1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004-2007 Nate Lawson (SDG) 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bus.h> 34 #include <sys/cpu.h> 35 #include <sys/eventhandler.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/proc.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/sysctl.h> 46 #include <sys/systm.h> 47 #include <sys/sx.h> 48 #include <sys/timetc.h> 49 #include <sys/taskqueue.h> 50 51 #include "cpufreq_if.h" 52 53 /* 54 * Common CPU frequency glue code. Drivers for specific hardware can 55 * attach this interface to allow users to get/set the CPU frequency. 56 */ 57 58 /* 59 * Number of levels we can handle. Levels are synthesized from settings 60 * so for M settings and N drivers, there may be M*N levels. 61 */ 62 #define CF_MAX_LEVELS 256 63 64 struct cf_saved_freq { 65 struct cf_level level; 66 int priority; 67 SLIST_ENTRY(cf_saved_freq) link; 68 }; 69 70 struct cpufreq_softc { 71 struct sx lock; 72 struct cf_level curr_level; 73 int curr_priority; 74 SLIST_HEAD(, cf_saved_freq) saved_freq; 75 struct cf_level_lst all_levels; 76 int all_count; 77 int max_mhz; 78 device_t dev; 79 struct sysctl_ctx_list sysctl_ctx; 80 struct task startup_task; 81 struct cf_level *levels_buf; 82 }; 83 84 struct cf_setting_array { 85 struct cf_setting sets[MAX_SETTINGS]; 86 int count; 87 TAILQ_ENTRY(cf_setting_array) link; 88 }; 89 90 TAILQ_HEAD(cf_setting_lst, cf_setting_array); 91 92 #define CF_MTX_INIT(x) sx_init((x), "cpufreq lock") 93 #define CF_MTX_LOCK(x) sx_xlock((x)) 94 #define CF_MTX_UNLOCK(x) sx_xunlock((x)) 95 #define CF_MTX_ASSERT(x) sx_assert((x), SX_XLOCKED) 96 97 #define CF_DEBUG(msg...) do { \ 98 if (cf_verbose) \ 99 printf("cpufreq: " msg); \ 100 } while (0) 101 102 static int cpufreq_attach(device_t dev); 103 static void cpufreq_startup_task(void *ctx, int pending); 104 static int cpufreq_detach(device_t dev); 105 static int cf_set_method(device_t dev, const struct cf_level *level, 106 int priority); 107 static int cf_get_method(device_t dev, struct cf_level *level); 108 static int cf_levels_method(device_t dev, struct cf_level *levels, 109 int *count); 110 static int cpufreq_insert_abs(struct cpufreq_softc *sc, 111 struct cf_setting *sets, int count); 112 static int cpufreq_expand_set(struct cpufreq_softc *sc, 113 struct cf_setting_array *set_arr); 114 static struct cf_level *cpufreq_dup_set(struct cpufreq_softc *sc, 115 struct cf_level *dup, struct cf_setting *set); 116 static int cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS); 117 static int cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS); 118 static int cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS); 119 120 static device_method_t cpufreq_methods[] = { 121 DEVMETHOD(device_probe, bus_generic_probe), 122 DEVMETHOD(device_attach, cpufreq_attach), 123 DEVMETHOD(device_detach, cpufreq_detach), 124 125 DEVMETHOD(cpufreq_set, cf_set_method), 126 DEVMETHOD(cpufreq_get, cf_get_method), 127 DEVMETHOD(cpufreq_levels, cf_levels_method), 128 {0, 0} 129 }; 130 static driver_t cpufreq_driver = { 131 "cpufreq", cpufreq_methods, sizeof(struct cpufreq_softc) 132 }; 133 static devclass_t cpufreq_dc; 134 DRIVER_MODULE(cpufreq, cpu, cpufreq_driver, cpufreq_dc, 0, 0); 135 136 static int cf_lowest_freq; 137 static int cf_verbose; 138 static SYSCTL_NODE(_debug, OID_AUTO, cpufreq, CTLFLAG_RD, NULL, 139 "cpufreq debugging"); 140 SYSCTL_INT(_debug_cpufreq, OID_AUTO, lowest, CTLFLAG_RWTUN, &cf_lowest_freq, 1, 141 "Don't provide levels below this frequency."); 142 SYSCTL_INT(_debug_cpufreq, OID_AUTO, verbose, CTLFLAG_RWTUN, &cf_verbose, 1, 143 "Print verbose debugging messages"); 144 145 static int 146 cpufreq_attach(device_t dev) 147 { 148 struct cpufreq_softc *sc; 149 struct pcpu *pc; 150 device_t parent; 151 uint64_t rate; 152 int numdevs; 153 154 CF_DEBUG("initializing %s\n", device_get_nameunit(dev)); 155 sc = device_get_softc(dev); 156 parent = device_get_parent(dev); 157 sc->dev = dev; 158 sysctl_ctx_init(&sc->sysctl_ctx); 159 TAILQ_INIT(&sc->all_levels); 160 CF_MTX_INIT(&sc->lock); 161 sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN; 162 SLIST_INIT(&sc->saved_freq); 163 /* Try to get nominal CPU freq to use it as maximum later if needed */ 164 sc->max_mhz = cpu_get_nominal_mhz(dev); 165 /* If that fails, try to measure the current rate */ 166 if (sc->max_mhz <= 0) { 167 pc = cpu_get_pcpu(dev); 168 if (cpu_est_clockrate(pc->pc_cpuid, &rate) == 0) 169 sc->max_mhz = rate / 1000000; 170 else 171 sc->max_mhz = CPUFREQ_VAL_UNKNOWN; 172 } 173 174 /* 175 * Only initialize one set of sysctls for all CPUs. In the future, 176 * if multiple CPUs can have different settings, we can move these 177 * sysctls to be under every CPU instead of just the first one. 178 */ 179 numdevs = devclass_get_count(cpufreq_dc); 180 if (numdevs > 1) 181 return (0); 182 183 CF_DEBUG("initializing one-time data for %s\n", 184 device_get_nameunit(dev)); 185 sc->levels_buf = malloc(CF_MAX_LEVELS * sizeof(*sc->levels_buf), 186 M_DEVBUF, M_WAITOK); 187 SYSCTL_ADD_PROC(&sc->sysctl_ctx, 188 SYSCTL_CHILDREN(device_get_sysctl_tree(parent)), 189 OID_AUTO, "freq", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 190 cpufreq_curr_sysctl, "I", "Current CPU frequency"); 191 SYSCTL_ADD_PROC(&sc->sysctl_ctx, 192 SYSCTL_CHILDREN(device_get_sysctl_tree(parent)), 193 OID_AUTO, "freq_levels", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 194 cpufreq_levels_sysctl, "A", "CPU frequency levels"); 195 196 /* 197 * Queue a one-shot broadcast that levels have changed. 198 * It will run once the system has completed booting. 199 */ 200 TASK_INIT(&sc->startup_task, 0, cpufreq_startup_task, dev); 201 taskqueue_enqueue(taskqueue_thread, &sc->startup_task); 202 203 return (0); 204 } 205 206 /* Handle any work to be done for all drivers that attached during boot. */ 207 static void 208 cpufreq_startup_task(void *ctx, int pending) 209 { 210 211 cpufreq_settings_changed((device_t)ctx); 212 } 213 214 static int 215 cpufreq_detach(device_t dev) 216 { 217 struct cpufreq_softc *sc; 218 struct cf_saved_freq *saved_freq; 219 int numdevs; 220 221 CF_DEBUG("shutdown %s\n", device_get_nameunit(dev)); 222 sc = device_get_softc(dev); 223 sysctl_ctx_free(&sc->sysctl_ctx); 224 225 while ((saved_freq = SLIST_FIRST(&sc->saved_freq)) != NULL) { 226 SLIST_REMOVE_HEAD(&sc->saved_freq, link); 227 free(saved_freq, M_TEMP); 228 } 229 230 /* Only clean up these resources when the last device is detaching. */ 231 numdevs = devclass_get_count(cpufreq_dc); 232 if (numdevs == 1) { 233 CF_DEBUG("final shutdown for %s\n", device_get_nameunit(dev)); 234 free(sc->levels_buf, M_DEVBUF); 235 } 236 237 return (0); 238 } 239 240 static int 241 cf_set_method(device_t dev, const struct cf_level *level, int priority) 242 { 243 struct cpufreq_softc *sc; 244 const struct cf_setting *set; 245 struct cf_saved_freq *saved_freq, *curr_freq; 246 struct pcpu *pc; 247 int error, i; 248 u_char pri; 249 250 sc = device_get_softc(dev); 251 error = 0; 252 set = NULL; 253 saved_freq = NULL; 254 255 /* We are going to change levels so notify the pre-change handler. */ 256 EVENTHANDLER_INVOKE(cpufreq_pre_change, level, &error); 257 if (error != 0) { 258 EVENTHANDLER_INVOKE(cpufreq_post_change, level, error); 259 return (error); 260 } 261 262 CF_MTX_LOCK(&sc->lock); 263 264 #ifdef SMP 265 #ifdef EARLY_AP_STARTUP 266 MPASS(mp_ncpus == 1 || smp_started); 267 #else 268 /* 269 * If still booting and secondary CPUs not started yet, don't allow 270 * changing the frequency until they're online. This is because we 271 * can't switch to them using sched_bind() and thus we'd only be 272 * switching the main CPU. XXXTODO: Need to think more about how to 273 * handle having different CPUs at different frequencies. 