xref: /freebsd/sys/kern/kern_cpu.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004-2007 Nate Lawson (SDG)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/bus.h>
31 #include <sys/cpu.h>
32 #include <sys/eventhandler.h>
33 #include <sys/kernel.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/proc.h>
38 #include <sys/queue.h>
39 #include <sys/sbuf.h>
40 #include <sys/sched.h>
41 #include <sys/smp.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/sx.h>
45 #include <sys/timetc.h>
46 #include <sys/taskqueue.h>
47 
48 #include "cpufreq_if.h"
49 
50 /*
51  * Common CPU frequency glue code.  Drivers for specific hardware can
52  * attach this interface to allow users to get/set the CPU frequency.
53  */
54 
55 /*
56  * Number of levels we can handle.  Levels are synthesized from settings
57  * so for M settings and N drivers, there may be M*N levels.
58  */
59 #define CF_MAX_LEVELS	256
60 
61 struct cf_saved_freq {
62 	struct cf_level			level;
63 	int				priority;
64 	SLIST_ENTRY(cf_saved_freq)	link;
65 };
66 
67 struct cpufreq_softc {
68 	struct sx			lock;
69 	struct cf_level			curr_level;
70 	int				curr_priority;
71 	SLIST_HEAD(, cf_saved_freq)	saved_freq;
72 	struct cf_level_lst		all_levels;
73 	int				all_count;
74 	int				max_mhz;
75 	device_t			dev;
76 	device_t			cf_drv_dev;
77 	struct sysctl_ctx_list		sysctl_ctx;
78 	struct task			startup_task;
79 	struct cf_level			*levels_buf;
80 };
81 
82 struct cf_setting_array {
83 	struct cf_setting		sets[MAX_SETTINGS];
84 	int				count;
85 	TAILQ_ENTRY(cf_setting_array)	link;
86 };
87 
88 TAILQ_HEAD(cf_setting_lst, cf_setting_array);
89 
90 #define CF_MTX_INIT(x)		sx_init((x), "cpufreq lock")
91 #define CF_MTX_LOCK(x)		sx_xlock((x))
92 #define CF_MTX_UNLOCK(x)	sx_xunlock((x))
93 #define CF_MTX_ASSERT(x)	sx_assert((x), SX_XLOCKED)
94 
95 #define CF_DEBUG(msg...)	do {		\
96 	if (cf_verbose)				\
97 		printf("cpufreq: " msg);	\
98 	} while (0)
99 
100 static int	cpufreq_probe(device_t dev);
101 static int	cpufreq_attach(device_t dev);
102 static void	cpufreq_startup_task(void *ctx, int pending);
103 static int	cpufreq_detach(device_t dev);
104 static int	cf_set_method(device_t dev, const struct cf_level *level,
105 		    int priority);
106 static int	cf_get_method(device_t dev, struct cf_level *level);
107 static int	cf_levels_method(device_t dev, struct cf_level *levels,
108 		    int *count);
109 static int	cpufreq_insert_abs(struct cpufreq_softc *sc,
110 		    struct cf_setting *sets, int count);
111 static int	cpufreq_expand_set(struct cpufreq_softc *sc,
112 		    struct cf_setting_array *set_arr);
113 static struct cf_level *cpufreq_dup_set(struct cpufreq_softc *sc,
114 		    struct cf_level *dup, struct cf_setting *set);
115 static int	cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS);
116 static int	cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS);
117 static int	cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS);
118 
119 static device_method_t cpufreq_methods[] = {
120 	DEVMETHOD(device_probe,		cpufreq_probe),
121 	DEVMETHOD(device_attach,	cpufreq_attach),
122 	DEVMETHOD(device_detach,	cpufreq_detach),
123 
124         DEVMETHOD(cpufreq_set,		cf_set_method),
125         DEVMETHOD(cpufreq_get,		cf_get_method),
126         DEVMETHOD(cpufreq_levels,	cf_levels_method),
127 	{0, 0}
128 };
129 
130 static driver_t cpufreq_driver = {
131 	"cpufreq", cpufreq_methods, sizeof(struct cpufreq_softc)
132 };
133 
134 DRIVER_MODULE(cpufreq, cpu, cpufreq_driver, 0, 0);
135 
136 static int		cf_lowest_freq;
137 static int		cf_verbose;
138 static SYSCTL_NODE(_debug, OID_AUTO, cpufreq, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
139     "cpufreq debugging");
140 SYSCTL_INT(_debug_cpufreq, OID_AUTO, lowest, CTLFLAG_RWTUN, &cf_lowest_freq, 1,
141     "Don't provide levels below this frequency.");
142 SYSCTL_INT(_debug_cpufreq, OID_AUTO, verbose, CTLFLAG_RWTUN, &cf_verbose, 1,
143     "Print verbose debugging messages");
144 
145 static int
146 cpufreq_probe(device_t dev)
147 {
148 	device_set_desc(dev, "CPU frequency control");
149 	return (BUS_PROBE_DEFAULT);
150 }
151 
152 /*
153  * This is called as the result of a hardware specific frequency control driver
154  * calling cpufreq_register. It provides a general interface for system wide
155  * frequency controls and operates on a per cpu basis.
