1 /*- 2 * Copyright (c) 2004-2007 Nate Lawson (SDG) 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bus.h> 32 #include <sys/cpu.h> 33 #include <sys/eventhandler.h> 34 #include <sys/kernel.h> 35 #include <sys/lock.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/proc.h> 39 #include <sys/queue.h> 40 #include <sys/sbuf.h> 41 #include <sys/sched.h> 42 #include <sys/smp.h> 43 #include <sys/sysctl.h> 44 #include <sys/systm.h> 45 #include <sys/sx.h> 46 #include <sys/timetc.h> 47 #include <sys/taskqueue.h> 48 49 #include "cpufreq_if.h" 50 51 /* 52 * Common CPU frequency glue code. Drivers for specific hardware can 53 * attach this interface to allow users to get/set the CPU frequency. 54 */ 55 56 /* 57 * Number of levels we can handle. Levels are synthesized from settings 58 * so for M settings and N drivers, there may be M*N levels. 59 */ 60 #define CF_MAX_LEVELS 64 61 62 struct cf_saved_freq { 63 struct cf_level level; 64 int priority; 65 SLIST_ENTRY(cf_saved_freq) link; 66 }; 67 68 struct cpufreq_softc { 69 struct sx lock; 70 struct cf_level curr_level; 71 int curr_priority; 72 SLIST_HEAD(, cf_saved_freq) saved_freq; 73 struct cf_level_lst all_levels; 74 int all_count; 75 int max_mhz; 76 device_t dev; 77 struct sysctl_ctx_list sysctl_ctx; 78 struct task startup_task; 79 }; 80 81 struct cf_setting_array { 82 struct cf_setting sets[MAX_SETTINGS]; 83 int count; 84 TAILQ_ENTRY(cf_setting_array) link; 85 }; 86 87 TAILQ_HEAD(cf_setting_lst, cf_setting_array); 88 89 #define CF_MTX_INIT(x) sx_init((x), "cpufreq lock") 90 #define CF_MTX_LOCK(x) sx_xlock((x)) 91 #define CF_MTX_UNLOCK(x) sx_xunlock((x)) 92 #define CF_MTX_ASSERT(x) sx_assert((x), SX_XLOCKED) 93 94 #define CF_DEBUG(msg...) do { \ 95 if (cf_verbose) \ 96 printf("cpufreq: " msg); \ 97 } while (0) 98 99 static int cpufreq_attach(device_t dev); 100 static void cpufreq_startup_task(void *ctx, int pending); 101 static int cpufreq_detach(device_t dev); 102 static int cf_set_method(device_t dev, const struct cf_level *level, 103 int priority); 104 static int cf_get_method(device_t dev, struct cf_level *level); 105 static int cf_levels_method(device_t dev, struct cf_level *levels, 106 int *count); 107 static int cpufreq_insert_abs(struct cpufreq_softc *sc, 108 struct cf_setting *sets, int count); 109 static int cpufreq_expand_set(struct cpufreq_softc *sc, 110 struct cf_setting_array *set_arr); 111 static struct cf_level *cpufreq_dup_set(struct cpufreq_softc *sc, 112 struct cf_level *dup, struct cf_setting *set); 113 static int cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS); 114 static int cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS); 115 static int cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS); 116 117 static device_method_t cpufreq_methods[] = { 118 DEVMETHOD(device_probe, bus_generic_probe), 119 DEVMETHOD(device_attach, cpufreq_attach), 120 DEVMETHOD(device_detach, cpufreq_detach), 121 122 DEVMETHOD(cpufreq_set, cf_set_method), 123 DEVMETHOD(cpufreq_get, cf_get_method), 124 DEVMETHOD(cpufreq_levels, cf_levels_method), 125 {0, 0} 126 }; 127 static driver_t cpufreq_driver = { 128 "cpufreq", cpufreq_methods, sizeof(struct cpufreq_softc) 129 }; 130 static devclass_t cpufreq_dc; 131 DRIVER_MODULE(cpufreq, cpu, cpufreq_driver, cpufreq_dc, 0, 0); 132 133 static int cf_lowest_freq; 134 static int cf_verbose; 135 TUNABLE_INT("debug.cpufreq.lowest", &cf_lowest_freq); 136 TUNABLE_INT("debug.cpufreq.verbose", &cf_verbose); 137 SYSCTL_NODE(_debug, OID_AUTO, cpufreq, CTLFLAG_RD, NULL, "cpufreq debugging"); 138 SYSCTL_INT(_debug_cpufreq, OID_AUTO, lowest, CTLFLAG_RW, &cf_lowest_freq, 1, 139 "Don't provide levels below this frequency."); 140 SYSCTL_INT(_debug_cpufreq, OID_AUTO, verbose, CTLFLAG_RW, &cf_verbose, 1, 141 "Print verbose debugging messages"); 142 143 static int 144 cpufreq_attach(device_t