1 /*- 2 * Copyright (c) 2004-2007 Nate Lawson (SDG) 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bus.h> 32 #include <sys/cpu.h> 33 #include <sys/eventhandler.h> 34 #include <sys/kernel.h> 35 #include <sys/lock.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/proc.h> 39 #include <sys/queue.h> 40 #include <sys/sbuf.h> 41 #include <sys/sched.h> 42 #include <sys/smp.h> 43 #include <sys/sysctl.h> 44 #include <sys/systm.h> 45 #include <sys/sx.h> 46 #include <sys/timetc.h> 47 #include <sys/taskqueue.h> 48 49 #include "cpufreq_if.h" 50 51 /* 52 * Common CPU frequency glue code. Drivers for specific hardware can 53 * attach this interface to allow users to get/set the CPU frequency. 54 */ 55 56 /* 57 * Number of levels we can handle. Levels are synthesized from settings 58 * so for M settings and N drivers, there may be M*N levels. 59 */ 60 #define CF_MAX_LEVELS 64 61 62 struct cf_saved_freq { 63 struct cf_level level; 64 int priority; 65 SLIST_ENTRY(cf_saved_freq) link; 66 }; 67 68 struct cpufreq_softc { 69 struct sx lock; 70 struct cf_level curr_level; 71 int curr_priority; 72 SLIST_HEAD(, cf_saved_freq) saved_freq; 73 struct cf_level_lst all_levels; 74 int all_count; 75 int max_mhz; 76 device_t dev; 77 struct sysctl_ctx_list sysctl_ctx; 78 struct task startup_task; 79 struct cf_level *levels_buf; 80 }; 81 82 struct cf_setting_array { 83 struct cf_setting sets[MAX_SETTINGS]; 84 int count; 85 TAILQ_ENTRY(cf_setting_array) link; 86 }; 87 88 TAILQ_HEAD(cf_setting_lst, cf_setting_array); 89 90 #define CF_MTX_INIT(x) sx_init((x), "cpufreq lock") 91 #define CF_MTX_LOCK(x) sx_xlock((x)) 92 #define CF_MTX_UNLOCK(x) sx_xunlock((x)) 93 #define CF_MTX_ASSERT(x) sx_assert((x), SX_XLOCKED) 94 95 #define CF_DEBUG(msg...) do { \ 96 if (cf_verbose) \ 97 printf("cpufreq: " msg); \ 98 } while (0) 99 100 static int cpufreq_attach(device_t dev); 101 static void cpufreq_startup_task(void *ctx, int pending); 102 static int cpufreq_detach(device_t dev); 103 static int cf_set_method(device_t dev, const struct cf_level *level, 104 int priority); 105 static int cf_get_method(device_t dev, struct cf_level *level); 106 static int cf_levels_method(device_t dev, struct cf_level *levels, 107 int *count); 108 static int cpufreq_insert_abs(struct cpufreq_softc *sc, 109 struct cf_setting *sets, int count); 110 static int cpufreq_expand_set(struct cpufreq_softc *sc, 111 struct cf_setting_array *set_arr); 112 static struct cf_level *cpufreq_dup_set(struct cpufreq_softc *sc, 113 struct cf_level *dup, struct cf_setting *set); 114 static int cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS); 115 static int cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS); 116 static int cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS); 117 118 static device_method_t cpufreq_methods[] = { 119 DEVMETHOD(device_probe, bus_generic_probe), 120 DEVMETHOD(device_attach, cpufreq_attach), 121 DEVMETHOD(device_detach, cpufreq_detach), 122 123 DEVMETHOD(cpufreq_set, cf_set_method), 124 DEVMETHOD(cpufreq_get, cf_get_method), 125 DEVMETHOD(cpufreq_levels, cf_levels_method), 126 {0, 0} 127 }; 128 static driver_t cpufreq_driver = { 129 "cpufreq", cpufreq_methods, sizeof(struct cpufreq_softc) 130 }; 131 static devclass_t cpufreq_dc; 132 DRIVER_MODULE(cpufreq, cpu, cpufreq_driver, cpufreq_dc, 0, 0); 133 134 static int cf_lowest_freq; 135 static int cf_verbose; 136 TUNABLE_INT("debug.cpufreq.lowest", &cf_lowest_freq); 137 TUNABLE_INT("debug.cpufreq.verbose", &cf_verbose); 138 SYSCTL_NODE(_debug, OID_AUTO, cpufreq, CTLFLAG_RD, NULL, "cpufreq debugging"); 139 SYSCTL_INT(_debug_cpufreq, OID_AUTO, lowest, CTLFLAG_RW, &cf_lowest_freq, 1, 140 "Don't provide levels below this frequency."); 141 SYSCTL_INT(_debug_cpufreq, OID_AUTO, verbose, CTLFLAG_RW, &cf_verbose, 1, 142 "Print verbose debugging messages"); 143 144 static int 145 cpufreq_attach(device_t