274 */ 275 if (mp_ncpus > 1 && !smp_started) { 276 device_printf(dev, "rejecting change, SMP not started yet\n"); 277 error = ENXIO; 278 goto out; 279 } 280 #endif 281 #endif /* SMP */ 282 283 /* 284 * If the requested level has a lower priority, don't allow 285 * the new level right now. 286 */ 287 if (priority < sc->curr_priority) { 288 CF_DEBUG("ignoring, curr prio %d less than %d\n", priority, 289 sc->curr_priority); 290 error = EPERM; 291 goto out; 292 } 293 294 /* 295 * If the caller didn't specify a level and one is saved, prepare to 296 * restore the saved level. If none has been saved, return an error. 297 */ 298 if (level == NULL) { 299 saved_freq = SLIST_FIRST(&sc->saved_freq); 300 if (saved_freq == NULL) { 301 CF_DEBUG("NULL level, no saved level\n"); 302 error = ENXIO; 303 goto out; 304 } 305 level = &saved_freq->level; 306 priority = saved_freq->priority; 307 CF_DEBUG("restoring saved level, freq %d prio %d\n", 308 level->total_set.freq, priority); 309 } 310 311 /* Reject levels that are below our specified threshold. */ 312 if (level->total_set.freq < cf_lowest_freq) { 313 CF_DEBUG("rejecting freq %d, less than %d limit\n", 314 level->total_set.freq, cf_lowest_freq); 315 error = EINVAL; 316 goto out; 317 } 318 319 /* If already at this level, just return. */ 320 if (sc->curr_level.total_set.freq == level->total_set.freq) { 321 CF_DEBUG("skipping freq %d, same as current level %d\n", 322 level->total_set.freq, sc->curr_level.total_set.freq); 323 goto skip; 324 } 325 326 /* First, set the absolute frequency via its driver. */ 327 set = &level->abs_set; 328 if (set->dev) { 329 if (!device_is_attached(set->dev)) { 330 error = ENXIO; 331 goto out; 332 } 333 334 /* Bind to the target CPU before switching. */ 335 pc = cpu_get_pcpu(set->dev); 336 thread_lock(curthread); 337 pri = curthread->td_priority; 338 sched_prio(curthread, PRI_MIN); 339 sched_bind(curthread, pc->pc_cpuid); 340 thread_unlock(curthread); 341 CF_DEBUG("setting abs freq %d on %s (cpu %d)\n", set->freq, 342 device_get_nameunit(set->dev), PCPU_GET(cpuid)); 343 error = CPUFREQ_DRV_SET(set->dev, set); 344 thread_lock(curthread); 345 sched_unbind(curthread); 346 sched_prio(curthread, pri); 347 thread_unlock(curthread); 348 if (error) { 349 goto out; 350 } 351 } 352 353 /* Next, set any/all relative frequencies via their drivers. */ 354 for (i = 0; i < level->rel_count; i++) { 355 set = &level->rel_set[i]; 356 if (!device_is_attached(set->dev)) { 357 error = ENXIO; 358 goto out; 359 } 360 361 /* Bind to the target CPU before switching. */ 362 pc = cpu_get_pcpu(set->dev); 363 thread_lock(curthread); 364 pri = curthread->td_priority; 365 sched_prio(curthread, PRI_MIN); 366 sched_bind(curthread, pc->pc_cpuid); 367 thread_unlock(curthread); 368 CF_DEBUG("setting rel freq %d on %s (cpu %d)\n", set->freq, 369 device_get_nameunit(set->dev), PCPU_GET(cpuid)); 370 error = CPUFREQ_DRV_SET(set->dev, set); 371 thread_lock(curthread); 372 sched_unbind(curthread); 373 sched_prio(curthread, pri); 374 thread_unlock(curthread); 375 if (error) { 376 /* XXX Back out any successful setting? */ 377 goto out; 378 } 379 } 380 381 skip: 382 /* 383 * Before recording the current level, check if we're going to a 384 * higher priority. If so, save the previous level and priority. 385 */ 386 if (sc->curr_level.total_set.freq != CPUFREQ_VAL_UNKNOWN && 387 priority > sc->curr_priority) { 388 CF_DEBUG("saving level, freq %d prio %d\n", 389 sc->curr_level.total_set.freq, sc->curr_priority); 390 curr_freq = malloc(sizeof(*curr_freq), M_TEMP, M_NOWAIT); 391 if (curr_freq == NULL) { 392 error = ENOMEM; 393 goto out; 394 } 395 curr_freq->level = sc->curr_level; 396 curr_freq->priority = sc->curr_priority; 397 SLIST_INSERT_HEAD(&sc->saved_freq, curr_freq, link); 398 } 399 sc->curr_level = *level; 400 sc->curr_priority = priority; 401 402 /* If we were restoring a saved state, reset it to "unused". */ 403 if (saved_freq != NULL) { 404 CF_DEBUG("resetting saved level\n"); 405 sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN; 406 SLIST_REMOVE_HEAD(&sc->saved_freq, link); 407 free(saved_freq, M_TEMP); 408 } 409 410 out: 411 CF_MTX_UNLOCK(&sc->lock); 412 413 /* 414 * We changed levels (or attempted to) so notify the post-change 415 * handler of new frequency or error. 