dev) 145 { 146 struct cpufreq_softc *sc; 147 struct pcpu *pc; 148 device_t parent; 149 uint64_t rate; 150 int numdevs; 151 152 CF_DEBUG("initializing %s\n", device_get_nameunit(dev)); 153 sc = device_get_softc(dev); 154 parent = device_get_parent(dev); 155 sc->dev = dev; 156 sysctl_ctx_init(&sc->sysctl_ctx); 157 TAILQ_INIT(&sc->all_levels); 158 CF_MTX_INIT(&sc->lock); 159 sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN; 160 SLIST_INIT(&sc->saved_freq); 161 /* Try to get current CPU freq to use it as maximum later if needed */ 162 pc = cpu_get_pcpu(dev); 163 if (cpu_est_clockrate(pc->pc_cpuid, &rate) == 0) 164 sc->max_mhz = rate / 1000000; 165 else 166 sc->max_mhz = CPUFREQ_VAL_UNKNOWN; 167 168 /* 169 * Only initialize one set of sysctls for all CPUs. In the future, 170 * if multiple CPUs can have different settings, we can move these 171 * sysctls to be under every CPU instead of just the first one. 172 */ 173 numdevs = devclass_get_count(cpufreq_dc); 174 if (numdevs > 1) 175 return (0); 176 177 CF_DEBUG("initializing one-time data for %s\n", 178 device_get_nameunit(dev)); 179 SYSCTL_ADD_PROC(&sc->sysctl_ctx, 180 SYSCTL_CHILDREN(device_get_sysctl_tree(parent)), 181 OID_AUTO, "freq", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 182 cpufreq_curr_sysctl, "I", "Current CPU frequency"); 183 SYSCTL_ADD_PROC(&sc->sysctl_ctx, 184 SYSCTL_CHILDREN(device_get_sysctl_tree(parent)), 185 OID_AUTO, "freq_levels", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 186 cpufreq_levels_sysctl, "A", "CPU frequency levels"); 187 188 /* 189 * Queue a one-shot broadcast that levels have changed. 190 * It will run once the system has completed booting. 191 */ 192 TASK_INIT(&sc->startup_task, 0, cpufreq_startup_task, dev); 193 taskqueue_enqueue(taskqueue_thread, &sc->startup_task); 194 195 return (0); 196 } 197 198 /* Handle any work to be done for all drivers that attached during boot. */ 199 static void 200 cpufreq_startup_task(void *ctx, int pending) 201 { 202 203 cpufreq_settings_changed((device_t)ctx); 204 } 205 206 static int 207 cpufreq_detach(device_t dev) 208 { 209 struct cpufreq_softc *sc; 210 struct cf_saved_freq *saved_freq; 211 int numdevs; 212 213 CF_DEBUG("shutdown %s\n", device_get_nameunit(dev)); 214 sc = device_get_softc(dev); 215 sysctl_ctx_free(&sc->sysctl_ctx); 216 217 while ((saved_freq = SLIST_FIRST(&sc->saved_freq)) != NULL) { 218 SLIST_REMOVE_HEAD(&sc->saved_freq, link); 219 free(saved_freq, M_TEMP); 220 } 221 222 /* Only clean up these resources when the last device is detaching. */ 223 numdevs = devclass_get_count(cpufreq_dc); 224 if (numdevs == 1) { 225 CF_DEBUG("final shutdown for %s\n", device_get_nameunit(dev)); 226 } 227 228 return (0); 229 } 230 231 static int 232 cf_set_method(device_t dev, const struct cf_level *level, int priority) 233 { 234 struct cpufreq_softc *sc; 235 const struct cf_setting *set; 236 struct cf_saved_freq *saved_freq, *curr_freq; 237 struct pcpu *pc; 238 int error, i; 239 240 sc = device_get_softc(dev); 241 error = 0; 242 set = NULL; 243 saved_freq = NULL; 244 245 /* We are going to change levels so notify the pre-change handler. */ 246 EVENTHANDLER_INVOKE(cpufreq_pre_change, level, &error); 247 if (error != 0) { 248 EVENTHANDLER_INVOKE(cpufreq_post_change, level, error); 249 return (error); 250 } 251 252 CF_MTX_LOCK(&sc->lock); 253 254 #ifdef SMP 255 /* 256 * If still booting and secondary CPUs not started yet, don't allow 257 * changing the frequency until they're online. This is because we 258 * can't switch to them using sched_bind() and thus we'd only be 259 * switching the main CPU. XXXTODO: Need to think more about how to 260 * handle having different CPUs at different frequencies. 