156  */
157 static int
158 cpufreq_attach(device_t dev)
159 {
160 	struct cpufreq_softc *sc;
161 	struct pcpu *pc;
162 	device_t parent;
163 	uint64_t rate;
164 
165 	CF_DEBUG("initializing %s\n", device_get_nameunit(dev));
166 	sc = device_get_softc(dev);
167 	parent = device_get_parent(dev);
168 	sc->dev = dev;
169 	sysctl_ctx_init(&sc->sysctl_ctx);
170 	TAILQ_INIT(&sc->all_levels);
171 	CF_MTX_INIT(&sc->lock);
172 	sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN;
173 	SLIST_INIT(&sc->saved_freq);
174 	/* Try to get nominal CPU freq to use it as maximum later if needed */
175 	sc->max_mhz = cpu_get_nominal_mhz(dev);
176 	/* If that fails, try to measure the current rate */
177 	if (sc->max_mhz <= 0) {
178 		CF_DEBUG("Unable to obtain nominal frequency.\n");
179 		pc = cpu_get_pcpu(dev);
180 		if (cpu_est_clockrate(pc->pc_cpuid, &rate) == 0)
181 			sc->max_mhz = rate / 1000000;
182 		else
183 			sc->max_mhz = CPUFREQ_VAL_UNKNOWN;
184 	}
185 
186 	CF_DEBUG("initializing one-time data for %s\n",
187 	    device_get_nameunit(dev));
188 	sc->levels_buf = malloc(CF_MAX_LEVELS * sizeof(*sc->levels_buf),
189 	    M_DEVBUF, M_WAITOK);
190 	SYSCTL_ADD_PROC(&sc->sysctl_ctx,
191 	    SYSCTL_CHILDREN(device_get_sysctl_tree(parent)),
192 	    OID_AUTO, "freq", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193 	    sc, 0, cpufreq_curr_sysctl, "I", "Current CPU frequency");
194 	SYSCTL_ADD_PROC(&sc->sysctl_ctx,
195 	    SYSCTL_CHILDREN(device_get_sysctl_tree(parent)),
196 	    OID_AUTO, "freq_levels",
197 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
198 	    cpufreq_levels_sysctl, "A", "CPU frequency levels");
199 
200 	/*
201 	 * Queue a one-shot broadcast that levels have changed.
202 	 * It will run once the system has completed booting.
203 	 */
204 	TASK_INIT(&sc->startup_task, 0, cpufreq_startup_task, dev);
205 	taskqueue_enqueue(taskqueue_thread, &sc->startup_task);
206 
207 	return (0);
208 }
209 
210 /* Handle any work to be done for all drivers that attached during boot. */
211 static void
212 cpufreq_startup_task(void *ctx, int pending)
213 {
214 
215 	cpufreq_settings_changed((device_t)ctx);
216 }
217 
218 static int
219 cpufreq_detach(device_t dev)
220 {
221 	struct cpufreq_softc *sc;
222 	struct cf_saved_freq *saved_freq;
223 
224 	CF_DEBUG("shutdown %s\n", device_get_nameunit(dev));
225 	sc = device_get_softc(dev);
226 	sysctl_ctx_free(&sc->sysctl_ctx);
227 
228 	while ((saved_freq = SLIST_FIRST(&sc->saved_freq)) != NULL) {
229 		SLIST_REMOVE_HEAD(&sc->saved_freq, link);
230 		free(saved_freq, M_TEMP);
231 	}
232 
233 	free(sc->levels_buf, M_DEVBUF);
234 
235 	return (0);
236 }
237 
238 static int
239 cf_set_method(device_t dev, const struct cf_level *level, int priority)
240 {
241 	struct cpufreq_softc *sc;
242 	const struct cf_setting *set;
243 	struct cf_saved_freq *saved_freq, *curr_freq;
244 	struct pcpu *pc;
245 	int error, i;
246 	u_char pri;
247 
248 	sc = device_get_softc(dev);
249 	error = 0;
250 	set = NULL;
251 	saved_freq = NULL;
252 
253 	/* We are going to change levels so notify the pre-change handler. */
254 	EVENTHANDLER_INVOKE(cpufreq_pre_change, level, &error);
255 	if (error != 0) {
256 		EVENTHANDLER_INVOKE(cpufreq_post_change, level, error);
257 		return (error);
258 	}
259 
260 	CF_MTX_LOCK(&sc->lock);
261 
262 #ifdef SMP
263 #ifdef EARLY_AP_STARTUP
264 	MPASS(mp_ncpus == 1 || smp_started);
265 #else
266 	/*
267 	 * If still booting and secondary CPUs not started yet, don't allow
268 	 * changing the frequency until they're online.  This is because we
269 	 * can't switch to them using sched_bind() and thus we'd only be
270 	 * switching the main CPU.  XXXTODO: Need to think more about how to
271 	 * handle having different CPUs at different frequencies.
272 	 */
273 	if (mp_ncpus > 1 && !smp_started) {
274 		device_printf(dev, "rejecting change, SMP not started yet\n");
275 		error = ENXIO;
276 		goto out;
277 	}
278 #endif
279 #endif /* SMP */
280 
281 	/*
282 	 * If the requested level has a lower priority, don't allow
283 	 * the new level right now.
284 	 */
285 	if (priority < sc->curr_priority) {
286 		CF_DEBUG("ignoring, curr prio %d less than %d\n", priority,
287 		    sc->curr_priority);
288 		error = EPERM;
289 		goto out;
290 	}
291 
292 	/*
293 	 * If the caller didn't specify a level and one is saved, prepare to
294 	 * restore the saved level.  If none has been saved, return an error.