416 */ 417 EVENTHANDLER_INVOKE(cpufreq_post_change, level, error); 418 if (error && set) 419 device_printf(set->dev, "set freq failed, err %d\n", error); 420 421 return (error); 422 } 423 424 static int 425 cf_get_method(device_t dev, struct cf_level *level) 426 { 427 struct cpufreq_softc *sc; 428 struct cf_level *levels; 429 struct cf_setting *curr_set, set; 430 struct pcpu *pc; 431 device_t *devs; 432 int bdiff, count, diff, error, i, n, numdevs; 433 uint64_t rate; 434 435 sc = device_get_softc(dev); 436 error = 0; 437 levels = NULL; 438 439 /* If we already know the current frequency, we're done. */ 440 CF_MTX_LOCK(&sc->lock); 441 curr_set = &sc->curr_level.total_set; 442 if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) { 443 CF_DEBUG("get returning known freq %d\n", curr_set->freq); 444 goto out; 445 } 446 CF_MTX_UNLOCK(&sc->lock); 447 448 /* 449 * We need to figure out the current level. Loop through every 450 * driver, getting the current setting. Then, attempt to get a best 451 * match of settings against each level. 452 */ 453 count = CF_MAX_LEVELS; 454 levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT); 455 if (levels == NULL) 456 return (ENOMEM); 457 error = CPUFREQ_LEVELS(sc->dev, levels, &count); 458 if (error) { 459 if (error == E2BIG) 460 printf("cpufreq: need to increase CF_MAX_LEVELS\n"); 461 free(levels, M_TEMP); 462 return (error); 463 } 464 error = device_get_children(device_get_parent(dev), &devs, &numdevs); 465 if (error) { 466 free(levels, M_TEMP); 467 return (error); 468 } 469 470 /* 471 * Reacquire the lock and search for the given level. 472 * 473 * XXX Note: this is not quite right since we really need to go 474 * through each level and compare both absolute and relative 475 * settings for each driver in the system before making a match. 476 * The estimation code below catches this case though. 477 */ 478 CF_MTX_LOCK(&sc->lock); 479 for (n = 0; n < numdevs && curr_set->freq == CPUFREQ_VAL_UNKNOWN; n++) { 480 if (!device_is_attached(devs[n])) 481 continue; 482 if (CPUFREQ_DRV_GET(devs[n], &set) != 0) 483 continue; 484 for (i = 0; i < count; i++) { 485 if (set.freq == levels[i].total_set.freq) { 486 sc->curr_level = levels[i]; 487 break; 488 } 489 } 490 } 491 free(devs, M_TEMP); 492 if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) { 493 CF_DEBUG("get matched freq %d from drivers\n", curr_set->freq); 494 goto out; 495 } 496 497 /* 498 * We couldn't find an exact match, so attempt to estimate and then 499 * match against a level. 500 */ 501 pc = cpu_get_pcpu(dev); 502 if (pc == NULL) { 503 error = ENXIO; 504 goto out; 505 } 506 cpu_est_clockrate(pc->pc_cpuid, &rate); 507 rate /= 1000000; 508 bdiff = 1 << 30; 509 for (i = 0; i < count; i++) { 510 diff = abs(levels[i].total_set.freq - rate); 511 if (diff < bdiff) { 512 bdiff = diff; 513 sc->curr_level = levels[i]; 514 } 515 } 516 CF_DEBUG("get estimated freq %d\n", curr_set->freq); 517 518 out: 519 if (error == 0) 520 *level = sc->curr_level; 521 522 CF_MTX_UNLOCK(&sc->lock); 523 if (levels) 524 free(levels, M_TEMP); 525 return (error); 526 } 527 528 static int 529 cf_levels_method(device_t dev, struct cf_level *levels, int *count) 530 { 531 struct cf_setting_array *set_arr; 532 struct cf_setting_lst rel_sets; 533 struct cpufreq_softc *sc; 534 struct cf_level *lev; 535 struct cf_setting *sets; 536 struct pcpu *pc; 537 