261 */ 262 if (mp_ncpus > 1 && !smp_active) { 263 device_printf(dev, "rejecting change, SMP not started yet\n"); 264 error = ENXIO; 265 goto out; 266 } 267 #endif /* SMP */ 268 269 /* 270 * If the requested level has a lower priority, don't allow 271 * the new level right now. 272 */ 273 if (priority < sc->curr_priority) { 274 CF_DEBUG("ignoring, curr prio %d less than %d\n", priority, 275 sc->curr_priority); 276 error = EPERM; 277 goto out; 278 } 279 280 /* 281 * If the caller didn't specify a level and one is saved, prepare to 282 * restore the saved level. If none has been saved, return an error. 283 */ 284 if (level == NULL) { 285 saved_freq = SLIST_FIRST(&sc->saved_freq); 286 if (saved_freq == NULL) { 287 CF_DEBUG("NULL level, no saved level\n"); 288 error = ENXIO; 289 goto out; 290 } 291 level = &saved_freq->level; 292 priority = saved_freq->priority; 293 CF_DEBUG("restoring saved level, freq %d prio %d\n", 294 level->total_set.freq, priority); 295 } 296 297 /* Reject levels that are below our specified threshold. */ 298 if (level->total_set.freq < cf_lowest_freq) { 299 CF_DEBUG("rejecting freq %d, less than %d limit\n", 300 level->total_set.freq, cf_lowest_freq); 301 error = EINVAL; 302 goto out; 303 } 304 305 /* If already at this level, just return. */ 306 if (CPUFREQ_CMP(sc->curr_level.total_set.freq, level->total_set.freq)) { 307 CF_DEBUG("skipping freq %d, same as current level %d\n", 308 level->total_set.freq, sc->curr_level.total_set.freq); 309 goto skip; 310 } 311 312 /* First, set the absolute frequency via its driver. */ 313 set = &level->abs_set; 314 if (set->dev) { 315 if (!device_is_attached(set->dev)) { 316 error = ENXIO; 317 goto out; 318 } 319 320 /* Bind to the target CPU before switching. */ 321 pc = cpu_get_pcpu(set->dev); 322 thread_lock(curthread); 323 sched_bind(curthread, pc->pc_cpuid); 324 thread_unlock(curthread); 325 CF_DEBUG("setting abs freq %d on %s (cpu %d)\n", set->freq, 326 device_get_nameunit(set->dev), PCPU_GET(cpuid)); 327 error = CPUFREQ_DRV_SET(set->dev, set); 328 thread_lock(curthread); 329 sched_unbind(curthread); 330 thread_unlock(curthread); 331 if (error) { 332 goto out; 333 } 334 } 335 336 /* Next, set any/all relative frequencies via their drivers. */ 337 for (i = 0; i < level->rel_count; i++) { 338 set = &level->rel_set[i]; 339 if (!device_is_attached(set->dev)) { 340 error = ENXIO; 341 goto out; 342 } 343 344 /* Bind to the target CPU before switching. */ 345 pc = cpu_get_pcpu(set->dev); 346 thread_lock(curthread); 347 sched_bind(curthread, pc->pc_cpuid); 348 thread_unlock(curthread); 349 CF_DEBUG("setting rel freq %d on %s (cpu %d)\n", set->freq, 350 device_get_nameunit(set->dev), PCPU_GET(cpuid)); 351 error = CPUFREQ_DRV_SET(set->dev, set); 352 thread_lock(curthread); 353 sched_unbind(curthread); 354 thread_unlock(curthread); 355 if (error) { 356 /* XXX Back out any successful setting? */ 357 goto out; 358 } 359 } 360 361 skip: 362 /* 363 * Before recording the current level, check if we're going to a 364 * higher priority. If so, save the previous level and priority. 365 */ 366 if (sc->curr_level.total_set.freq != CPUFREQ_VAL_UNKNOWN && 367 priority > sc->curr_priority) { 368 CF_DEBUG("saving level, freq %d prio %d\n", 369 sc->curr_level.total_set.freq, sc->curr_priority); 370 curr_freq = malloc(sizeof(*curr_freq), M_TEMP, M_NOWAIT); 371 if (curr_freq == NULL) { 372 error = ENOMEM; 373 goto out; 374 } 375 curr_freq->level = sc->curr_level; 376 curr_freq->priority = sc->curr_priority; 377 SLIST_INSERT_HEAD(&sc->saved_freq, curr_freq, link); 378 } 379 sc->curr_level = *level; 380 sc->curr_priority = priority; 381 382 /* If we were restoring a saved state, reset it to "unused". */ 383 if (saved_freq != NULL) { 384 CF_DEBUG("resetting saved level\n"); 385 sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN; 386 SLIST_REMOVE_HEAD(&sc->saved_freq, link); 387 free(saved_freq, M_TEMP); 388 } 389 390 out: 391 CF_MTX_UNLOCK(&sc->lock); 392 393 /* 394 * We changed levels (or attempted to) so notify the post-change 395 * handler of new frequency or error. 