYPE_VNON; 3681 strlcpy(okif->kf_path, kif->kf_path, sizeof(okif->kf_path)); 3682 if (kif->kf_type == KF_TYPE_SOCKET) { 3683 okif->kf_sock_domain = kif->kf_un.kf_sock.kf_sock_domain0; 3684 okif->kf_sock_type = kif->kf_un.kf_sock.kf_sock_type0; 3685 okif->kf_sock_protocol = kif->kf_un.kf_sock.kf_sock_protocol0; 3686 okif->kf_sa_local = kif->kf_un.kf_sock.kf_sa_local; 3687 okif->kf_sa_peer = kif->kf_un.kf_sock.kf_sa_peer; 3688 } else { 3689 okif->kf_sa_local.ss_family = AF_UNSPEC; 3690 okif->kf_sa_peer.ss_family = AF_UNSPEC; 3691 } 3692 } 3693 3694 static int 3695 export_vnode_for_osysctl(struct vnode *vp, int type, struct kinfo_file *kif, 3696 struct kinfo_ofile *okif, struct filedesc *fdp, struct sysctl_req *req) 3697 { 3698 int error; 3699 3700 vrefact(vp); 3701 FILEDESC_SUNLOCK(fdp); 3702 export_vnode_to_kinfo(vp, type, 0, kif, KERN_FILEDESC_PACK_KINFO); 3703 kinfo_to_okinfo(kif, okif); 3704 error = SYSCTL_OUT(req, okif, sizeof(*okif)); 3705 FILEDESC_SLOCK(fdp); 3706 return (error); 3707 } 3708 3709 /* 3710 * Get per-process file descriptors for use by procstat(1), et al. 3711 */ 3712 static int 3713 sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS) 3714 { 3715 struct kinfo_ofile *okif; 3716 struct kinfo_file *kif; 3717 struct filedesc *fdp; 3718 int error, i, *name; 3719 struct file *fp; 3720 struct proc *p; 3721 3722 name = (int *)arg1; 3723 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 3724 if (error != 0) 3725 return (error); 3726 fdp = fdhold(p); 3727 PROC_UNLOCK(p); 3728 if (fdp == NULL) 3729 return (ENOENT); 3730 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK); 3731 okif = malloc(sizeof(*okif), M_TEMP, M_WAITOK); 3732 FILEDESC_SLOCK(fdp); 3733 if (fdp->fd_cdir != NULL) 3734 export_vnode_for_osysctl(fdp->fd_cdir, KF_FD_TYPE_CWD, kif, 3735 okif, fdp, req); 3736 if (fdp->fd_rdir != NULL) 3737 export_vnode_for_osysctl(fdp->fd_rdir, KF_FD_TYPE_ROOT, kif, 3738 okif, fdp, req); 3739 if (fdp->fd_jdir != NULL) 3740 export_vnode_for_osysctl(fdp->fd_jdir, KF_FD_TYPE_JAIL, kif, 3741 okif, fdp, req); 3742 for (i = 0; fdp->fd_refcnt > 0 && i <= fdp->fd_lastfile; i++) { 3743 if ((fp = fdp->fd_ofiles[i].fde_file) == NULL) 3744 continue; 3745 export_file_to_kinfo(fp, i, NULL, kif, fdp, 3746 KERN_FILEDESC_PACK_KINFO); 3747 FILEDESC_SUNLOCK(fdp); 3748 kinfo_to_okinfo(kif, okif); 3749 error = SYSCTL_OUT(req, okif, sizeof(*okif)); 3750 FILEDESC_SLOCK(fdp); 3751 if (error) 3752 break; 3753 } 3754 FILEDESC_SUNLOCK(fdp); 3755 fddrop(fdp); 3756 free(kif, M_TEMP); 3757 free(okif, M_TEMP); 3758 return (0); 3759 } 3760 3761 static SYSCTL_NODE(_kern_proc, KERN_PROC_OFILEDESC, ofiledesc, 3762 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_ofiledesc, 3763 "Process ofiledesc entries"); 3764 #endif /* COMPAT_FREEBSD7 */ 3765 3766 int 3767 vntype_to_kinfo(int vtype) 3768 { 3769 struct { 3770 int vtype; 3771 int kf_vtype; 3772 } vtypes_table[] = { 3773 { VBAD, KF_VTYPE_VBAD }, 3774 { VBLK, KF_VTYPE_VBLK }, 3775 { VCHR, KF_VTYPE_VCHR }, 3776 { VDIR, KF_VTYPE_VDIR }, 3777 { VFIFO, KF_VTYPE_VFIFO }, 3778 { VLNK, KF_VTYPE_VLNK }, 3779 { VNON, KF_VTYPE_VNON }, 3780 { VREG, KF_VTYPE_VREG }, 3781 { VSOCK, KF_VTYPE_VSOCK } 3782 }; 3783 unsigned int i; 3784 3785 /* 3786 * Perform vtype translation. 3787 */ 3788 for (i = 0; i < nitems(vtypes_table); i++) 3789 if (vtypes_table[i].vtype == vtype) 3790 return (vtypes_table[i].kf_vtype); 3791 3792 return (KF_VTYPE_UNKNOWN); 3793 } 3794 3795 static SYSCTL_NODE(_kern_proc, KERN_PROC_FILEDESC, filedesc, 3796 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_filedesc, 3797 "Process filedesc entries"); 3798 3799 /* 3800 * Store a process current working directory information to sbuf. 3801 * 3802 * Takes a locked proc as argument, and returns with the proc unlocked. 