device_t *devs; 538 int error, i, numdevs, set_count, type; 539 uint64_t rate; 540 541 if (levels == NULL || count == NULL) 542 return (EINVAL); 543 544 TAILQ_INIT(&rel_sets); 545 sc = device_get_softc(dev); 546 error = device_get_children(device_get_parent(dev), &devs, &numdevs); 547 if (error) 548 return (error); 549 sets = malloc(MAX_SETTINGS * sizeof(*sets), M_TEMP, M_NOWAIT); 550 if (sets == NULL) { 551 free(devs, M_TEMP); 552 return (ENOMEM); 553 } 554 555 /* Get settings from all cpufreq drivers. */ 556 CF_MTX_LOCK(&sc->lock); 557 for (i = 0; i < numdevs; i++) { 558 /* Skip devices that aren't ready. */ 559 if (!device_is_attached(devs[i])) 560 continue; 561 562 /* 563 * Get settings, skipping drivers that offer no settings or 564 * provide settings for informational purposes only. 565 */ 566 error = CPUFREQ_DRV_TYPE(devs[i], &type); 567 if (error || (type & CPUFREQ_FLAG_INFO_ONLY)) { 568 if (error == 0) { 569 CF_DEBUG("skipping info-only driver %s\n", 570 device_get_nameunit(devs[i])); 571 } 572 continue; 573 } 574 set_count = MAX_SETTINGS; 575 error = CPUFREQ_DRV_SETTINGS(devs[i], sets, &set_count); 576 if (error || set_count == 0) 577 continue; 578 579 /* Add the settings to our absolute/relative lists. */ 580 switch (type & CPUFREQ_TYPE_MASK) { 581 case CPUFREQ_TYPE_ABSOLUTE: 582 error = cpufreq_insert_abs(sc, sets, set_count); 583 break; 584 case CPUFREQ_TYPE_RELATIVE: 585 CF_DEBUG("adding %d relative settings\n", set_count); 586 set_arr = malloc(sizeof(*set_arr), M_TEMP, M_NOWAIT); 587 if (set_arr == NULL) { 588 error = ENOMEM; 589 goto out; 590 } 591 bcopy(sets, set_arr->sets, set_count * sizeof(*sets)); 592 set_arr->count = set_count; 593 TAILQ_INSERT_TAIL(&rel_sets, set_arr, link); 594 break; 595 default: 596 error = EINVAL; 597 } 598 if (error) 599 goto out; 600 } 601 602 /* 603 * If there are no absolute levels, create a fake one at 100%. We 604 * then cache the clockrate for later use as our base frequency. 605 */ 606 if (TAILQ_EMPTY(&sc->all_levels)) { 607 if (sc->max_mhz == CPUFREQ_VAL_UNKNOWN) { 608 sc->max_mhz = cpu_get_nominal_mhz(dev); 609 /* 610 * If the CPU can't report a rate for 100%, hope 611 * the CPU is running at its nominal rate right now, 612 * and use that instead. 613 */ 614 if (sc->max_mhz <= 0) { 615 pc = cpu_get_pcpu(dev); 616 cpu_est_clockrate(pc->pc_cpuid, &rate); 617 sc->max_mhz = rate / 1000000; 618 } 619 } 620 memset(&sets[0], CPUFREQ_VAL_UNKNOWN, sizeof(*sets)); 621 sets[0].freq = sc->max_mhz; 622 sets[0].dev = NULL; 623 error = cpufreq_insert_abs(sc, sets, 1); 624 if (error) 625 goto out; 626 } 627 628 /* Create a combined list of absolute + relative levels. */ 629 TAILQ_FOREACH(set_arr, &rel_sets, link) 630 cpufreq_expand_set(sc, set_arr); 631 632 /* If the caller doesn't have enough space, return the actual count. */ 633 if (sc->all_count > *count) { 634 *count = sc->all_count; 635 error = E2BIG; 636 goto out; 637 } 638 639 /* Finally, output the list of levels. */ 640 i = 0; 641 TAILQ_FOREACH(lev, &sc->all_levels, link) { 642 643 /* Skip levels that have a frequency that is too low. */ 644 if (lev->total_set.freq < cf_lowest_freq) { 645 sc->all_count--; 646 continue; 647 } 648 649 levels[i] = *lev; 650 i++; 651 } 652 *count = sc->all_count; 653 error = 0; 654 655 out: 656 /* Clear all levels since we regenerate them each time. */ 657 while ((lev = TAILQ_FIRST(&sc->all_levels)) != NULL) { 658 TAILQ_REMOVE(&sc->all_levels, lev, link); 659 free(lev, M_TEMP); 660 } 661 sc->all_count = 0; 662 663 CF_MTX_UNLOCK(&sc->lock); 664 while ((set_arr = TAILQ_FIRST(&rel_sets)) != NULL) { 665 TAILQ_REMOVE(&rel_sets, set_arr, link); 666 free(set_arr, M_TEMP); 667 } 668 free(devs, M_TEMP); 669 free(sets, M_TEMP); 670 return (error); 671 } 672 673 /* 674 * Create levels for an array of absolute settings and insert them in 675 * sorted order in the