dev) 146 { 147 struct cpufreq_softc *sc; 148 struct pcpu *pc; 149 device_t parent; 150 uint64_t rate; 151 int numdevs; 152 153 CF_DEBUG("initializing %s\n", device_get_nameunit(dev)); 154 sc = device_get_softc(dev); 155 parent = device_get_parent(dev); 156 sc->dev = dev; 157 sysctl_ctx_init(&sc->sysctl_ctx); 158 TAILQ_INIT(&sc->all_levels); 159 CF_MTX_INIT(&sc->lock); 160 sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN; 161 SLIST_INIT(&sc->saved_freq); 162 /* Try to get nominal CPU freq to use it as maximum later if needed */ 163 sc->max_mhz = cpu_get_nominal_mhz(dev); 164 /* If that fails, try to measure the current rate */ 165 if (sc->max_mhz <= 0) { 166 pc = cpu_get_pcpu(dev); 167 if (cpu_est_clockrate(pc->pc_cpuid, &rate) == 0) 168 sc->max_mhz = rate / 1000000; 169 else 170 sc->max_mhz = CPUFREQ_VAL_UNKNOWN; 171 } 172 173 /* 174 * Only initialize one set of sysctls for all CPUs. In the future, 175 * if multiple CPUs can have different settings, we can move these 176 * sysctls to be under every CPU instead of just the first one. 177 */ 178 numdevs = devclass_get_count(cpufreq_dc); 179 if (numdevs > 1) 180 return (0); 181 182 CF_DEBUG("initializing one-time data for %s\n", 183 device_get_nameunit(dev)); 184 sc->levels_buf = malloc(CF_MAX_LEVELS * sizeof(*sc->levels_buf), 185 M_DEVBUF, M_WAITOK); 186 SYSCTL_ADD_PROC(&sc->sysctl_ctx, 187 SYSCTL_CHILDREN(device_get_sysctl_tree(parent)), 188 OID_AUTO, "freq", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 189 cpufreq_curr_sysctl, "I", "Current CPU frequency"); 190 SYSCTL_ADD_PROC(&sc->sysctl_ctx, 191 SYSCTL_CHILDREN(device_get_sysctl_tree(parent)), 192 OID_AUTO, "freq_levels", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 193 cpufreq_levels_sysctl, "A", "CPU frequency levels"); 194 195 /* 196 * Queue a one-shot broadcast that levels have changed. 197 * It will run once the system has completed booting. 198 */ 199 TASK_INIT(&sc->startup_task, 0, cpufreq_startup_task, dev); 200 taskqueue_enqueue(taskqueue_thread, &sc->startup_task); 201 202 return (0); 203 } 204 205 /* Handle any work to be done for all drivers that attached during boot. */ 206 static void 207 cpufreq_startup_task(void *ctx, int pending) 208 { 209 210 cpufreq_settings_changed((device_t)ctx); 211 } 212 213 static int 214 cpufreq_detach(device_t dev) 215 { 216 struct cpufreq_softc *sc; 217 struct cf_saved_freq *saved_freq; 218 int numdevs; 219 220 CF_DEBUG("shutdown %s\n", device_get_nameunit(dev)); 221 sc = device_get_softc(dev); 222 sysctl_ctx_free(&sc->sysctl_ctx); 223 224 while ((saved_freq = SLIST_FIRST(&sc->saved_freq)) != NULL) { 225 SLIST_REMOVE_HEAD(&sc->saved_freq, link); 226 free(saved_freq, M_TEMP); 227 } 228 229 /* Only clean up these resources when the last device is detaching. */ 230 numdevs = devclass_get_count(cpufreq_dc); 231 if (numdevs == 1) { 232 CF_DEBUG("final shutdown for %s\n", device_get_nameunit(dev)); 233 free(sc->levels_buf, M_DEVBUF); 234 } 235 236 return (0); 237 } 238 239 static int 240 cf_set_method(device_t dev, const struct cf_level *level, int priority) 241 { 242 struct cpufreq_softc *sc; 243 const struct cf_setting *set; 244 struct cf_saved_freq *saved_freq, *curr_freq; 245 struct pcpu *pc; 246 int error, i; 247 248 sc = device_get_softc(dev); 249 error = 0; 250 set = NULL; 251 saved_freq = NULL; 252 253 /* We are going to change levels so notify the pre-change handler. */ 254 EVENTHANDLER_INVOKE(cpufreq_pre_change, level, &error); 255 if (error != 0) { 256 EVENTHANDLER_INVOKE(cpufreq_post_change, level, error); 257 return (error); 258 } 259 260 CF_MTX_LOCK(&sc->lock); 261 262 #ifdef SMP 263 /* 264 * If still booting and secondary CPUs not started yet, don't allow 265 * changing the frequency until they're online. This is because we 266 * can't switch to them using sched_bind() and thus we'd only be 267 * switching the main CPU. XXXTODO: Need to think more about how to 268 * handle having different CPUs at different frequencies. 