295 	 */
296 	if (level == NULL) {
297 		saved_freq = SLIST_FIRST(&sc->saved_freq);
298 		if (saved_freq == NULL) {
299 			CF_DEBUG("NULL level, no saved level\n");
300 			error = ENXIO;
301 			goto out;
302 		}
303 		level = &saved_freq->level;
304 		priority = saved_freq->priority;
305 		CF_DEBUG("restoring saved level, freq %d prio %d\n",
306 		    level->total_set.freq, priority);
307 	}
308 
309 	/* Reject levels that are below our specified threshold. */
310 	if (level->total_set.freq < cf_lowest_freq) {
311 		CF_DEBUG("rejecting freq %d, less than %d limit\n",
312 		    level->total_set.freq, cf_lowest_freq);
313 		error = EINVAL;
314 		goto out;
315 	}
316 
317 	/* If already at this level, just return. */
318 	if (sc->curr_level.total_set.freq == level->total_set.freq) {
319 		CF_DEBUG("skipping freq %d, same as current level %d\n",
320 		    level->total_set.freq, sc->curr_level.total_set.freq);
321 		goto skip;
322 	}
323 
324 	/* First, set the absolute frequency via its driver. */
325 	set = &level->abs_set;
326 	if (set->dev) {
327 		if (!device_is_attached(set->dev)) {
328 			error = ENXIO;
329 			goto out;
330 		}
331 
332 		/* Bind to the target CPU before switching. */
333 		pc = cpu_get_pcpu(set->dev);
334 
335 		/* Skip settings if CPU is not started. */
336 		if (pc == NULL) {
337 			error = 0;
338 			goto out;
339 		}
340 		thread_lock(curthread);
341 		pri = curthread->td_priority;
342 		sched_prio(curthread, PRI_MIN);
343 		sched_bind(curthread, pc->pc_cpuid);
344 		thread_unlock(curthread);
345 		CF_DEBUG("setting abs freq %d on %s (cpu %d)\n", set->freq,
346 		    device_get_nameunit(set->dev), PCPU_GET(cpuid));
347 		error = CPUFREQ_DRV_SET(set->dev, set);
348 		thread_lock(curthread);
349 		sched_unbind(curthread);
350 		sched_prio(curthread, pri);
351 		thread_unlock(curthread);
352 		if (error) {
353 			goto out;
354 		}
355 	}
356 
357 	/* Next, set any/all relative frequencies via their drivers. */
358 	for (i = 0; i < level->rel_count; i++) {
359 		set = &level->rel_set[i];
360 		if (!device_is_attached(set->dev)) {
361 			error = ENXIO;
362 			goto out;
363 		}
364 
365 		/* Bind to the target CPU before switching. */
366 		pc = cpu_get_pcpu(set->dev);
367 		thread_lock(curthread);
368 		pri = curthread->td_priority;
369 		sched_prio(curthread, PRI_MIN);
370 		sched_bind(curthread, pc->pc_cpuid);
371 		thread_unlock(curthread);
372 		CF_DEBUG("setting rel freq %d on %s (cpu %d)\n", set->freq,
373 		    device_get_nameunit(set->dev), PCPU_GET(cpuid));
374 		error = CPUFREQ_DRV_SET(set->dev, set);
375 		thread_lock(curthread);
376 		sched_unbind(curthread);
377 		sched_prio(curthread, pri);
378 		thread_unlock(curthread);
379 		if (error) {
380 			/* XXX Back out any successful setting? */
381 			goto out;
382 		}
383 	}
384 
385 skip:
386 	/*
387 	 * Before recording the current level, check if we're going to a
388 	 * higher priority.  If so, save the previous level and priority.
389 	 */
390 	if (sc->curr_level.total_set.freq != CPUFREQ_VAL_UNKNOWN &&
391 	    priority > sc->curr_priority) {
392 		CF_DEBUG("saving level, freq %d prio %d\n",
393 		    sc->curr_level.total_set.freq, sc->curr_priority);
394 		curr_freq = malloc(sizeof(*curr_freq), M_TEMP, M_NOWAIT);
395 		if (curr_freq == NULL) {
396 			error = ENOMEM;
397 			goto out;
398 		}
399 		curr_freq->level = sc->curr_level;
400 		curr_freq->priority = sc->curr_priority;
401 		SLIST_INSERT_HEAD(&sc->saved_freq, curr_freq, link);
402 	}
403 	sc->curr_level = *level;
404 	sc->curr_priority = priority;
405 
406 	/* If we were restoring a saved state, reset it to "unused". */
407 	if (saved_freq != NULL) {
408 		CF_DEBUG("resetting saved level\n");
409 		sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN;
410 		SLIST_REMOVE_HEAD(&sc->saved_freq, link);
411 		free(saved_freq, M_TEMP);
412 	}
413 
414 out:
415 	CF_MTX_UNLOCK(&sc->lock);
416 
417 	/*
418 	 * We changed levels (or attempted to) so notify the post-change
419 	 * handler of new frequency or error.
