1 /*- 2 * Copyright (c) 2004-2005 Nate Lawson (SDG) 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bus.h> 32 #include <sys/cpu.h> 33 #include <sys/eventhandler.h> 34 #include <sys/kernel.h> 35 #include <sys/malloc.h> 36 #include <sys/module.h> 37 #include <sys/proc.h> 38 #include <sys/queue.h> 39 #include <sys/sched.h> 40 #include <sys/sysctl.h> 41 #include <sys/systm.h> 42 #include <sys/sbuf.h> 43 44 #include "cpufreq_if.h" 45 46 /* 47 * Common CPU frequency glue code. Drivers for specific hardware can 48 * attach this interface to allow users to get/set the CPU frequency. 49 */ 50 51 /* 52 * Number of levels we can handle. Levels are synthesized from settings 53 * so for N settings there may be N^2 levels. 54 */ 55 #define CF_MAX_LEVELS 32 56 57 struct cpufreq_softc { 58 struct cf_level curr_level; 59 int priority; 60 int all_count; 61 struct cf_level_lst all_levels; 62 device_t dev; 63 struct sysctl_ctx_list sysctl_ctx; 64 }; 65 66 struct cf_setting_array { 67 struct cf_setting sets[MAX_SETTINGS]; 68 int count; 69 TAILQ_ENTRY(cf_setting_array) link; 70 }; 71 72 TAILQ_HEAD(cf_setting_lst, cf_setting_array); 73 74 static int cpufreq_attach(device_t dev); 75 static int cpufreq_detach(device_t dev); 76 static void cpufreq_evaluate(void *arg); 77 static int cf_set_method(device_t dev, const struct cf_level *level, 78 int priority); 79 static int cf_get_method(device_t dev, struct cf_level *level); 80 static int cf_levels_method(device_t dev, struct cf_level *levels, 81 int *count); 82 static int cpufreq_insert_abs(struct cpufreq_softc *sc, 83 struct cf_setting *sets, int count); 84 static int cpufreq_expand_set(struct cpufreq_softc *sc, 85 struct cf_setting_array *set_arr); 86 static struct cf_level *cpufreq_dup_set(struct cpufreq_softc *sc, 87 struct cf_level *dup, struct cf_setting *set); 88 static int cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS); 89 static int cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS); 90 91 static device_method_t cpufreq_methods[] = { 92 DEVMETHOD(device_probe, bus_generic_probe), 93 DEVMETHOD(device_attach, cpufreq_attach), 94 DEVMETHOD(device_detach, cpufreq_detach), 95 96 DEVMETHOD(cpufreq_set, cf_set_method), 97 DEVMETHOD(cpufreq_get, cf_get_method), 98 DEVMETHOD(cpufreq_levels, cf_levels_method), 99 {0, 0} 100 }; 101 static driver_t cpufreq_driver = { 102 "cpufreq", cpufreq_methods, sizeof(struct cpufreq_softc) 103 }; 104 static devclass_t cpufreq_dc; 105 DRIVER_MODULE(cpufreq, cpu, cpufreq_driver, cpufreq_dc, 0, 0); 106 107 static eventhandler_tag cf_ev_tag; 108 109 static int 110 cpufreq_attach(device_t dev) 111 { 112 struct cpufreq_softc *sc; 113 device_t parent; 114 int numdevs; 115 116 sc = device_get_softc(dev); 117 parent = device_get_parent(dev); 118 sc->dev = dev; 119 sysctl_ctx_init(&sc->sysctl_ctx); 120 TAILQ_INIT(&sc->all_levels); 121 sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN; 122 123 /* 124 * Only initialize one set of sysctls for all CPUs. In the future, 125 * if multiple CPUs can have different settings, we can move these 126 * sysctls to be under every CPU instead of just the first one. 127 */ 128 numdevs = devclass_get_count(cpufreq_dc); 129 if (numdevs > 