3803 */ 3804 int 3805 kern_proc_cwd_out(struct proc *p, struct sbuf *sb, ssize_t maxlen) 3806 { 3807 struct filedesc *fdp; 3808 struct export_fd_buf *efbuf; 3809 int error; 3810 3811 PROC_LOCK_ASSERT(p, MA_OWNED); 3812 3813 fdp = fdhold(p); 3814 PROC_UNLOCK(p); 3815 if (fdp == NULL) 3816 return (EINVAL); 3817 3818 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK); 3819 efbuf->fdp = fdp; 3820 efbuf->sb = sb; 3821 efbuf->remainder = maxlen; 3822 3823 FILEDESC_SLOCK(fdp); 3824 if (fdp->fd_cdir == NULL) 3825 error = EINVAL; 3826 else { 3827 vrefact(fdp->fd_cdir); 3828 error = export_vnode_to_sb(fdp->fd_cdir, KF_FD_TYPE_CWD, 3829 FREAD, efbuf); 3830 } 3831 FILEDESC_SUNLOCK(fdp); 3832 fddrop(fdp); 3833 free(efbuf, M_TEMP); 3834 return (error); 3835 } 3836 3837 /* 3838 * Get per-process current working directory. 3839 */ 3840 static int 3841 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS) 3842 { 3843 struct sbuf sb; 3844 struct proc *p; 3845 ssize_t maxlen; 3846 int error, error2, *name; 3847 3848 name = (int *)arg1; 3849 3850 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file), req); 3851 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 3852 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 3853 if (error != 0) { 3854 sbuf_delete(&sb); 3855 return (error); 3856 } 3857 maxlen = req->oldptr != NULL ? req->oldlen : -1; 3858 error = kern_proc_cwd_out(p, &sb, maxlen); 3859 error2 = sbuf_finish(&sb); 3860 sbuf_delete(&sb); 3861 return (error != 0 ? error : error2); 3862 } 3863 3864 static SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD|CTLFLAG_MPSAFE, 3865 sysctl_kern_proc_cwd, "Process current working directory"); 3866 3867 #ifdef DDB 3868 /* 3869 * For the purposes of debugging, generate a human-readable string for the 3870 * file type. 3871 */ 3872 static const char * 3873 file_type_to_name(short type) 3874 { 3875 3876 switch (type) { 3877 case 0: 3878 return ("zero"); 3879 case DTYPE_VNODE: 3880 return ("vnode"); 3881 case DTYPE_SOCKET: 3882 return ("socket"); 3883 case DTYPE_PIPE: 3884 return ("pipe"); 3885 case DTYPE_FIFO: 3886 return ("fifo"); 3887 case DTYPE_KQUEUE: 3888 return ("kqueue"); 3889 case DTYPE_CRYPTO: 3890 return ("crypto"); 3891 case DTYPE_MQUEUE: 3892 return ("mqueue"); 3893 case DTYPE_SHM: 3894 return ("shm"); 3895 case DTYPE_SEM: 3896 return ("ksem"); 3897 case DTYPE_PTS: 3898 return ("pts"); 3899 case DTYPE_DEV: 3900 return ("dev"); 3901 case DTYPE_PROCDESC: 3902 return ("proc"); 3903 case DTYPE_LINUXEFD: 3904 return ("levent"); 3905 case DTYPE_LINUXTFD: 3906 return ("ltimer"); 3907 default: 3908 return ("unkn"); 3909 } 3910 } 3911 3912 /* 3913 * For the purposes of debugging, identify a process (if any, perhaps one of 3914 * many) that references the passed file in its file descriptor array. Return 3915 * NULL if none. 3916 */ 3917 static struct proc * 3918 file_to_first_proc(struct file *fp) 3919 { 3920 struct filedesc *fdp; 3921 struct proc *p; 3922 int n; 3923 3924 FOREACH_PROC_IN_SYSTEM(p) { 3925 if (p->p_state == PRS_NEW) 3926 continue; 3927 fdp = p->p_fd; 3928 if (fdp == NULL) 3929 continue; 3930 for (n = 0; n <= fdp->fd_lastfile; n++) { 3931 if (fp == fdp->fd_ofiles[n].fde_file) 3932 return (p); 3933 } 3934 } 3935 return (NULL); 3936 } 3937 3938 static void 3939 db_print_file(struct file *fp, int header) 3940 { 3941 #define XPTRWIDTH ((int)howmany(sizeof(void *) * NBBY, 4)) 3942 struct proc *p; 3943 3944 if (header) 3945 db_printf("%*s %6s %*s %8s %4s %5s %6s %*s %5s %s\n", 3946 XPTRWIDTH, "File", "Type", XPTRWIDTH, "Data", "Flag", 