420 	 */
421 	EVENTHANDLER_INVOKE(cpufreq_post_change, level, error);
422 	if (error && set)
423 		device_printf(set->dev, "set freq failed, err %d\n", error);
424 
425 	return (error);
426 }
427 
428 static int
429 cpufreq_get_frequency(device_t dev)
430 {
431 	struct cf_setting set;
432 
433 	if (CPUFREQ_DRV_GET(dev, &set) != 0)
434 		return (-1);
435 
436 	return (set.freq);
437 }
438 
439 /* Returns the index into *levels with the match */
440 static int
441 cpufreq_get_level(device_t dev, struct cf_level *levels, int count)
442 {
443 	int i, freq;
444 
445 	if ((freq = cpufreq_get_frequency(dev)) < 0)
446 		return (-1);
447 	for (i = 0; i < count; i++)
448 		if (freq == levels[i].total_set.freq)
449 			return (i);
450 
451 	return (-1);
452 }
453 
454 /*
455  * Used by the cpufreq core, this function will populate *level with the current
456  * frequency as either determined by a cached value sc->curr_level, or in the
457  * case the lower level driver has set the CPUFREQ_FLAG_UNCACHED flag, it will
458  * obtain the frequency from the driver itself.
459  */
460 static int
461 cf_get_method(device_t dev, struct cf_level *level)
462 {
463 	struct cpufreq_softc *sc;
464 	struct cf_level *levels;
465 	struct cf_setting *curr_set;
466 	struct pcpu *pc;
467 	int bdiff, count, diff, error, i, type;
468 	uint64_t rate;
469 
470 	sc = device_get_softc(dev);
471 	error = 0;
472 	levels = NULL;
473 
474 	/*
475 	 * If we already know the current frequency, and the driver didn't ask
476 	 * for uncached usage, we're done.
477 	 */
478 	CF_MTX_LOCK(&sc->lock);
479 	curr_set = &sc->curr_level.total_set;
480 	error = CPUFREQ_DRV_TYPE(sc->cf_drv_dev, &type);
481 	if (error == 0 && (type & CPUFREQ_FLAG_UNCACHED)) {
482 		struct cf_setting set;
483 
484 		/*
485 		 * If the driver wants to always report back the real frequency,
486 		 * first try the driver and if that fails, fall back to
487 		 * estimating.
488 		 */
489 		if (CPUFREQ_DRV_GET(sc->cf_drv_dev, &set) == 0) {
490 			sc->curr_level.total_set = set;
491 			CF_DEBUG("get returning immediate freq %d\n",
492 			    curr_set->freq);
493 			goto out;
494 		}
495 	} else if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) {
496 		CF_DEBUG("get returning known freq %d\n", curr_set->freq);
497 		error = 0;
498 		goto out;
499 	}
500 	CF_MTX_UNLOCK(&sc->lock);
501 
502 	/*
503 	 * We need to figure out the current level.  Loop through every
504 	 * driver, getting the current setting.  Then, attempt to get a best
505 	 * match of settings against each level.
506 	 */
507 	count = CF_MAX_LEVELS;
508 	levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
509 	if (levels == NULL)
510 		return (ENOMEM);
511 	error = CPUFREQ_LEVELS(sc->dev, levels, &count);
512 	if (error) {
513 		if (error == E2BIG)
514 			printf("cpufreq: need to increase CF_MAX_LEVELS\n");
515 		free(levels, M_TEMP);
516 		return (error);
517 	}
518 
519 	/*
520 	 * Reacquire the lock and search for the given level.
521 	 *
522 	 * XXX Note: this is not quite right since we really need to go
523 	 * through each level and compare both absolute and relative
524 	 * settings for each driver in the system before making a match.
525 	 * The estimation code below catches this case though.
526 	 */
527 	CF_MTX_LOCK(&sc->lock);
528 	i = cpufreq_get_level(sc->cf_drv_dev, levels, count);
529 	if (i >= 0)
530 		sc->curr_level = levels[i];
531 	else
532 		CF_DEBUG("Couldn't find supported level for %s\n",
533 		    device_get_nameunit(sc->cf_drv_dev));
534 
535 	if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) {
536 		CF_DEBUG("get matched freq %d from drivers\n", curr_set->freq);
537 		goto out;
538 	}
539 
540 	/*
541 	 * We couldn't find an exact match, so attempt to estimate and then
542 	 * match against a level.
543 	 */
544 	pc = cpu_get_pcpu(dev);
545 	if (pc == NULL) {
546 		error = ENXIO;
547 		goto out;
548 	}
549 	cpu_est_clockrate(pc->pc_cpuid, &rate);
550 	rate /= 1000000;
551 	bdiff = 1 << 30;
552 	for (i = 0; i < count; i++) {
553 		diff = abs(levels[i].total_set.freq - rate);
554 		if (diff < bdiff) {
555 			bdiff = diff;
556 			sc->curr_level = levels[i];
557 		}
558 	}
559 	CF_DEBUG("get estimated freq %d\n", curr_set->freq);
560 
561 out:
562 	if (error == 0)
563 		*level = sc->curr_level;
564 
565 	CF_MTX_UNLOCK(&sc->lock);
566 	if (levels)
567 		free(levels, M_TEMP);
568 	return (error);
569 }
570 
571 /*
572  * Either directly obtain settings from the cpufreq driver, or build a list of
573  * relative settings to be integrated later against an absolute max.
574  */
575 static int
576 cpufreq_add_levels(device_t cf_dev, struct cf_setting_lst *rel_sets)
577 {
578 	struct cf_setting_array *set_arr;
579 	struct cf_setting *sets;
580 	device_t dev;
581 	struct cpufreq_softc *sc;
582 	int type, set_count, error;
583 
584 	sc = device_get_softc(cf_dev);
585 	dev = sc->cf_drv_dev;
586 
587 	/* Skip devices that aren't ready. */
588 	if (!device_is_attached(cf_dev))
589 		return (0);
590 
591 	/*
592 	 * Get settings, skipping drivers that offer no settings or
593 	 * provide settings for informational purposes only.