269 */ 270 if (mp_ncpus > 1 && !smp_active) { 271 device_printf(dev, "rejecting change, SMP not started yet\n"); 272 error = ENXIO; 273 goto out; 274 } 275 #endif /* SMP */ 276 277 /* 278 * If the requested level has a lower priority, don't allow 279 * the new level right now. 280 */ 281 if (priority < sc->curr_priority) { 282 CF_DEBUG("ignoring, curr prio %d less than %d\n", priority, 283 sc->curr_priority); 284 error = EPERM; 285 goto out; 286 } 287 288 /* 289 * If the caller didn't specify a level and one is saved, prepare to 290 * restore the saved level. If none has been saved, return an error. 291 */ 292 if (level == NULL) { 293 saved_freq = SLIST_FIRST(&sc->saved_freq); 294 if (saved_freq == NULL) { 295 CF_DEBUG("NULL level, no saved level\n"); 296 error = ENXIO; 297 goto out; 298 } 299 level = &saved_freq->level; 300 priority = saved_freq->priority; 301 CF_DEBUG("restoring saved level, freq %d prio %d\n", 302 level->total_set.freq, priority); 303 } 304 305 /* Reject levels that are below our specified threshold. */ 306 if (level->total_set.freq < cf_lowest_freq) { 307 CF_DEBUG("rejecting freq %d, less than %d limit\n", 308 level->total_set.freq, cf_lowest_freq); 309 error = EINVAL; 310 goto out; 311 } 312 313 /* If already at this level, just return. */ 314 if (CPUFREQ_CMP(sc->curr_level.total_set.freq, level->total_set.freq)) { 315 CF_DEBUG("skipping freq %d, same as current level %d\n", 316 level->total_set.freq, sc->curr_level.total_set.freq); 317 goto skip; 318 } 319 320 /* First, set the absolute frequency via its driver. */ 321 set = &level->abs_set; 322 if (set->dev) { 323 if (!device_is_attached(set->dev)) { 324 error = ENXIO; 325 goto out; 326 } 327 328 /* Bind to the target CPU before switching. */ 329 pc = cpu_get_pcpu(set->dev); 330 thread_lock(curthread); 331 sched_bind(curthread, pc->pc_cpuid); 332 thread_unlock(curthread); 333 CF_DEBUG("setting abs freq %d on %s (cpu %d)\n", set->freq, 334 device_get_nameunit(set->dev), PCPU_GET(cpuid)); 335 error = CPUFREQ_DRV_SET(set->dev, set); 336 thread_lock(curthread); 337 sched_unbind(curthread); 338 thread_unlock(curthread); 339 if (error) { 340 goto out; 341 } 342 } 343 344 /* Next, set any/all relative frequencies via their drivers. */ 345 for (i = 0; i < level->rel_count; i++) { 346 set = &level->rel_set[i]; 347 if (!device_is_attached(set->dev)) { 348 error = ENXIO; 349 goto out; 350 } 351 352 /* Bind to the target CPU before switching. */ 353 pc = cpu_get_pcpu(set->dev); 354 thread_lock(curthread); 355 sched_bind(curthread, pc->pc_cpuid); 356 thread_unlock(curthread); 357 CF_DEBUG("setting rel freq %d on %s (cpu %d)\n", set->freq, 358 device_get_nameunit(set->dev), PCPU_GET(cpuid)); 359 error = CPUFREQ_DRV_SET(set->dev, set); 360 thread_lock(curthread); 361 sched_unbind(curthread); 362 thread_unlock(curthread); 363 if (error) { 364 /* XXX Back out any successful setting? */ 365 goto out; 366 } 367 } 368 369 skip: 370 /* 371 * Before recording the current level, check if we're going to a 372 * higher priority. If so, save the previous level and priority. 373 */ 374 if (sc->curr_level.total_set.freq != CPUFREQ_VAL_UNKNOWN && 375 priority > sc->curr_priority) { 376 CF_DEBUG("saving level, freq %d prio %d\n", 377 sc->curr_level.total_set.freq, sc->curr_priority); 378 curr_freq = malloc(sizeof(*curr_freq), M_TEMP, M_NOWAIT); 379 if (curr_freq == NULL) { 380 error = ENOMEM; 381 goto out; 382 } 383 curr_freq->level = sc->curr_level; 384 curr_freq->priority = sc->curr_priority; 385 SLIST_INSERT_HEAD(&sc->saved_freq, curr_freq, link); 386 } 387 sc->curr_level = *level; 388 sc->curr_priority = priority; 389 390 /* If we were restoring a saved state, reset it to "unused". */ 391 if (saved_freq != NULL) { 392 CF_DEBUG("resetting saved level\n"); 393 sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN; 394 SLIST_REMOVE_HEAD(&sc->saved_freq, link); 395 free(saved_freq, M_TEMP); 396 } 397 398 out: 399 CF_MTX_UNLOCK(&sc->lock); 400 401 /* 402 * We changed levels (or attempted to) so notify the post-change 403 * handler of new frequency or error. 