396 */ 397 EVENTHANDLER_INVOKE(cpufreq_post_change, level, error); 398 if (error && set) 399 device_printf(set->dev, "set freq failed, err %d\n", error); 400 401 return (error); 402 } 403 404 static int 405 cf_get_method(device_t dev, struct cf_level *level) 406 { 407 struct cpufreq_softc *sc; 408 struct cf_level *levels; 409 struct cf_setting *curr_set, set; 410 struct pcpu *pc; 411 device_t *devs; 412 int count, error, i, n, numdevs; 413 uint64_t rate; 414 415 sc = device_get_softc(dev); 416 error = 0; 417 levels = NULL; 418 419 /* If we already know the current frequency, we're done. */ 420 CF_MTX_LOCK(&sc->lock); 421 curr_set = &sc->curr_level.total_set; 422 if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) { 423 CF_DEBUG("get returning known freq %d\n", curr_set->freq); 424 goto out; 425 } 426 CF_MTX_UNLOCK(&sc->lock); 427 428 /* 429 * We need to figure out the current level. Loop through every 430 * driver, getting the current setting. Then, attempt to get a best 431 * match of settings against each level. 432 */ 433 count = CF_MAX_LEVELS; 434 levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT); 435 if (levels == NULL) 436 return (ENOMEM); 437 error = CPUFREQ_LEVELS(sc->dev, levels, &count); 438 if (error) { 439 if (error == E2BIG) 440 printf("cpufreq: need to increase CF_MAX_LEVELS\n"); 441 free(levels, M_TEMP); 442 return (error); 443 } 444 error = device_get_children(device_get_parent(dev), &devs, &numdevs); 445 if (error) { 446 free(levels, M_TEMP); 447 return (error); 448 } 449 450 /* 451 * Reacquire the lock and search for the given level. 452 * 453 * XXX Note: this is not quite right since we really need to go 454 * through each level and compare both absolute and relative 455 * settings for each driver in the system before making a match. 456 * The estimation code below catches this case though. 457 */ 458 CF_MTX_LOCK(&sc->lock); 459 for (n = 0; n < numdevs && curr_set->freq == CPUFREQ_VAL_UNKNOWN; n++) { 460 if (!device_is_attached(devs[n])) 461 continue; 462 if (CPUFREQ_DRV_GET(devs[n], &set) != 0) 463 continue; 464 for (i = 0; i < count; i++) { 465 if (CPUFREQ_CMP(set.freq, levels[i].total_set.freq)) { 466 sc->curr_level = levels[i]; 467 break; 468 } 469 } 470 } 471 free(devs, M_TEMP); 472 if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) { 473 CF_DEBUG("get matched freq %d from drivers\n", curr_set->freq); 474 goto out; 475 } 476 477 /* 478 * We couldn't find an exact match, so attempt to estimate and then 479 * match against a level. 480 */ 481 pc = cpu_get_pcpu(dev); 482 if (pc == NULL) { 483 error = ENXIO; 484 goto out; 485 } 486 cpu_est_clockrate(pc->pc_cpuid, &rate); 487 rate /= 1000000; 488 for (i = 0; i < count; i++) { 489 if (CPUFREQ_CMP(rate, levels[i].total_set.freq)) { 490 sc->curr_level = levels[i]; 491 CF_DEBUG("get estimated freq %d\n", curr_set->freq); 492 goto out; 493 } 494 } 495 error = ENXIO; 496 497 out: 498 if (error == 0) 499 *level = sc->curr_level; 500 501 CF_MTX_UNLOCK(&sc->lock); 502 if (levels) 503 free(levels, M_TEMP); 504 return (error); 505 } 506 507 static int 508 cf_levels_method(device_t dev, struct cf_level *levels, int *count) 509 { 510 struct cf_setting_array *set_arr; 511 struct cf_setting_lst rel_sets; 512 struct cpufreq_softc *sc; 513 struct cf_level *lev; 514 struct cf_setting *sets; 515 struct pcpu *pc; 516 device_t *devs; 517 int error, i, numdevs, set_count, type; 518 uint64_t rate; 519 520 if (levels == NULL || count == NULL) 521 return (EINVAL); 522 523 TAILQ_INIT(&rel_sets); 524 sc = device_get_softc(dev); 525 error = device_get_children(device_get_parent(dev), &devs, &numdevs); 526 if (error) 527 return (error); 528 sets = malloc(MAX_SETTINGS * sizeof(*sets), M_TEMP, M_NOWAIT); 529 if (sets == NULL) { 530 free(devs, M_TEMP); 531 return (ENOMEM); 532 } 533 534 /* Get settings from all cpufreq drivers. */ 535 CF_MTX_LOCK(&sc->lock); 536 for (i = 0; i < numdevs; i++) { 537 /* Skip devices that aren't ready. */ 538 if (!device_is_attached(devs[i])) 539 continue; 540 541 /* 542 * Get settings, skipping drivers that offer no settings or 543 * provide settings for informational purposes only. 544 */ 545 error = CPUFREQ_DRV_TYPE(devs[i], &type); 546 if (error || (type & CPUFREQ_FLAG_INFO_ONLY)) { 547 if (error == 0) { 548 CF_DEBUG("skipping info-only driver %s\n", 549 device_get_nameunit(devs[i])); 550 } 551 continue; 552 } 553 set_count = MAX_SETTINGS; 554 error = CPUFREQ_DRV_SETTINGS(devs[i], sets, &set_count); 555 if (error || set_count == 0) 556 continue; 557 558 /* Add the settings to our absolute/relative lists. */ 559 switch (type & CPUFREQ_TYPE_MASK) { 560 case CPUFREQ_TYPE_ABSOLUTE: 561 error = cpufreq_insert_abs(sc, sets, set_count); 562 break; 563 case CPUFREQ_TYPE_RELATIVE: 564 CF_DEBUG("adding %d relative settings\n", set_count); 565 set_arr = malloc(sizeof(*set_arr), M_TEMP, M_NOWAIT); 566 if (set_arr == NULL) { 567 error = ENOMEM; 568 goto out; 569 } 570 bcopy(sets, set_arr->sets, set_count * sizeof(*sets)); 571 set_arr->count = set_count; 572 TAILQ_INSERT_TAIL(&rel_sets, set_arr, link); 573 break; 574 default: 575 error = EINVAL; 576 } 577 if (error) 578 goto out; 579 } 580 581 /* 582 * If there are no absolute levels, create a fake one at 100%. We 583 * then cache the clockrate for later use as our base frequency. 584 * 585 * XXX This assumes that the first time through, if we only have 586 * relative drivers, the CPU is currently running at 100%. 587 */ 588 if (TAILQ_EMPTY(&sc->all_levels)) { 589 if (sc->max_mhz == CPUFREQ_VAL_UNKNOWN) { 590 pc = cpu_get_pcpu(dev); 591 cpu_est_clockrate(pc->pc_cpuid, &rate); 592 sc->max_mhz = rate / 1000000; 593 } 594 memset(&sets[0], CPUFREQ_VAL_UNKNOWN, sizeof(*sets)); 595 sets[0].freq = sc->max_mhz; 596 sets[0].dev = NULL; 597 error = cpufreq_insert_abs(sc, sets, 1); 598 if (error) 599 goto out; 600 } 601 602 /* Create a combined list of absolute + relative levels. */ 603 TAILQ_FOREACH(set_arr, &rel_sets, link) 604 cpufreq_expand_set(sc, set_arr); 605 606 /* If the caller doesn't have enough space, return the actual count. */ 607 if (sc->all_count > *count) { 608 *count = sc->all_count; 609 error = E2BIG; 610 goto out; 611 } 612 613 /* Finally, output the list of levels. */ 614 i = 0; 615 TAILQ_FOREACH(lev, &sc->all_levels, link) { 616 /* 617 * Skip levels that are too close in frequency to the 618 * previous levels. Some systems report bogus duplicate 619 * settings (i.e., for acpi_perf). 620 */ 621 if (i > 0 && CPUFREQ_CMP(lev->total_set.freq, 622 levels[i - 1].total_set.freq)) { 623 sc->all_count--; 624 continue; 625 } 626 627 /* Skip levels that have a frequency that is too low. */ 628 if (lev->total_set.freq < cf_lowest_freq) { 629 sc->all_count--; 630 continue; 631 } 632 633 levels[i] = *lev; 634 i++; 635 } 636 *count = sc->all_count; 637 error = 0; 638 639 out: 640 /* Clear all levels since we regenerate them each time. */ 641 while ((lev = TAILQ_FIRST(&sc->all_levels)) != NULL) { 642 TAILQ_REMOVE(&sc->all_levels, lev, link); 643 free(lev, M_TEMP); 644 } 645 sc->all_count = 0; 646 647 CF_MTX_UNLOCK(&sc->lock); 648 while ((set_arr = TAILQ_FIRST(&rel_sets)) != NULL) { 649 TAILQ_REMOVE(&rel_sets, set_arr, link); 650 free(set_arr, M_TEMP); 651 } 652 free(devs, M_TEMP); 653 free(sets, M_TEMP); 654 return (error); 655 } 656 657 /* 658 * Create levels for an array of absolute settings and insert them in 659 * sorted order in the specified list. 660 */ 661 static int 662 cpufreq_insert_abs(struct cpufreq_softc *sc, struct cf_setting *sets, 663 int count) 664 { 665 struct cf_level_lst *list; 666 struct cf_level *level, *search; 667 int i; 668 669 CF_MTX_ASSERT(&sc->lock); 670 671 list = &sc->all_levels; 672 for (i = 0; i < count; i++) { 673 level = malloc(sizeof(*level), M_TEMP, M_NOWAIT | M_ZERO); 674 if (level == NULL) 675 return (ENOMEM); 676 level->abs_set = sets[i]; 677 level->total_set = sets[i]; 678 level->total_set.dev = NULL; 679 sc->all_count++; 680 681 if (TAILQ_EMPTY(list)) { 682 CF_DEBUG("adding abs setting %d at head\n", 683 sets[i].freq); 684 TAILQ_INSERT_HEAD(list, level, link); 685 continue; 686 } 687 688 TAILQ_FOREACH_REVERSE(search, list, cf_level_lst, link) { 689 if (sets[i].freq <= search->total_set.freq) { 690 CF_DEBUG("adding abs setting %d after %d\n", 691 sets[i].freq, search->total_set.freq); 692 TAILQ_INSERT_AFTER(list, search, level, link); 693 break; 694 } 695 } 696 } 697 return (0); 698 } 699 700 /* 701 * Expand a group of relative settings, creating derived levels from them. 702 */ 703 static int 704 cpufreq_expand_set(struct cpufreq_softc *sc, struct cf_setting_array *set_arr) 705 { 706 struct cf_level *fill, *search; 707 struct cf_setting *set; 708 int i; 709 710 CF_MTX_ASSERT(&sc->lock); 711 712 /* 713 * Walk the set of all existing levels in reverse. This is so we 714 * create derived states from the lowest absolute settings first 715 * and discard duplicates created from higher absolute settings. 716 * For instance, a level of 50 Mhz derived from 100 Mhz + 50% is 717 * preferable to 200 Mhz + 25% because absolute settings are more 718 * efficient since they often change the voltage as well. 719 */ 720 TAILQ_FOREACH_REVERSE(search, &sc->all_levels, cf_level_lst, link) { 721 /* Add each setting to the level, duplicating if necessary. */ 722 for (i = 0; i < set_arr->count; i++) { 723 set = &set_arr->sets[i]; 724 725 /* 726 * If this setting is less than 100%, split the level 727 * into two and add this setting to the new level. 728 */ 729 fill = search; 730 if (set->freq < 10000) { 731 fill = cpufreq_dup_set(sc, search, set); 732 733 /* 734 * The new level was a duplicate of an existing 735 * level or its absolute setting is too high 736 * so we freed it. For example, we discard a 737 * derived level of 1000 MHz/25% if a level 738 * of 500 MHz/100% already exists. 739 */ 740 if (fill == NULL) 741 break; 742 } 743 744 /* Add this setting to the existing or new level. */ 745 KASSERT(fill->rel_count < MAX_SETTINGS, 746 ("cpufreq: too many relative drivers (%d)", 747 MAX_SETTINGS)); 748 fill->rel_set[fill->rel_count] = *set; 749 fill->rel_count++; 750 CF_DEBUG( 751 "expand set added rel setting %d%% to %d level\n", 752 set->freq / 100, fill->total_set.freq); 753 } 754 } 755 756 return (0); 757 } 758 759 static struct cf_level * 760 cpufreq_dup_set(struct cpufreq_softc *sc, struct cf_level *dup, 761 struct cf_setting *set) 762 { 763 struct cf_level_lst *list; 764 struct cf_level *fill, *itr; 765 struct cf_setting *fill_set, *itr_set; 766 int i; 767 768 CF_MTX_ASSERT(&sc->lock); 769 770 /* 771 * Create a new level, copy it from the old one, and update the 772 * total frequency and power by the percentage specified in the 773 * relative setting. 774 */ 775 fill = malloc(sizeof(*fill), M_TEMP, M_NOWAIT); 776 if (fill == NULL) 777 return (NULL); 778 *fill = *dup; 779 fill_set = &fill->total_set; 780 fill_set->freq = 781 ((uint64_t)fill_set->freq * set->freq) / 10000; 782 if (fill_set->power != CPUFREQ_VAL_UNKNOWN) { 783 fill_set->power = ((uint64_t)fill_set->power * set->freq) 784 / 10000; 785 } 786 if (set->lat != CPUFREQ_VAL_UNKNOWN) { 787 if (fill_set->lat != CPUFREQ_VAL_UNKNOWN) 788 fill_set->lat += set->lat; 789 else 790 fill_set->lat = set->lat; 791 } 792 CF_DEBUG("dup set considering derived setting %d\n", fill_set->freq); 793 794 /* 795 * If we copied an old level that we already