594 	 */
595 	error = CPUFREQ_DRV_TYPE(dev, &type);
596 	if (error != 0 || (type & CPUFREQ_FLAG_INFO_ONLY)) {
597 		if (error == 0) {
598 			CF_DEBUG("skipping info-only driver %s\n",
599 			    device_get_nameunit(cf_dev));
600 		}
601 		return (error);
602 	}
603 
604 	sets = malloc(MAX_SETTINGS * sizeof(*sets), M_TEMP, M_NOWAIT);
605 	if (sets == NULL)
606 		return (ENOMEM);
607 
608 	set_count = MAX_SETTINGS;
609 	error = CPUFREQ_DRV_SETTINGS(dev, sets, &set_count);
610 	if (error != 0 || set_count == 0)
611 		goto out;
612 
613 	/* Add the settings to our absolute/relative lists. */
614 	switch (type & CPUFREQ_TYPE_MASK) {
615 	case CPUFREQ_TYPE_ABSOLUTE:
616 		error = cpufreq_insert_abs(sc, sets, set_count);
617 		break;
618 	case CPUFREQ_TYPE_RELATIVE:
619 		CF_DEBUG("adding %d relative settings\n", set_count);
620 		set_arr = malloc(sizeof(*set_arr), M_TEMP, M_NOWAIT);
621 		if (set_arr == NULL) {
622 			error = ENOMEM;
623 			goto out;
624 		}
625 		bcopy(sets, set_arr->sets, set_count * sizeof(*sets));
626 		set_arr->count = set_count;
627 		TAILQ_INSERT_TAIL(rel_sets, set_arr, link);
628 		break;
629 	default:
630 		error = EINVAL;
631 	}
632 
633 out:
634 	free(sets, M_TEMP);
635 	return (error);
636 }
637 
638 static int
639 cf_levels_method(device_t dev, struct cf_level *levels, int *count)
640 {
641 	struct cf_setting_array *set_arr;
642 	struct cf_setting_lst rel_sets;
643 	struct cpufreq_softc *sc;
644 	struct cf_level *lev;
645 	struct pcpu *pc;
646 	int error, i;
647 	uint64_t rate;
648 
649 	if (levels == NULL || count == NULL)
650 		return (EINVAL);
651 
652 	TAILQ_INIT(&rel_sets);
653 	sc = device_get_softc(dev);
654 
655 	CF_MTX_LOCK(&sc->lock);
656 	error = cpufreq_add_levels(sc->dev, &rel_sets);
657 	if (error)
658 		goto out;
659 
660 	/*
661 	 * If there are no absolute levels, create a fake one at 100%.  We
662 	 * then cache the clockrate for later use as our base frequency.
663 	 */
664 	if (TAILQ_EMPTY(&sc->all_levels)) {
665 		struct cf_setting set;
666 
667 		CF_DEBUG("No absolute levels returned by driver\n");
668 
669 		if (sc->max_mhz == CPUFREQ_VAL_UNKNOWN) {
670 			sc->max_mhz = cpu_get_nominal_mhz(dev);
671 			/*
672 			 * If the CPU can't report a rate for 100%, hope
673 			 * the CPU is running at its nominal rate right now,
674 			 * and use that instead.
675 			 */
676 			if (sc->max_mhz <= 0) {
677 				pc = cpu_get_pcpu(dev);
678 				cpu_est_clockrate(pc->pc_cpuid, &rate);
679 				sc->max_mhz = rate / 1000000;
680 			}
681 		}
682 		memset(&set, CPUFREQ_VAL_UNKNOWN, sizeof(set));
683 		set.freq = sc->max_mhz;
684 		set.dev = NULL;
685 		error = cpufreq_insert_abs(sc, &set, 1);
686 		if (error)
687 			goto out;
688 	}
689 
690 	/* Create a combined list of absolute + relative levels. */
691 	TAILQ_FOREACH(set_arr, &rel_sets, link)
692 		cpufreq_expand_set(sc, set_arr);
693 
694 	/* If the caller doesn't have enough space, return the actual count. */
695 	if (sc->all_count > *count) {
696 		*count = sc->all_count;
697 		error = E2BIG;
698 		goto out;
699 	}
700 
701 	/* Finally, output the list of levels. */
702 	i = 0;
703 	TAILQ_FOREACH(lev, &sc->all_levels, link) {
704 		/* Skip levels that have a frequency that is too low. */
705 		if (lev->total_set.freq < cf_lowest_freq) {
706 			sc->all_count--;
707 			continue;
708 		}
709 
710 		levels[i] = *lev;
711 		i++;
712 	}
713 	*count = sc->all_count;
714 	error = 0;
715 
716 out:
717 	/* Clear all levels since we regenerate them each time. */
718 	while ((lev = TAILQ_FIRST(&sc->all_levels)) != NULL) {
719 		TAILQ_REMOVE(&sc->all_levels, lev, link);
720 		free(lev, M_TEMP);
721 	}
722 	sc->all_count = 0;
723 
724 	CF_MTX_UNLOCK(&sc->lock);
725 	while ((set_arr = TAILQ_FIRST(&rel_sets)) != NULL) {
726 		TAILQ_REMOVE(&rel_sets, set_arr, link);
727 		free(set_arr, M_TEMP);
728 	}
729 	return (error);
730 }
731 
732 /*
733  * Create levels for an array of absolute settings and insert them in
734  * sorted order in the specified list.