404 */ 405 EVENTHANDLER_INVOKE(cpufreq_post_change, level, error); 406 if (error && set) 407 device_printf(set->dev, "set freq failed, err %d\n", error); 408 409 return (error); 410 } 411 412 static int 413 cf_get_method(device_t dev, struct cf_level *level) 414 { 415 struct cpufreq_softc *sc; 416 struct cf_level *levels; 417 struct cf_setting *curr_set, set; 418 struct pcpu *pc; 419 device_t *devs; 420 int count, error, i, n, numdevs; 421 uint64_t rate; 422 423 sc = device_get_softc(dev); 424 error = 0; 425 levels = NULL; 426 427 /* If we already know the current frequency, we're done. */ 428 CF_MTX_LOCK(&sc->lock); 429 curr_set = &sc->curr_level.total_set; 430 if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) { 431 CF_DEBUG("get returning known freq %d\n", curr_set->freq); 432 goto out; 433 } 434 CF_MTX_UNLOCK(&sc->lock); 435 436 /* 437 * We need to figure out the current level. Loop through every 438 * driver, getting the current setting. Then, attempt to get a best 439 * match of settings against each level. 440 */ 441 count = CF_MAX_LEVELS; 442 levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT); 443 if (levels == NULL) 444 return (ENOMEM); 445 error = CPUFREQ_LEVELS(sc->dev, levels, &count); 446 if (error) { 447 if (error == E2BIG) 448 printf("cpufreq: need to increase CF_MAX_LEVELS\n"); 449 free(levels, M_TEMP); 450 return (error); 451 } 452 error = device_get_children(device_get_parent(dev), &devs, &numdevs); 453 if (error) { 454 free(levels, M_TEMP); 455 return (error); 456 } 457 458 /* 459 * Reacquire the lock and search for the given level. 460 * 461 * XXX Note: this is not quite right since we really need to go 462 * through each level and compare both absolute and relative 463 * settings for each driver in the system before making a match. 464 * The estimation code below catches this case though. 465 */ 466 CF_MTX_LOCK(&sc->lock); 467 for (n = 0; n < numdevs && curr_set->freq == CPUFREQ_VAL_UNKNOWN; n++) { 468 if (!device_is_attached(devs[n])) 469 continue; 470 if (CPUFREQ_DRV_GET(devs[n], &set) != 0) 471 continue; 472 for (i = 0; i < count; i++) { 473 if (CPUFREQ_CMP(set.freq, levels[i].total_set.freq)) { 474 sc->curr_level = levels[i]; 475 break; 476 } 477 } 478 } 479 free(devs, M_TEMP); 480 if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) { 481 CF_DEBUG("get matched freq %d from drivers\n", curr_set->freq); 482 goto out; 483 } 484 485 /* 486 * We couldn't find an exact match, so attempt to estimate and then 487 * match against a level. 488 */ 489 pc = cpu_get_pcpu(dev); 490 if (pc == NULL) { 491 error = ENXIO; 492 goto out; 493 } 494 cpu_est_clockrate(pc->pc_cpuid, &rate); 495 rate /= 1000000; 496 for (i = 0; i < count; i++) { 497 if (CPUFREQ_CMP(rate, levels[i].total_set.freq)) { 498 sc->curr_level = levels[i]; 499 CF_DEBUG("get estimated freq %d\n", curr_set->freq); 500 goto out; 501 } 502 } 503 error = ENXIO; 504 505 out: 506 if (error == 0) 507 *level = sc->curr_level; 508 509 CF_MTX_UNLOCK(&sc->lock); 510 if (levels) 511 free(levels, M_TEMP); 512 return (error); 513 } 514 515 static int 516 cf_levels_method(device_t dev, struct cf_level *levels, int *count) 517 { 518 struct cf_setting_array *set_arr; 519 struct cf_setting_lst rel_sets; 520 struct cpufreq_softc *sc; 521 struct cf_level *lev; 522 struct cf_setting *sets; 523 struct pcpu *pc; 524 device_t *devs; 525 int error, i, numdevs, set_count, type; 526 uint64_t rate; 527 528 if (levels == NULL || count == NULL) 529 return (EINVAL); 530 531 TAILQ_INIT(&rel_sets); 532 sc = device_get_softc(dev); 533 error = device_get_children(device_get_parent(dev), &devs, &numdevs); 534 if (error) 535 return (error); 536 sets = malloc(MAX_SETTINGS * sizeof(*sets), M_TEMP, M_NOWAIT); 537 if (sets == NULL) { 538 free(devs, M_TEMP); 539 return (ENOMEM); 540 } 541 542 /* Get settings from all cpufreq drivers. */ 543 CF_MTX_LOCK(&sc->lock); 544 for (i = 0; i < numdevs; i++) { 545 /* Skip devices that aren't ready. */ 546 if (!device_is_attached(devs[i])) 547 continue; 548 549 /* 550 * Get settings, skipping drivers that offer no settings or 551 * provide settings for informational purposes only. 552 */ 553 error = CPUFREQ_DRV_TYPE(devs[i], &type); 554 if (error || (type & CPUFREQ_FLAG_INFO_ONLY)) { 555 if (error == 0) { 556 CF_DEBUG("skipping info-only driver %s\n", 557 device_get_nameunit(devs[i])); 558 } 559 continue; 560 } 561 set_count = MAX_SETTINGS; 562 error = CPUFREQ_DRV_SETTINGS(devs[i], sets, &set_count); 563 if (error || set_count == 0) 564 continue; 565 566 /* Add the settings to our absolute/relative lists. */ 567 switch (type & CPUFREQ_TYPE_MASK) { 568 case CPUFREQ_TYPE_ABSOLUTE: 569 error = cpufreq_insert_abs(sc, sets, set_count); 570 break; 571 case CPUFREQ_TYPE_RELATIVE: 572 CF_DEBUG("adding %d relative settings\n", set_count); 573 set_arr = malloc(sizeof(*set_arr), M_TEMP, M_NOWAIT); 574 if (set_arr == NULL) { 575 error = ENOMEM; 576 goto out; 577 } 578 bcopy(sets, set_arr->sets, set_count * sizeof(*sets)); 579 set_arr->count = set_count; 580 TAILQ_INSERT_TAIL(&rel_sets, set_arr, link); 581 break; 582 default: 583 error = EINVAL; 584 } 585 if (error) 586 goto out; 587 } 588 589 /* 590 * If there are no absolute levels, create a fake one at 100%. We 591 * then cache the clockrate for later use as our base frequency. 592 */ 593 if (TAILQ_EMPTY(&sc->all_levels)) { 594 if (sc->max_mhz == CPUFREQ_VAL_UNKNOWN) { 595 sc->max_mhz = cpu_get_nominal_mhz(dev); 596 /* 597 * If the CPU can't report a rate for 100%, hope 598 * the CPU is running at its nominal rate right now, 599 * and use that instead. 600 */ 601 if (sc->max_mhz <= 0) { 602 pc = cpu_get_pcpu(dev); 603 cpu_est_clockrate(pc->pc_cpuid, &rate); 604 sc->max_mhz = rate / 1000000; 605 } 606 } 607 memset(&sets[0], CPUFREQ_VAL_UNKNOWN, sizeof(*sets)); 608 sets[0].freq = sc->max_mhz; 609 sets[0].dev = NULL; 610 error = cpufreq_insert_abs(sc, sets, 1); 611 if (error) 612 goto out; 613 } 614 615 /* Create a combined list of absolute + relative levels. */ 616 TAILQ_FOREACH(set_arr, &rel_sets, link) 617 cpufreq_expand_set(sc, set_arr); 618 619 /* If the caller doesn't have enough space, return the actual count. */ 620 if (sc->all_count > *count) { 621 *count = sc->all_count; 622 error = E2BIG; 623 goto out; 624 } 625 626 /* Finally, output the list of levels. */ 627 i = 0; 628 TAILQ_FOREACH(lev, &sc->all_levels, link) { 629 /* 630 * Skip levels that are too close in frequency to the 631 * previous levels. Some systems report bogus duplicate 632 * settings (i.e., for acpi_perf). 633 */ 634 if (i > 0 && CPUFREQ_CMP(lev->total_set.freq, 635 levels[i - 1].total_set.freq)) { 636 sc->all_count--; 637 continue; 638 } 639 640 /* Skip levels that have a frequency that is too low. */ 641 if (lev->total_set.freq < cf_lowest_freq) { 642 sc->all_count--; 643 continue; 644 } 645 646 levels[i] = *lev; 647 i++; 648 } 649 *count = sc->all_count; 650 error = 0; 651 652 out: 653 /* Clear all levels since we regenerate them each time. */ 654 while ((lev = TAILQ_FIRST(&sc->all_levels)) != NULL) { 655 TAILQ_REMOVE(&sc->all_levels, lev, link); 656 free(lev, M_TEMP); 657 } 658 sc->all_count = 0; 659 660 CF_MTX_UNLOCK(&sc->lock); 661 while ((set_arr = TAILQ_FIRST(&rel_sets)) != NULL) { 662 TAILQ_REMOVE(&rel_sets, set_arr, link); 663 free(set_arr, M_TEMP); 664 } 665 free(devs, M_TEMP); 666 free(sets, M_TEMP); 667 return (error); 668 } 669 670 /* 671 * Create levels for an array of absolute settings and insert them in 672 * sorted order in the specified list. 673 */ 674 static int 675 cpufreq_insert_abs(struct cpufreq_softc *sc, struct cf_setting *sets, 676 int count) 677 { 678 struct cf_level_lst *list; 679 struct cf_level *level, *search; 680 int i; 681 682 CF_MTX_ASSERT(&sc->lock); 683 684 list = &sc->all_levels; 685 for (i = 0; i < count; i++) { 686 level = malloc(sizeof(*level), M_TEMP, M_NOWAIT | M_ZERO); 687 if (level == NULL) 688 return (ENOMEM); 689 level->abs_set = sets[i]; 690 level->total_set = sets[i]; 691 level->total_set.dev = NULL; 692 sc->all_count++; 693 694 if (TAILQ_EMPTY(list)) { 695 CF_DEBUG("adding abs setting %d at head\n", 696 sets[i].freq); 697 TAILQ_INSERT_HEAD(list, level, link); 698 continue; 699 } 700 701 TAILQ_FOREACH_REVERSE(search, list, cf_level_lst, link) { 702 if (sets[i].freq <= search->total_set.freq) { 703 CF_DEBUG("adding abs setting %d after %d\n", 704 sets[i].freq, search->total_set.freq); 705 TAILQ_INSERT_AFTER(list, search, level, link); 706 break; 707 } 708 } 709 } 710 return (0); 711 } 712 713 /* 714 * Expand a group of relative settings, creating derived levels from them. 715 */ 716 static int 717 cpufreq_expand_set(struct cpufreq_softc *sc, struct cf_setting_array *set_arr) 718 { 719 struct cf_level *fill, *search; 720 struct cf_setting *set; 721 int i; 722 723 CF_MTX_ASSERT(&sc->lock); 724 725 /* 726 * Walk the set of all existing levels in reverse. This is so we 727 * create derived states from the lowest absolute settings first 728 * and discard duplicates created from higher absolute settings. 729 * For instance, a level of 50 Mhz derived from 100 Mhz + 50% is 730 * preferable to 200 Mhz + 25% because absolute settings are more 731 * efficient since they often change the voltage as well. 732 */ 733 TAILQ_FOREACH_REVERSE(search, &sc->all_levels, cf_level_lst, link) { 734 /* Add each setting to the level, duplicating if necessary. */ 735 for (i = 0; i < set_arr->count; i++) { 736 set = &set_arr->sets[i]; 737 738 /* 739 * If this setting is less than 100%, split the level 740 * into two and add this setting to the new level. 741 */ 742 fill = search; 743 if (set->freq < 10000) { 744 fill = cpufreq_dup_set(sc, search, set); 745 746 /* 747 * The new level was a duplicate of an existing 748 * level or its absolute setting is too high 749 * so we freed it. For example, we discard a 750 * derived level of 1000 MHz/25% if a level 751 * of 500 MHz/100% already exists. 752 */ 753 if (fill == NULL) 754 break; 755 } 756 757 /* Add this setting to the existing or new level. */ 758 KASSERT(fill->rel_count < MAX_SETTINGS, 759 ("cpufreq: too many relative drivers (%d)", 760 MAX_SETTINGS)); 761 fill->rel_set[fill->rel_count] = *set; 762 fill->rel_count++; 763 CF_DEBUG( 764 "expand set added rel setting %d%% to %d level\n", 765 set->freq / 100, fill->total_set.freq); 766 } 767 } 768 769 return (0); 770 } 771 772 static struct cf_level * 773 cpufreq_dup_set(struct cpufreq_softc *sc, struct cf_level *dup, 774 struct cf_setting *set) 775 { 776 struct cf_level_lst *list; 777 struct cf_level *fill, *itr; 778 struct cf_setting *fill_set, *itr_set; 779 int i; 780 781 CF_MTX_ASSERT(&sc->lock); 782 783 /* 784 * Create a new level, copy it from the old one, and update the 785 * total frequency and power by the percentage specified in the 786 * relative setting. 