modified (say, at 100%), 796 * we need to remove that setting before adding this one. Since we 797 * process each setting array in order, we know any settings for this 798 * driver will be found at the end. 799 */ 800 for (i = fill->rel_count; i != 0; i--) { 801 if (fill->rel_set[i - 1].dev != set->dev) 802 break; 803 CF_DEBUG("removed last relative driver: %s\n", 804 device_get_nameunit(set->dev)); 805 fill->rel_count--; 806 } 807 808 /* 809 * Insert the new level in sorted order. If it is a duplicate of an 810 * existing level (1) or has an absolute setting higher than the 811 * existing level (2), do not add it. We can do this since any such 812 * level is guaranteed use less power. For example (1), a level with 813 * one absolute setting of 800 Mhz uses less power than one composed 814 * of an absolute setting of 1600 Mhz and a relative setting at 50%. 815 * Also for example (2), a level of 800 Mhz/75% is preferable to 816 * 1600 Mhz/25% even though the latter has a lower total frequency. 817 */ 818 list = &sc->all_levels; 819 KASSERT(!TAILQ_EMPTY(list), ("all levels list empty in dup set")); 820 TAILQ_FOREACH_REVERSE(itr, list, cf_level_lst, link) { 821 itr_set = &itr->total_set; 822 if (CPUFREQ_CMP(fill_set->freq, itr_set->freq)) { 823 CF_DEBUG("dup set rejecting %d (dupe)\n", 824 fill_set->freq); 825 itr = NULL; 826 break; 827 } else if (fill_set->freq < itr_set->freq) { 828 if (fill->abs_set.freq <= itr->abs_set.freq) { 829 CF_DEBUG( 830 "dup done, inserting new level %d after %d\n", 831 fill_set->freq, itr_set->freq); 832 TAILQ_INSERT_AFTER(list, itr, fill, link); 833 sc->all_count++; 834 } else { 835 CF_DEBUG("dup set rejecting %d (abs too big)\n", 836 fill_set->freq); 837 itr = NULL; 838 } 839 break; 840 } 841 } 842 843 /* We didn't find a good place for this new level so free it. */ 844 if (itr == NULL) { 845 CF_DEBUG("dup set freeing new level %d (not optimal)\n", 846 fill_set->freq); 847 free(fill, M_TEMP); 848 fill = NULL; 849 } 850 851 return (fill); 852 } 853 854 static int 855 cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS) 856 { 857 struct cpufreq_softc *sc; 858 struct cf_level *levels; 859 int count, devcount, error, freq, i, n; 860 device_t *devs; 861 862 devs = NULL; 863 sc = oidp->oid_arg1; 864 levels = malloc(CF_MAX_LEVELS * sizeof(*levels), M_TEMP, M_NOWAIT); 865 if (levels == NULL) 866 return (ENOMEM); 867 868 error = CPUFREQ_GET(sc->dev, &levels[0]); 869 if (error) 870 goto out; 871 freq = levels[0].total_set.freq; 872 error = sysctl_handle_int(oidp, &freq, 0, req); 873 if (error != 0 || req->newptr == NULL) 874 goto out; 875 876 /* 877 * While we only call cpufreq_get() on one device (assuming all 878 * CPUs have equal levels), we call cpufreq_set() on all CPUs. 879 * This is needed for some MP systems. 880 */ 881 error = devclass_get_devices(cpufreq_dc, &devs, &devcount); 882 if (error) 883 goto out; 884 for (n = 0; n < devcount; n++) { 885 count = CF_MAX_LEVELS; 886 error = CPUFREQ_LEVELS(devs[n], levels, &count); 887 if (error) { 888 if (error == E2BIG) 889 printf( 890 "cpufreq: need to increase CF_MAX_LEVELS\n"); 891 break; 892 } 893 for (i = 0; i < count; i++) { 894 if (CPUFREQ_CMP(levels[i].total_set.freq, freq)) { 895 error = CPUFREQ_SET(devs[n], &levels[i], 896 CPUFREQ_PRIO_USER); 897 break; 898 } 899 } 900 if (i == count) { 901 error = EINVAL; 902 break; 903 } 904 } 905 906 out: 907 if (devs) 908 free(devs, M_TEMP); 909 if (levels) 910 free(levels, M_TEMP); 911 return (error); 912 } 913 914 static int 915 cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS) 916 { 917 struct cpufreq_softc *sc; 918 struct cf_level *levels; 919 struct cf_setting *set; 920 struct sbuf sb; 921 int count, error, i; 922 923 sc = oidp->oid_arg1; 924 sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND); 925 926 /* Get settings from the