735  */
736 static int
737 cpufreq_insert_abs(struct cpufreq_softc *sc, struct cf_setting *sets,
738     int count)
739 {
740 	struct cf_level_lst *list;
741 	struct cf_level *level, *search;
742 	int i, inserted;
743 
744 	CF_MTX_ASSERT(&sc->lock);
745 
746 	list = &sc->all_levels;
747 	for (i = 0; i < count; i++) {
748 		level = malloc(sizeof(*level), M_TEMP, M_NOWAIT | M_ZERO);
749 		if (level == NULL)
750 			return (ENOMEM);
751 		level->abs_set = sets[i];
752 		level->total_set = sets[i];
753 		level->total_set.dev = NULL;
754 		sc->all_count++;
755 		inserted = 0;
756 
757 		if (TAILQ_EMPTY(list)) {
758 			CF_DEBUG("adding abs setting %d at head\n",
759 			    sets[i].freq);
760 			TAILQ_INSERT_HEAD(list, level, link);
761 			continue;
762 		}
763 
764 		TAILQ_FOREACH_REVERSE(search, list, cf_level_lst, link)
765 			if (sets[i].freq <= search->total_set.freq) {
766 				CF_DEBUG("adding abs setting %d after %d\n",
767 				    sets[i].freq, search->total_set.freq);
768 				TAILQ_INSERT_AFTER(list, search, level, link);
769 				inserted = 1;
770 				break;
771 			}
772 
773 		if (inserted == 0) {
774 			TAILQ_FOREACH(search, list, link)
775 				if (sets[i].freq >= search->total_set.freq) {
776 					CF_DEBUG("adding abs setting %d before %d\n",
777 					    sets[i].freq, search->total_set.freq);
778 					TAILQ_INSERT_BEFORE(search, level, link);
779 					break;
780 				}
781 		}
782 	}
783 
784 	return (0);
785 }
786 
787 /*
788  * Expand a group of relative settings, creating derived levels from them.
789  */
790 static int
791 cpufreq_expand_set(struct cpufreq_softc *sc, struct cf_setting_array *set_arr)
792 {
793 	struct cf_level *fill, *search;
794 	struct cf_setting *set;
795 	int i;
796 
797 	CF_MTX_ASSERT(&sc->lock);
798 
799 	/*
800 	 * Walk the set of all existing levels in reverse.  This is so we
801 	 * create derived states from the lowest absolute settings first
802 	 * and discard duplicates created from higher absolute settings.
803 	 * For instance, a level of 50 Mhz derived from 100 Mhz + 50% is
804 	 * preferable to 200 Mhz + 25% because absolute settings are more
805 	 * efficient since they often change the voltage as well.
806 	 */
807 	TAILQ_FOREACH_REVERSE(search, &sc->all_levels, cf_level_lst, link) {
808 		/* Add each setting to the level, duplicating if necessary. */
809 		for (i = 0; i < set_arr->count; i++) {
810 			set = &set_arr->sets[i];
811 
812 			/*
813 			 * If this setting is less than 100%, split the level
814 			 * into two and add this setting to the new level.
815 			 */
816 			fill = search;
817 			if (set->freq < 10000) {
818 				fill = cpufreq_dup_set(sc, search, set);
819 
820 				/*
821 				 * The new level was a duplicate of an existing
822 				 * level or its absolute setting is too high
823 				 * so we freed it.  For example, we discard a
824 				 * derived level of 1000 MHz/25% if a level
825 				 * of 500 MHz/100% already exists.
826 				 */
827 				if (fill == NULL)
828 					break;
829 			}
830 
831 			/* Add this setting to the existing or new level. */
832 			KASSERT(fill->rel_count < MAX_SETTINGS,
833 			    ("cpufreq: too many relative drivers (%d)",
834 			    MAX_SETTINGS));
835 			fill->rel_set[fill->rel_count] = *set;
836 			fill->rel_count++;
837 			CF_DEBUG(
838 			"expand set added rel setting %d%% to %d level\n",
839 			    set->freq / 100, fill->total_set.freq);
840 		}
841 	}
842 
843 	return (0);
844 }
845 
846 static struct cf_level *
847 cpufreq_dup_set(struct cpufreq_softc *sc, struct cf_level *dup,
848     struct cf_setting *set)
849 {
850 	struct cf_level_lst *list;
851 	struct cf_level *fill, *itr;
852 	struct cf_setting *fill_set, *itr_set;
853 	int i;
854 
855 	CF_MTX_ASSERT(&sc->lock);
856 
857 	/*
858 	 * Create a new level, copy it from the old one, and update the
859 	 * total frequency and power by the percentage specified in the
860 	 * relative setting.
861 	 */
862 	fill = malloc(sizeof(*fill), M_TEMP, M_NOWAIT);
863 	if (fill == NULL)
864 		return (NULL);
865 	*fill = *dup;
866 	fill_set = &fill->total_set;
867 	fill_set->freq =
868 	    ((uint64_t)fill_set->freq * set->freq) / 10000;
869 	if (fill_set->power != CPUFREQ_VAL_UNKNOWN) {
870 		fill_set->power = ((uint64_t)fill_set->power * set->freq)
871 		    / 10000;
872 	}
873 	if (set->lat != CPUFREQ_VAL_UNKNOWN) {
874 		if (fill_set->lat != CPUFREQ_VAL_UNKNOWN)
875 			fill_set->lat += set->lat;
876 		else
877 			fill_set->lat = set->lat;
878 	}
879 	CF_DEBUG("dup set considering derived setting %d\n", fill_set->freq);
880 
881 	/*
882 	 * If we copied an old level that we already modified (say, at 100%),
883 	 * we need to remove that setting before adding this one.  Since we
884 	 * process each setting array in order, we know any settings for this
885 	 * driver will be found at the end.