1) 130 return (0); 131 132 SYSCTL_ADD_PROC(&sc->sysctl_ctx, 133 SYSCTL_CHILDREN(device_get_sysctl_tree(parent)), 134 OID_AUTO, "freq", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 135 cpufreq_curr_sysctl, "I", "Current CPU frequency"); 136 SYSCTL_ADD_PROC(&sc->sysctl_ctx, 137 SYSCTL_CHILDREN(device_get_sysctl_tree(parent)), 138 OID_AUTO, "freq_levels", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 139 cpufreq_levels_sysctl, "A", "CPU frequency levels"); 140 cf_ev_tag = EVENTHANDLER_REGISTER(cpufreq_changed, cpufreq_evaluate, 141 NULL, EVENTHANDLER_PRI_ANY); 142 143 return (0); 144 } 145 146 static int 147 cpufreq_detach(device_t dev) 148 { 149 struct cpufreq_softc *sc; 150 int numdevs; 151 152 sc = device_get_softc(dev); 153 sysctl_ctx_free(&sc->sysctl_ctx); 154 155 /* Only clean up these resources when the last device is detaching. */ 156 numdevs = devclass_get_count(cpufreq_dc); 157 if (numdevs == 1) 158 EVENTHANDLER_DEREGISTER(cpufreq_changed, cf_ev_tag); 159 160 return (0); 161 } 162 163 static void 164 cpufreq_evaluate(void *arg) 165 { 166 /* TODO: Re-evaluate when notified of changes to drivers. */ 167 } 168 169 static int 170 cf_set_method(device_t dev, const struct cf_level *level, int priority) 171 { 172 struct cpufreq_softc *sc; 173 const struct cf_setting *set; 174 int error, i; 175 176 sc = device_get_softc(dev); 177 178 /* If already at this level, just return. */ 179 if (CPUFREQ_CMP(sc->curr_level.total_set.freq, level->total_set.freq)) 180 return (0); 181 182 /* First, set the absolute frequency via its driver. */ 183 set = &level->abs_set; 184 if (set->dev) { 185 if (!device_is_attached(set->dev)) { 186 error = ENXIO; 187 goto out; 188 } 189 error = CPUFREQ_DRV_SET(set->dev, set); 190 if (error) { 191 goto out; 192 } 193 } 194 195 /* Next, set any/all relative frequencies via their drivers. */ 196 for (i = 0; i < level->rel_count; i++) { 197 set = &level->rel_set[i]; 198 if (!device_is_attached(set->dev)) { 199 error = ENXIO; 200 goto out; 201 } 202 error = CPUFREQ_DRV_SET(set->dev, set); 203 if (error) { 204 /* XXX Back out any successful setting? */ 205 goto out; 206 } 207 } 208 209 /* Record the current level. */ 210 sc->curr_level = *level; 211 sc->priority = priority; 212 error = 0; 213 214 out: 215 if (error) 216 device_printf(set->dev, "set freq failed, err %d\n", error); 217 return (error); 218 } 219 220 static int 221 cf_get_method(device_t dev, struct cf_level *level) 222 { 223 struct cpufreq_softc *sc; 224 struct cf_level *levels; 225 struct cf_setting *curr_set, set; 226 struct pcpu *pc; 227 device_t *devs; 228 int count, error, i, numdevs; 229 uint64_t rate; 230 231 sc = device_get_softc(dev); 232 curr_set = &sc->curr_level.total_set; 233 levels = NULL; 234 235 /* If we already know the current frequency, we're done. */ 236 if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) 237 goto out; 238 239 /* 240 * We need to figure out the current level. Loop through every 241 * driver, getting the current setting. Then, attempt to get a best 242 * match of settings against each level. 