3947 "GCFl", "Count", "MCount", XPTRWIDTH, "Vnode", "FPID", 3948 "FCmd"); 3949 p = file_to_first_proc(fp); 3950 db_printf("%*p %6s %*p %08x %04x %5d %6d %*p %5d %s\n", XPTRWIDTH, 3951 fp, file_type_to_name(fp->f_type), XPTRWIDTH, fp->f_data, 3952 fp->f_flag, 0, fp->f_count, 0, XPTRWIDTH, fp->f_vnode, 3953 p != NULL ? p->p_pid : -1, p != NULL ? p->p_comm : "-"); 3954 3955 #undef XPTRWIDTH 3956 } 3957 3958 DB_SHOW_COMMAND(file, db_show_file) 3959 { 3960 struct file *fp; 3961 3962 if (!have_addr) { 3963 db_printf("usage: show file <addr>\n"); 3964 return; 3965 } 3966 fp = (struct file *)addr; 3967 db_print_file(fp, 1); 3968 } 3969 3970 DB_SHOW_COMMAND(files, db_show_files) 3971 { 3972 struct filedesc *fdp; 3973 struct file *fp; 3974 struct proc *p; 3975 int header; 3976 int n; 3977 3978 header = 1; 3979 FOREACH_PROC_IN_SYSTEM(p) { 3980 if (p->p_state == PRS_NEW) 3981 continue; 3982 if ((fdp = p->p_fd) == NULL) 3983 continue; 3984 for (n = 0; n <= fdp->fd_lastfile; ++n) { 3985 if ((fp = fdp->fd_ofiles[n].fde_file) == NULL) 3986 continue; 3987 db_print_file(fp, header); 3988 header = 0; 3989 } 3990 } 3991 } 3992 #endif 3993 3994 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW, 3995 &maxfilesperproc, 0, "Maximum files allowed open per process"); 3996 3997 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW, 3998 &maxfiles, 0, "Maximum number of files"); 3999 4000 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD, 4001 __DEVOLATILE(int *, &openfiles), 0, "System-wide number of open files"); 4002 4003 /* ARGSUSED*/ 4004 static void 4005 filelistinit(void *dummy) 4006 { 4007 4008 file_zone = uma_zcreate("Files", sizeof(struct file), NULL, NULL, 4009 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 4010 filedesc0_zone = uma_zcreate("filedesc0", sizeof(struct filedesc0), 4011 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 4012 mtx_init(&sigio_lock, "sigio lock", NULL, MTX_DEF); 4013 } 4014 SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, filelistinit, NULL); 4015 4016 /*-------------------------------------------------------------------*/ 4017 4018 static int 4019 badfo_readwrite(struct file *fp, struct uio *uio, struct ucred *active_cred, 4020 int flags, struct thread *td) 4021 { 4022 4023 return (EBADF); 4024 } 4025 4026 static int 4027 badfo_truncate(struct file *fp, off_t length, struct ucred *active_cred, 4028 struct thread *td) 4029 { 4030 4031 return (EINVAL); 4032 } 4033 4034 static int 4035 badfo_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred, 4036 struct thread *td) 4037 { 4038 4039 return (EBADF); 4040 } 4041 4042 static int 4043 badfo_poll(struct file *fp, int events, struct ucred *active_cred, 4044 struct thread *td) 4045 { 4046 4047 return (0); 4048 } 4049 4050 static int 4051 badfo_kqfilter(struct file *fp, struct knote *kn) 4052 { 4053 4054 return (EBADF); 4055 } 4056 4057 static int 4058 badfo_stat(struct file *fp, struct stat *sb, struct ucred *active_cred, 4059 struct thread *td) 4060 { 4061 4062 return (EBADF); 4063 } 4064 4065 static int 4066 badfo_close(struct file *fp, struct thread *td) 4067 { 4068 4069 return (0); 4070 } 4071 4072 static int 4073 badfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, 4074 struct thread *td) 4075 { 4076 4077 return (EBADF); 4078 } 4079 4080 static int 4081 badfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 4082 struct thread *td) 4083 { 4084 4085 return (EBADF); 4086 } 4087 4088 static int 4089 badfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio, 4090 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags, 4091 struct thread *td) 4092 { 4093 4094 return (EBADF); 4095 } 4096 4097 static