886 	 */
887 	for (i = fill->rel_count; i != 0; i--) {
888 		if (fill->rel_set[i - 1].dev != set->dev)
889 			break;
890 		CF_DEBUG("removed last relative driver: %s\n",
891 		    device_get_nameunit(set->dev));
892 		fill->rel_count--;
893 	}
894 
895 	/*
896 	 * Insert the new level in sorted order.  If it is a duplicate of an
897 	 * existing level (1) or has an absolute setting higher than the
898 	 * existing level (2), do not add it.  We can do this since any such
899 	 * level is guaranteed use less power.  For example (1), a level with
900 	 * one absolute setting of 800 Mhz uses less power than one composed
901 	 * of an absolute setting of 1600 Mhz and a relative setting at 50%.
902 	 * Also for example (2), a level of 800 Mhz/75% is preferable to
903 	 * 1600 Mhz/25% even though the latter has a lower total frequency.
904 	 */
905 	list = &sc->all_levels;
906 	KASSERT(!TAILQ_EMPTY(list), ("all levels list empty in dup set"));
907 	TAILQ_FOREACH_REVERSE(itr, list, cf_level_lst, link) {
908 		itr_set = &itr->total_set;
909 		if (CPUFREQ_CMP(fill_set->freq, itr_set->freq)) {
910 			CF_DEBUG("dup set rejecting %d (dupe)\n",
911 			    fill_set->freq);
912 			itr = NULL;
913 			break;
914 		} else if (fill_set->freq < itr_set->freq) {
915 			if (fill->abs_set.freq <= itr->abs_set.freq) {
916 				CF_DEBUG(
917 			"dup done, inserting new level %d after %d\n",
918 				    fill_set->freq, itr_set->freq);
919 				TAILQ_INSERT_AFTER(list, itr, fill, link);
920 				sc->all_count++;
921 			} else {
922 				CF_DEBUG("dup set rejecting %d (abs too big)\n",
923 				    fill_set->freq);
924 				itr = NULL;
925 			}
926 			break;
927 		}
928 	}
929 
930 	/* We didn't find a good place for this new level so free it. */
931 	if (itr == NULL) {
932 		CF_DEBUG("dup set freeing new level %d (not optimal)\n",
933 		    fill_set->freq);
934 		free(fill, M_TEMP);
935 		fill = NULL;
936 	}
937 
938 	return (fill);
939 }
940 
941 static int
942 cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS)
943 {
944 	struct cpufreq_softc *sc;
945 	struct cf_level *levels;
946 	int best, count, diff, bdiff, devcount, error, freq, i, n;
947 	device_t *devs;
948 
949 	devs = NULL;
950 	sc = oidp->oid_arg1;
951 	levels = sc->levels_buf;
952 
953 	error = CPUFREQ_GET(sc->dev, &levels[0]);
954 	if (error)
955 		goto out;
956 	freq = levels[0].total_set.freq;
957 	error = sysctl_handle_int(oidp, &freq, 0, req);
958 	if (error != 0 || req->newptr == NULL)
959 		goto out;
960 
961 	/*
962 	 * While we only call cpufreq_get() on one device (assuming all
963 	 * CPUs have equal levels), we call cpufreq_set() on all CPUs.
964 	 * This is needed for some MP systems.
965 	 */
966 	error = devclass_get_devices(devclass_find("cpufreq"), &devs, &devcount);
967 	if (error)
968 		goto out;
969 	for (n = 0; n < devcount; n++) {
970 		count = CF_MAX_LEVELS;
971 		error = CPUFREQ_LEVELS(devs[n], levels, &count);
972 		if (error) {
973 			if (error == E2BIG)
974 				printf(
975 			"cpufreq: need to increase CF_MAX_LEVELS\n");
976 			break;
977 		}
978 		best = 0;
979 		bdiff = 1 << 30;
980 		for (i = 0; i < count; i++) {
981 			diff = abs(levels[i].total_set.freq - freq);
982 			if (diff < bdiff) {
983 				bdiff = diff;
984 				best = i;
985 			}
986 		}
987 		error = CPUFREQ_SET(devs[n], &levels[best], CPUFREQ_PRIO_USER);
988 	}
989 
990 out:
991 	if (devs)
992 		free(devs, M_TEMP);
993 	return (error);
994 }
995 
996 static int
997 cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS)
998 {
999 	struct cpufreq_softc *sc;
1000 	struct cf_level *levels;
1001 	struct cf_setting *set;
1002 	struct sbuf sb;
1003 	int count, error, i;
1004 
1005 	sc = oidp->oid_arg1;
1006 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
1007 
1008 	/* Get settings from the device and generate the output string. */
1009 	count = CF_MAX_LEVELS;
1010 	levels = sc->levels_buf;
1011 	if (levels == NULL) {
1012 		sbuf_delete(&sb);
1013 		return (ENOMEM);
1014 	}
1015 	error = CPUFREQ_LEVELS(sc->dev, levels, &count);
1016 	if (error) {
1017 		if (error == E2BIG)
1018 			printf("cpufreq: need to increase CF_MAX_LEVELS\n");