specified list. 676 */ 677 static int 678 cpufreq_insert_abs(struct cpufreq_softc *sc, struct cf_setting *sets, 679 int count) 680 { 681 struct cf_level_lst *list; 682 struct cf_level *level, *search; 683 int i; 684 685 CF_MTX_ASSERT(&sc->lock); 686 687 list = &sc->all_levels; 688 for (i = 0; i < count; i++) { 689 level = malloc(sizeof(*level), M_TEMP, M_NOWAIT | M_ZERO); 690 if (level == NULL) 691 return (ENOMEM); 692 level->abs_set = sets[i]; 693 level->total_set = sets[i]; 694 level->total_set.dev = NULL; 695 sc->all_count++; 696 697 if (TAILQ_EMPTY(list)) { 698 CF_DEBUG("adding abs setting %d at head\n", 699 sets[i].freq); 700 TAILQ_INSERT_HEAD(list, level, link); 701 continue; 702 } 703 704 TAILQ_FOREACH_REVERSE(search, list, cf_level_lst, link) { 705 if (sets[i].freq <= search->total_set.freq) { 706 CF_DEBUG("adding abs setting %d after %d\n", 707 sets[i].freq, search->total_set.freq); 708 TAILQ_INSERT_AFTER(list, search, level, link); 709 break; 710 } 711 } 712 } 713 return (0); 714 } 715 716 /* 717 * Expand a group of relative settings, creating derived levels from them. 718 */ 719 static int 720 cpufreq_expand_set(struct cpufreq_softc *sc, struct cf_setting_array *set_arr) 721 { 722 struct cf_level *fill, *search; 723 struct cf_setting *set; 724 int i; 725 726 CF_MTX_ASSERT(&sc->lock); 727 728 /* 729 * Walk the set of all existing levels in reverse. This is so we 730 * create derived states from the lowest absolute settings first 731 * and discard duplicates created from higher absolute settings. 732 * For instance, a level of 50 Mhz derived from 100 Mhz + 50% is 733 * preferable to 200 Mhz + 25% because absolute settings are more 734 * efficient since they often change the voltage as well. 735 */ 736 TAILQ_FOREACH_REVERSE(search, &sc->all_levels, cf_level_lst, link) { 737 /* Add each setting to the level, duplicating if necessary. */ 738 for (i = 0; i < set_arr->count; i++) { 739 set = &set_arr->sets[i]; 740 741 /* 742 * If this setting is less than 100%, split the level 743 * into two and add this setting to the new level. 744 */ 745 fill = search; 746 if (set->freq < 10000) { 747 fill = cpufreq_dup_set(sc, search, set); 748 749 /* 750 * The new level was a duplicate of an existing 751 * level or its absolute setting is too high 752 * so we freed it. For example, we discard a 753 * derived level of 1000 MHz/25% if a level 754 * of 500 MHz/100% already exists. 755 */ 756 if (fill == NULL) 757 break; 758 } 759 760 /* Add this setting to the existing or new level. */ 761 KASSERT(fill->rel_count < MAX_SETTINGS, 762 ("cpufreq: too many relative drivers (%d)", 763 MAX_SETTINGS)); 764 fill->rel_set[fill->rel_count] = *set; 765 fill->rel_count++; 766 CF_DEBUG( 767 "expand set added rel setting %d%% to %d level\n", 768 set->freq / 100, fill->total_set.freq); 769 } 770 } 771 772 return (0); 773 } 774 775 static struct cf_level * 776 cpufreq_dup_set(struct cpufreq_softc *sc, struct cf_level *dup, 777 struct cf_setting *set) 778 { 779 struct cf_level_lst *list; 780 struct cf_level *fill, *itr; 781 struct cf_setting *fill_set, *itr_set; 782 int i; 783 784 CF_MTX_ASSERT(&sc->lock); 785 786 /* 787 * Create a new level, copy it from the old one, and update the 788 * total frequency and power by the percentage specified in the 789 * relative setting. 