787 */ 788 fill = malloc(sizeof(*fill), M_TEMP, M_NOWAIT); 789 if (fill == NULL) 790 return (NULL); 791 *fill = *dup; 792 fill_set = &fill->total_set; 793 fill_set->freq = 794 ((uint64_t)fill_set->freq * set->freq) / 10000; 795 if (fill_set->power != CPUFREQ_VAL_UNKNOWN) { 796 fill_set->power = ((uint64_t)fill_set->power * set->freq) 797 / 10000; 798 } 799 if (set->lat != CPUFREQ_VAL_UNKNOWN) { 800 if (fill_set->lat != CPUFREQ_VAL_UNKNOWN) 801 fill_set->lat += set->lat; 802 else 803 fill_set->lat = set->lat; 804 } 805 CF_DEBUG("dup set considering derived setting %d\n", fill_set->freq); 806 807 /* 808 * If we copied an old level that we already modified (say, at 100%), 809 * we need to remove that setting before adding this one. Since we 810 * process each setting array in order, we know any settings for this 811 * driver will be found at the end. 812 */ 813 for (i = fill->rel_count; i != 0; i--) { 814 if (fill->rel_set[i - 1].dev != set->dev) 815 break; 816 CF_DEBUG("removed last relative driver: %s\n", 817 device_get_nameunit(set->dev)); 818 fill->rel_count--; 819 } 820 821 /* 822 * Insert the new level in sorted order. If it is a duplicate of an 823 * existing level (1) or has an absolute setting higher than the 824 * existing level (2), do not add it. We can do this since any such 825 * level is guaranteed use less power. For example (1), a level with 826 * one absolute setting of 800 Mhz uses less power than one composed 827 * of an absolute setting of 1600 Mhz and a relative setting at 50%. 828 * Also for example (2), a level of 800 Mhz/75% is preferable to 829 * 1600 Mhz/25% even though the latter has a lower total frequency. 830 */ 831 list = &sc->all_levels; 832 KASSERT(!TAILQ_EMPTY(list), ("all levels list empty in dup set")); 833 TAILQ_FOREACH_REVERSE(itr, list, cf_level_lst, link) { 834 itr_set = &itr->total_set; 835 if (CPUFREQ_CMP(fill_set->freq, itr_set->freq)) { 836 CF_DEBUG("dup set rejecting %d (dupe)\n", 837 fill_set->freq); 838 itr = NULL; 839 break; 840 } else if (fill_set->freq < itr_set->freq) { 841 if (fill->abs_set.freq <= itr->abs_set.freq) { 842 CF_DEBUG( 843 "dup done, inserting new level %d after %d\n", 844 fill_set->freq, itr_set->freq); 845 TAILQ_INSERT_AFTER(list, itr, fill, link); 846 sc->all_count++; 847 } else { 848 CF_DEBUG("dup set rejecting %d (abs too big)\n", 849 fill_set->freq); 850 itr = NULL; 851 } 852 break; 853 } 854 } 855 856 /* We didn't find a good place for this new level so free it. */ 857 if (itr == NULL) { 858 CF_DEBUG("dup set freeing new level %d (not optimal)\n", 859 fill_set->freq); 860 free(fill, M_TEMP); 861 fill = NULL; 862 } 863 864 return (fill); 865 } 866 867 static int 868 cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS) 869 { 870 struct cpufreq_softc *sc; 871 struct cf_level *levels; 872 int count, devcount, error, freq, i, n; 873 device_t *devs; 874 875 devs = NULL; 876 sc = oidp->oid_arg1; 877 levels = sc->levels_buf; 878 879 error = CPUFREQ_GET(sc->dev, &levels[0]); 880 if (error) 881 goto out; 882 freq = levels[0].total_set.freq; 883 error = sysctl_handle_int(oidp, &freq, 0, req); 884 if (error != 0 || req->newptr == NULL) 885 goto out; 886 887 /* 888 * While we only call cpufreq_get() on one device (assuming all 889 * CPUs have equal levels), we call cpufreq_set() on all CPUs. 890 * This is needed for some MP systems. 891 */ 892 error = devclass_get_devices(cpufreq_dc, &devs, &devcount); 893 if (error) 894 goto out; 895 for (n = 0; n < devcount; n++) { 896 count = CF_MAX_LEVELS; 897 error = CPUFREQ_LEVELS(devs[n], levels, &count); 898 if (error) { 899 if (error == E2BIG) 900 printf( 901 "cpufreq: need to increase CF_MAX_LEVELS\n"); 902 break; 903 } 904 for (i = 0; i < count; i++) { 905 if (CPUFREQ_CMP(levels[i].total_set.freq, freq)) { 906 error = CPUFREQ_SET(devs[n], &levels[i], 907 CPUFREQ_PRIO_USER); 908 break; 909 } 910 } 911 if (i == count) { 912 error = EINVAL; 913 break; 914 } 915 } 916 917 out: 918 if (devs) 919 free(devs, M_TEMP); 920 return (error); 921 } 922 923 static int 924 cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS) 925 { 926 struct cpufreq_softc *sc; 927 struct cf_level *levels; 928 struct cf_setting *set; 929 struct sbuf sb; 930 int count, error, i; 931 932 sc = oidp->oid_arg1; 933 sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND); 934 935 /* Get settings from the device and generate the output string. */ 936 count = CF_MAX_LEVELS; 937 levels = sc->levels_buf; 938 if (levels == NULL) { 939 sbuf_delete(&sb); 940 return (ENOMEM); 941 } 942 error = CPUFREQ_LEVELS(sc->dev, levels, &count); 943 if (error) { 944 if (error == E2BIG) 945 printf("cpufreq: need to increase CF_MAX_LEVELS\n"); 946 goto out; 947 } 948 if (count) { 949 for (i = 0; i < count; i++) { 950 set = &levels[i].total_set; 951 sbuf_printf(&sb, "%d/%d ", set->freq, set->power); 952 } 953 } else 954 sbuf_cpy(&sb, "0"); 955 sbuf_trim(&sb); 956 sbuf_finish(&sb); 957 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 958 959 out: 960 sbuf_delete(&sb); 961 return (error); 962 } 963 964 static int 965 cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS) 966 { 967 device_t dev; 968 struct cf_setting *sets; 969 struct sbuf sb; 970 int error, i, set_count; 971 972 dev = oidp->oid_arg1; 973 sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND); 974 975 /* Get settings from the device and generate the output string. */ 976 set_count = MAX_SETTINGS; 977 sets = malloc(set_count * sizeof(*sets), M_TEMP, M_NOWAIT); 978 if (sets == NULL) { 979 sbuf_delete(&sb); 980 return (ENOMEM); 981 } 982 error = CPUFREQ_DRV_SETTINGS(dev, sets, &set_count); 983 if (error) 984 goto out; 985 if (set_count) { 986 for (i = 0; i < set_count; i++) 987 sbuf_printf(&sb, "%d/%d ", sets[i].freq, sets[i].power); 988 } else 989 sbuf_cpy(&sb, "0"); 990 sbuf_trim(&sb); 991 sbuf_finish(&sb); 992 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 993 994 out: 995 free(sets, M_TEMP); 996 sbuf_delete(&sb); 997 return (error); 998 } 999 1000 int 1001 cpufreq_register(device_t dev) 1002 { 1003 struct cpufreq_softc *sc; 1004 device_t cf_dev, cpu_dev; 1005 1006 /* Add a sysctl to get each driver's settings separately. */ 1007 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1008 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1009 OID_AUTO, "freq_settings", CTLTYPE_STRING | CTLFLAG_RD, dev, 0, 1010 cpufreq_settings_sysctl, "A", "CPU frequency driver settings"); 1011 1012 /* 1013 * Add only one cpufreq device to each CPU. Currently, all CPUs 1014 * must offer the same levels and be switched at the same time. 1015 */ 1016 cpu_dev = device_get_parent(dev); 1017 if ((cf_dev = device_find_child(cpu_dev, "cpufreq", -1))) { 1018 sc = device_get_softc(cf_dev); 1019 sc->max_mhz = CPUFREQ_VAL_UNKNOWN; 1020 return (0); 1021 } 1022 1023 /* Add the child device and possibly sysctls. */ 1024 cf_dev = BUS_ADD_CHILD(cpu_dev, 0, "cpufreq", -1); 1025 if (cf_dev == NULL) 1026 return (ENOMEM); 1027 device_quiet(cf_dev); 1028 1029 return (device_probe_and_attach(cf_dev)); 1030 } 1031 1032 int 1033 cpufreq_unregister(device_t dev) 1034 { 1035 device_t cf_dev, *devs; 1036 int cfcount, devcount, error, i, type; 1037 1038 /* 1039 * If this is the last cpufreq child device, remove the control 1040 * device as well. We identify cpufreq children by calling a method 1041 * they support. 1042 */ 1043 error = device_get_children(device_get_parent(dev), &devs, &devcount); 1044 if (error) 1045 return (error); 1046 cf_dev = device_find_child(device_get_parent(dev), "cpufreq", -1); 1047 if (cf_dev == NULL) { 1048 device_printf(dev, 1049 "warning: cpufreq_unregister called with no cpufreq device active\n"); 1050 return (0); 1051 } 1052 cfcount = 0; 1053 for (i = 0; i < devcount; i++) { 1054 if (!device_is_attached(devs[i])) 1055 continue; 1056 if (CPUFREQ_DRV_TYPE(devs[i], &type) == 0) 1057 cfcount++; 1058 } 1059 if (cfcount <= 1) 1060 device_delete_child(device_get_parent(cf_dev), cf_dev); 1061 free(devs, M_TEMP); 1062 1063 return (0); 1064 } 1065 1066 int 1067 cpufreq_settings_changed(device_t dev) 1068 { 1069 1070 EVENTHANDLER_INVOKE(cpufreq_levels_changed, 1071 device_get_unit(device_get_parent(dev))); 1072 return (0); 1073 } 1074