int 4098 badfo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 4099 { 4100 4101 return (0); 4102 } 4103 4104 struct fileops badfileops = { 4105 .fo_read = badfo_readwrite, 4106 .fo_write = badfo_readwrite, 4107 .fo_truncate = badfo_truncate, 4108 .fo_ioctl = badfo_ioctl, 4109 .fo_poll = badfo_poll, 4110 .fo_kqfilter = badfo_kqfilter, 4111 .fo_stat = badfo_stat, 4112 .fo_close = badfo_close, 4113 .fo_chmod = badfo_chmod, 4114 .fo_chown = badfo_chown, 4115 .fo_sendfile = badfo_sendfile, 4116 .fo_fill_kinfo = badfo_fill_kinfo, 4117 }; 4118 4119 int 4120 invfo_rdwr(struct file *fp, struct uio *uio, struct ucred *active_cred, 4121 int flags, struct thread *td) 4122 { 4123 4124 return (EOPNOTSUPP); 4125 } 4126 4127 int 4128 invfo_truncate(struct file *fp, off_t length, struct ucred *active_cred, 4129 struct thread *td) 4130 { 4131 4132 return (EINVAL); 4133 } 4134 4135 int 4136 invfo_ioctl(struct file *fp, u_long com, void *data, 4137 struct ucred *active_cred, struct thread *td) 4138 { 4139 4140 return (ENOTTY); 4141 } 4142 4143 int 4144 invfo_poll(struct file *fp, int events, struct ucred *active_cred, 4145 struct thread *td) 4146 { 4147 4148 return (poll_no_poll(events)); 4149 } 4150 4151 int 4152 invfo_kqfilter(struct file *fp, struct knote *kn) 4153 { 4154 4155 return (EINVAL); 4156 } 4157 4158 int 4159 invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, 4160 struct thread *td) 4161 { 4162 4163 return (EINVAL); 4164 } 4165 4166 int 4167 invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 4168 struct thread *td) 4169 { 4170 4171 return (EINVAL); 4172 } 4173 4174 int 4175 invfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio, 4176 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags, 4177 struct thread *td) 4178 { 4179 4180 return (EINVAL); 4181 } 4182 4183 /*-------------------------------------------------------------------*/ 4184 4185 /* 4186 * File Descriptor pseudo-device driver (/dev/fd/). 4187 * 4188 * Opening minor device N dup()s the file (if any) connected to file 4189 * descriptor N belonging to the calling process. Note that this driver 4190 * consists of only the ``open()'' routine, because all subsequent 4191 * references to this file will be direct to the other driver. 4192 * 4193 * XXX: we could give this one a cloning event handler if necessary. 4194 */ 4195 4196 /* ARGSUSED */ 4197 static int 4198 fdopen(struct cdev *dev, int mode, int type, struct thread *td) 4199 { 4200 4201 /* 4202 * XXX Kludge: set curthread->td_dupfd to contain the value of the 4203 * the file descriptor being sought for duplication. The error 4204 * return ensures that the vnode for this device will be released 4205 * by vn_open. Open will detect this special error and take the 4206 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN 4207 * will simply report the error. 4208 */ 4209 td->td_dupfd = dev2unit(dev); 4210 return (ENODEV); 4211 } 4212 4213 static struct cdevsw fildesc_cdevsw = { 4214 .d_version = D_VERSION, 4215 .d_open = fdopen, 4216 .d_name = "FD", 4217 }; 4218 4219 static void 4220 fildesc_drvinit(void *unused) 4221 { 4222 struct cdev *dev; 4223 4224 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 0, NULL, 4225 UID_ROOT, GID_WHEEL, 0666, "fd/0"); 4226 make_dev_alias(dev, "stdin"); 4227 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 1, NULL, 4228 UID_ROOT, GID_WHEEL, 0666, "fd/1"); 4229 make_dev_alias(dev, "stdout"); 4230 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 2, NULL, 4231 UID_ROOT, GID_WHEEL, 0666, "fd/2"); 4232 make_dev_alias(dev, "stderr"); 4233 } 4234 4235 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, fildesc_drvinit, NULL); 4236