device and generate the output string. */ 927 count = CF_MAX_LEVELS; 928 levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT); 929 if (levels == NULL) 930 return (ENOMEM); 931 error = CPUFREQ_LEVELS(sc->dev, levels, &count); 932 if (error) { 933 if (error == E2BIG) 934 printf("cpufreq: need to increase CF_MAX_LEVELS\n"); 935 goto out; 936 } 937 if (count) { 938 for (i = 0; i < count; i++) { 939 set = &levels[i].total_set; 940 sbuf_printf(&sb, "%d/%d ", set->freq, set->power); 941 } 942 } else 943 sbuf_cpy(&sb, "0"); 944 sbuf_trim(&sb); 945 sbuf_finish(&sb); 946 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 947 948 out: 949 free(levels, M_TEMP); 950 sbuf_delete(&sb); 951 return (error); 952 } 953 954 static int 955 cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS) 956 { 957 device_t dev; 958 struct cf_setting *sets; 959 struct sbuf sb; 960 int error, i, set_count; 961 962 dev = oidp->oid_arg1; 963 sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND); 964 965 /* Get settings from the device and generate the output string. */ 966 set_count = MAX_SETTINGS; 967 sets = malloc(set_count * sizeof(*sets), M_TEMP, M_NOWAIT); 968 if (sets == NULL) 969 return (ENOMEM); 970 error = CPUFREQ_DRV_SETTINGS(dev, sets, &set_count); 971 if (error) 972 goto out; 973 if (set_count) { 974 for (i = 0; i < set_count; i++) 975 sbuf_printf(&sb, "%d/%d ", sets[i].freq, sets[i].power); 976 } else 977 sbuf_cpy(&sb, "0"); 978 sbuf_trim(&sb); 979 sbuf_finish(&sb); 980 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 981 982 out: 983 free(sets, M_TEMP); 984 sbuf_delete(&sb); 985 return (error); 986 } 987 988 int 989 cpufreq_register(device_t dev) 990 { 991 struct cpufreq_softc *sc; 992 device_t cf_dev, cpu_dev; 993 994 /* Add a sysctl to get each driver's settings separately. */ 995 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 996 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 997 OID_AUTO, "freq_settings", CTLTYPE_STRING | CTLFLAG_RD, dev, 0, 998 cpufreq_settings_sysctl, "A", "CPU frequency driver settings"); 999 1000 /* 1001 * Add only one cpufreq device to each CPU. Currently, all CPUs 1002 * must offer the same levels and be switched at the same time. 1003 */ 1004 cpu_dev = device_get_parent(dev); 1005 if ((cf_dev = device_find_child(cpu_dev, "cpufreq", -1))) { 1006 sc = device_get_softc(cf_dev); 1007 sc->max_mhz = CPUFREQ_VAL_UNKNOWN; 1008 return (0); 1009 } 1010 1011 /* Add the child device and possibly sysctls. */ 1012 cf_dev = BUS_ADD_CHILD(cpu_dev, 0, "cpufreq", -1); 1013 if (cf_dev == NULL) 1014 return (ENOMEM); 1015 device_quiet(cf_dev); 1016 1017 return (device_probe_and_attach(cf_dev)); 1018 } 1019 1020 int 1021 cpufreq_unregister(device_t dev) 1022 { 1023 device_t cf_dev, *devs; 1024 int cfcount, devcount, error, i, type; 1025 1026 /* 1027 * If this is the last cpufreq child device, remove the control 1028 * device as well. We identify cpufreq children by calling a method 1029 * they support. 1030 */ 1031 error = device_get_children(device_get_parent(dev), &devs, &devcount); 1032 if (error) 1033 return (error); 1034 cf_dev = device_find_child(device_get_parent(dev), "cpufreq", -1); 1035 if (cf_dev == NULL) { 1036 device_printf(dev, 1037 "warning: cpufreq_unregister called with no cpufreq device active\n"); 1038 return (0); 1039 } 1040 cfcount = 0; 1041 for (i = 0; i < devcount; i++) { 1042 if (!device_is_attached(devs[i])) 1043 continue; 1044 if (CPUFREQ_DRV_TYPE(devs[i], &type) == 0) 1045 cfcount++; 1046 } 1047 if (cfcount <= 1) 1048 device_delete_child(device_get_parent(cf_dev), cf_dev); 1049 free(devs, M_TEMP); 1050 1051 return (0); 1052 } 1053 1054 int 1055 cpufreq_settings_changed(device_t dev) 1056 { 1057 1058 EVENTHANDLER_INVOKE(cpufreq_levels_changed, 1059 device_get_unit(device_get_parent(dev))); 1060 return (0); 1061 } 1062