790 */ 791 fill = malloc(sizeof(*fill), M_TEMP, M_NOWAIT); 792 if (fill == NULL) 793 return (NULL); 794 *fill = *dup; 795 fill_set = &fill->total_set; 796 fill_set->freq = 797 ((uint64_t)fill_set->freq * set->freq) / 10000; 798 if (fill_set->power != CPUFREQ_VAL_UNKNOWN) { 799 fill_set->power = ((uint64_t)fill_set->power * set->freq) 800 / 10000; 801 } 802 if (set->lat != CPUFREQ_VAL_UNKNOWN) { 803 if (fill_set->lat != CPUFREQ_VAL_UNKNOWN) 804 fill_set->lat += set->lat; 805 else 806 fill_set->lat = set->lat; 807 } 808 CF_DEBUG("dup set considering derived setting %d\n", fill_set->freq); 809 810 /* 811 * If we copied an old level that we already modified (say, at 100%), 812 * we need to remove that setting before adding this one. Since we 813 * process each setting array in order, we know any settings for this 814 * driver will be found at the end. 815 */ 816 for (i = fill->rel_count; i != 0; i--) { 817 if (fill->rel_set[i - 1].dev != set->dev) 818 break; 819 CF_DEBUG("removed last relative driver: %s\n", 820 device_get_nameunit(set->dev)); 821 fill->rel_count--; 822 } 823 824 /* 825 * Insert the new level in sorted order. If it is a duplicate of an 826 * existing level (1) or has an absolute setting higher than the 827 * existing level (2), do not add it. We can do this since any such 828 * level is guaranteed use less power. For example (1), a level with 829 * one absolute setting of 800 Mhz uses less power than one composed 830 * of an absolute setting of 1600 Mhz and a relative setting at 50%. 831 * Also for example (2), a level of 800 Mhz/75% is preferable to 832 * 1600 Mhz/25% even though the latter has a lower total frequency. 833 */ 834 list = &sc->all_levels; 835 KASSERT(!TAILQ_EMPTY(list), ("all levels list empty in dup set")); 836 TAILQ_FOREACH_REVERSE(itr, list, cf_level_lst, link) { 837 itr_set = &itr->total_set; 838 if (CPUFREQ_CMP(fill_set->freq, itr_set->freq)) { 839 CF_DEBUG("dup set rejecting %d (dupe)\n", 840 fill_set->freq); 841 itr = NULL; 842 break; 843 } else if (fill_set->freq < itr_set->freq) { 844 if (fill->abs_set.freq <= itr->abs_set.freq) { 845 CF_DEBUG( 846 "dup done, inserting new level %d after %d\n", 847 fill_set->freq, itr_set->freq); 848 TAILQ_INSERT_AFTER(list, itr, fill, link); 849 sc->all_count++; 850 } else { 851 CF_DEBUG("dup set rejecting %d (abs too big)\n", 852 fill_set->freq); 853 itr = NULL; 854 } 855 break; 856 } 857 } 858 859 /* We didn't find a good place for this new level so free it. */ 860 if (itr == NULL) { 861 CF_DEBUG("dup set freeing new level %d (not optimal)\n", 862 fill_set->freq); 863 free(fill, M_TEMP); 864 fill = NULL; 865 } 866 867 return (fill); 868 } 869 870 static int 871 cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS) 872 { 873 struct cpufreq_softc *sc; 874 struct cf_level *levels; 875 int best, count, diff, bdiff, devcount, error, freq, i, n; 876 device_t *devs; 877 878 devs = NULL; 879 sc = oidp->oid_arg1; 880 levels = sc->levels_buf; 881 882 error = CPUFREQ_GET(sc->dev, &levels[0]); 883 if (error) 884 goto out; 885 freq = levels[0].total_set.freq; 886 error = sysctl_handle_int(oidp, &freq, 0, req); 887 if (error != 0 || req->newptr == NULL) 888 goto out; 889 890 /* 891 * While we only call cpufreq_get() on one device (assuming all 892 * CPUs have equal levels), we call cpufreq_set() on all CPUs. 893 * This is needed for some MP systems. 894 */ 895 error = devclass_get_devices(cpufreq_dc, &devs, &devcount); 896 if (error) 897 goto out; 898 for (n = 0; n < devcount; n++) { 899 count = CF_MAX_LEVELS; 900 error = CPUFREQ_LEVELS(devs[n], levels, &count); 901 if (error) { 902 if (error == E2BIG) 903 printf( 904 "cpufreq: need to increase CF_MAX_LEVELS\n"); 905 break; 906 } 907 best = 0; 908 bdiff = 1 << 30; 909 for (i = 0; i < count; i++) { 910 diff = abs(levels[i].total_set.freq - freq); 911 if (diff < bdiff) { 912 bdiff = diff; 913 best = i; 914 } 915 } 916 error = CPUFREQ_SET(devs[n], &levels[best], CPUFREQ_PRIO_USER); 917 } 918 919 out: 920 if (devs) 921 free(devs, M_TEMP); 922 return (error); 923 } 924 925 static int 926 cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS) 927 { 928 struct cpufreq_softc *sc; 929 struct cf_level *levels; 930 struct cf_setting *set; 931 struct sbuf sb; 932 int count, error, i; 933 934 sc = oidp->oid_arg1; 935 sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND); 936 937 /* Get settings from the device and