1019 		goto out;
1020 	}
1021 	if (count) {
1022 		for (i = 0; i < count; i++) {
1023 			set = &levels[i].total_set;
1024 			sbuf_printf(&sb, "%d/%d ", set->freq, set->power);
1025 		}
1026 	} else
1027 		sbuf_cpy(&sb, "0");
1028 	sbuf_trim(&sb);
1029 	sbuf_finish(&sb);
1030 	error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1031 
1032 out:
1033 	sbuf_delete(&sb);
1034 	return (error);
1035 }
1036 
1037 static int
1038 cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS)
1039 {
1040 	device_t dev;
1041 	struct cf_setting *sets;
1042 	struct sbuf sb;
1043 	int error, i, set_count;
1044 
1045 	dev = oidp->oid_arg1;
1046 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
1047 
1048 	/* Get settings from the device and generate the output string. */
1049 	set_count = MAX_SETTINGS;
1050 	sets = malloc(set_count * sizeof(*sets), M_TEMP, M_NOWAIT);
1051 	if (sets == NULL) {
1052 		sbuf_delete(&sb);
1053 		return (ENOMEM);
1054 	}
1055 	error = CPUFREQ_DRV_SETTINGS(dev, sets, &set_count);
1056 	if (error)
1057 		goto out;
1058 	if (set_count) {
1059 		for (i = 0; i < set_count; i++)
1060 			sbuf_printf(&sb, "%d/%d ", sets[i].freq, sets[i].power);
1061 	} else
1062 		sbuf_cpy(&sb, "0");
1063 	sbuf_trim(&sb);
1064 	sbuf_finish(&sb);
1065 	error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1066 
1067 out:
1068 	free(sets, M_TEMP);
1069 	sbuf_delete(&sb);
1070 	return (error);
1071 }
1072 
1073 static void
1074 cpufreq_add_freq_driver_sysctl(device_t cf_dev)
1075 {
1076 	struct cpufreq_softc *sc;
1077 
1078 	sc = device_get_softc(cf_dev);
1079 	SYSCTL_ADD_CONST_STRING(&sc->sysctl_ctx,
1080 	    SYSCTL_CHILDREN(device_get_sysctl_tree(cf_dev)), OID_AUTO,
1081 	    "freq_driver", CTLFLAG_RD, device_get_nameunit(sc->cf_drv_dev),
1082 	    "cpufreq driver used by this cpu");
1083 }
1084 
1085 int
1086 cpufreq_register(device_t dev)
1087 {
1088 	struct cpufreq_softc *sc;
1089 	device_t cf_dev, cpu_dev;
1090 	int error;
1091 
1092 	/* Add a sysctl to get each driver's settings separately. */
1093 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1094 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1095 	    OID_AUTO, "freq_settings",
1096 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, dev, 0,
1097 	    cpufreq_settings_sysctl, "A", "CPU frequency driver settings");
1098 
1099 	/*
1100 	 * Add only one cpufreq device to each CPU.  Currently, all CPUs
1101 	 * must offer the same levels and be switched at the same time.
1102 	 */
1103 	cpu_dev = device_get_parent(dev);
1104 	if ((cf_dev = device_find_child(cpu_dev, "cpufreq", -1))) {
1105 		sc = device_get_softc(cf_dev);
1106 		sc->max_mhz = CPUFREQ_VAL_UNKNOWN;
1107 		MPASS(sc->cf_drv_dev != NULL);
1108 		return (0);
1109 	}
1110 
1111 	/* Add the child device and possibly sysctls. */
1112 	cf_dev = BUS_ADD_CHILD(cpu_dev, 0, "cpufreq", device_get_unit(cpu_dev));
1113 	if (cf_dev == NULL)
1114 		return (ENOMEM);
1115 	device_quiet(cf_dev);
1116 
1117 	error = device_probe_and_attach(cf_dev);
1118 	if (error)
1119 		return (error);
1120 
1121 	sc = device_get_softc(cf_dev);
1122 	sc->cf_drv_dev = dev;
1123 	cpufreq_add_freq_driver_sysctl(cf_dev);
1124 	return (error);
1125 }
1126 
1127 int
1128 cpufreq_unregister(device_t dev)
1129 {
1130 	device_t cf_dev;
1131 	struct cpufreq_softc *sc __diagused;
1132 
1133 	/*
1134 	 * If this is the last cpufreq child device, remove the control
1135 	 * device as well.  We identify cpufreq children by calling a method
1136 	 * they support.
1137 	 */
1138 	cf_dev = device_find_child(device_get_parent(dev), "cpufreq", -1);
1139 	if (cf_dev == NULL) {
1140 		device_printf(dev,
1141 	"warning: cpufreq_unregister called with no cpufreq device active\n");
1142 		return (0);
1143 	}
1144 	sc = device_get_softc(cf_dev);
1145 	MPASS(sc->cf_drv_dev == dev);
1146 	device_delete_child(device_get_parent(cf_dev), cf_dev);
1147 
1148 	return (0);
1149 }
1150 
1151 int
1152 cpufreq_settings_changed(device_t dev)
1153 {
1154 
1155 	EVENTHANDLER_INVOKE(cpufreq_levels_changed,
1156 	    device_get_unit(device_get_parent(dev)));
1157 	return (0);
1158 }
1159