generate the output string. */ 938 count = CF_MAX_LEVELS; 939 levels = sc->levels_buf; 940 if (levels == NULL) { 941 sbuf_delete(&sb); 942 return (ENOMEM); 943 } 944 error = CPUFREQ_LEVELS(sc->dev, levels, &count); 945 if (error) { 946 if (error == E2BIG) 947 printf("cpufreq: need to increase CF_MAX_LEVELS\n"); 948 goto out; 949 } 950 if (count) { 951 for (i = 0; i < count; i++) { 952 set = &levels[i].total_set; 953 sbuf_printf(&sb, "%d/%d ", set->freq, set->power); 954 } 955 } else 956 sbuf_cpy(&sb, "0"); 957 sbuf_trim(&sb); 958 sbuf_finish(&sb); 959 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 960 961 out: 962 sbuf_delete(&sb); 963 return (error); 964 } 965 966 static int 967 cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS) 968 { 969 device_t dev; 970 struct cf_setting *sets; 971 struct sbuf sb; 972 int error, i, set_count; 973 974 dev = oidp->oid_arg1; 975 sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND); 976 977 /* Get settings from the device and generate the output string. */ 978 set_count = MAX_SETTINGS; 979 sets = malloc(set_count * sizeof(*sets), M_TEMP, M_NOWAIT); 980 if (sets == NULL) { 981 sbuf_delete(&sb); 982 return (ENOMEM); 983 } 984 error = CPUFREQ_DRV_SETTINGS(dev, sets, &set_count); 985 if (error) 986 goto out; 987 if (set_count) { 988 for (i = 0; i < set_count; i++) 989 sbuf_printf(&sb, "%d/%d ", sets[i].freq, sets[i].power); 990 } else 991 sbuf_cpy(&sb, "0"); 992 sbuf_trim(&sb); 993 sbuf_finish(&sb); 994 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 995 996 out: 997 free(sets, M_TEMP); 998 sbuf_delete(&sb); 999 return (error); 1000 } 1001 1002 int 1003 cpufreq_register(device_t dev) 1004 { 1005 struct cpufreq_softc *sc; 1006 device_t cf_dev, cpu_dev; 1007 1008 /* Add a sysctl to get each driver's settings separately. */ 1009 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1010 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1011 OID_AUTO, "freq_settings", CTLTYPE_STRING | CTLFLAG_RD, dev, 0, 1012 cpufreq_settings_sysctl, "A", "CPU frequency driver settings"); 1013 1014 /* 1015 * Add only one cpufreq device to each CPU. Currently, all CPUs 1016 * must offer the same levels and be switched at the same time. 1017 */ 1018 cpu_dev = device_get_parent(dev); 1019 if ((cf_dev = device_find_child(cpu_dev, "cpufreq", -1))) { 1020 sc = device_get_softc(cf_dev); 1021 sc->max_mhz = CPUFREQ_VAL_UNKNOWN; 1022 return (0); 1023 } 1024 1025 /* Add the child device and possibly sysctls. */ 1026 cf_dev = BUS_ADD_CHILD(cpu_dev, 0, "cpufreq", -1); 1027 if (cf_dev == NULL) 1028 return (ENOMEM); 1029 device_quiet(cf_dev); 1030 1031 return (device_probe_and_attach(cf_dev)); 1032 } 1033 1034 int 1035 cpufreq_unregister(device_t dev) 1036 { 1037 device_t cf_dev, *devs; 1038 int cfcount, devcount, error, i, type; 1039 1040 /* 1041 * If this is the last cpufreq child device, remove the control 1042 * device as well. We identify cpufreq children by calling a method 1043 * they support. 1044 */ 1045 error = device_get_children(device_get_parent(dev), &devs, &devcount); 1046 if (error) 1047 return (error); 1048 cf_dev = device_find_child(device_get_parent(dev), "cpufreq", -1); 1049 if (cf_dev == NULL) { 1050 device_printf(dev, 1051 "warning: cpufreq_unregister called with no cpufreq device active\n"); 1052 free(devs, M_TEMP); 1053 return (0); 1054 } 1055 cfcount = 0; 1056 for (i = 0; i < devcount; i++) { 1057 if (!device_is_attached(devs[i])) 1058 continue; 1059 if (CPUFREQ_DRV_TYPE(devs[i], &type) == 0) 1060 cfcount++; 1061 } 1062 if (cfcount <= 1) 1063 device_delete_child(device_get_parent(cf_dev), cf_dev); 1064 free(devs, M_TEMP); 1065 1066 return (0); 1067 } 1068 1069 int 1070 cpufreq_settings_changed(device_t dev) 1071 { 1072 1073 EVENTHANDLER_INVOKE(cpufreq_levels_changed, 1074 device_get_unit(device_get_parent(dev))); 1075 return (0); 1076 } 1077