243 */ 244 count = CF_MAX_LEVELS; 245 levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT); 246 if (levels == NULL) 247 return (ENOMEM); 248 error = CPUFREQ_LEVELS(sc->dev, levels, &count); 249 if (error) 250 goto out; 251 error = device_get_children(device_get_parent(dev), &devs, &numdevs); 252 if (error) 253 goto out; 254 for (i = 0; i < numdevs && curr_set->freq == CPUFREQ_VAL_UNKNOWN; i++) { 255 if (!device_is_attached(devs[i])) 256 continue; 257 error = CPUFREQ_DRV_GET(devs[i], &set); 258 if (error) 259 continue; 260 for (i = 0; i < count; i++) { 261 if (CPUFREQ_CMP(set.freq, levels[i].total_set.freq)) { 262 sc->curr_level = levels[i]; 263 break; 264 } 265 } 266 } 267 free(devs, M_TEMP); 268 if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) 269 goto out; 270 271 /* 272 * We couldn't find an exact match, so attempt to estimate and then 273 * match against a level. 274 */ 275 pc = cpu_get_pcpu(dev); 276 if (pc == NULL) { 277 error = ENXIO; 278 goto out; 279 } 280 cpu_est_clockrate(pc->pc_cpuid, &rate); 281 rate /= 1000000; 282 for (i = 0; i < count; i++) { 283 if (CPUFREQ_CMP(rate, levels[i].total_set.freq)) { 284 sc->curr_level = levels[i]; 285 break; 286 } 287 } 288 289 out: 290 if (levels) 291 free(levels, M_TEMP); 292 *level = sc->curr_level; 293 return (0); 294 } 295 296 static int 297 cf_levels_method(device_t dev, struct cf_level *levels, int *count) 298 { 299 struct cf_setting_array *set_arr; 300 struct cf_setting_lst rel_sets; 301 struct cpufreq_softc *sc; 302 struct cf_level *lev; 303 struct cf_setting *sets; 304 struct pcpu *pc; 305 device_t *devs; 306 int error, i, numdevs, set_count, type; 307 uint64_t rate; 308 309 if (levels == NULL || count == NULL) 310 return (EINVAL); 311 312 TAILQ_INIT(&rel_sets); 313 sc = device_get_softc(dev); 314 error = device_get_children(device_get_parent(dev), &devs, &numdevs); 315 if (error) 316 return (error); 317 sets = malloc(MAX_SETTINGS * sizeof(*sets), M_TEMP, M_NOWAIT); 318 if (sets == NULL) { 319 free(devs, M_TEMP); 320 return (ENOMEM); 321 } 322 323 /* Get settings from all cpufreq drivers. */ 324 for (i = 0; i < numdevs; i++) { 325 if (!device_is_attached(devs[i])) 326 continue; 327 set_count = MAX_SETTINGS; 328 error = CPUFREQ_DRV_SETTINGS(devs[i], sets, &set_count, &type); 329 if (error || set_count == 0) 330 continue; 331 332 switch (type) { 333 case CPUFREQ_TYPE_ABSOLUTE: 334 error = cpufreq_insert_abs(sc, sets, set_count); 335 break; 336 case CPUFREQ_TYPE_RELATIVE: 337 set_arr = malloc(sizeof(*set_arr), M_TEMP, M_NOWAIT); 338 if (set_arr == NULL) { 339 error = ENOMEM; 340 goto out; 341 } 342 bcopy(sets, set_arr->sets, set_count * sizeof(*sets)); 343 set_arr->count = set_count; 344 TAILQ_INSERT_TAIL(&rel_sets, set_arr, link); 345 break; 346 default: 347 error = EINVAL; 348 break; 349 } 350 if (error) 351 goto out; 352 } 353 354 /* If there are no absolute levels, create a fake one at 100%. */ 355 if (TAILQ_EMPTY(&sc->all_levels)) { 356 bzero(&sets[0], sizeof(*sets)); 357 pc = cpu_get_pcpu(dev); 358 if (pc == NULL) { 359 error = ENXIO; 360 goto out; 361 } 362 cpu_est_clockrate(pc->pc_cpuid, &rate); 363 sets[0].freq = rate / 1000000; 364 error = cpufreq_insert_abs(sc, sets, 1); 365 if (error) 366 goto out; 367 } 368 369 /* Create a combined list of absolute + relative levels. */ 370 TAILQ_FOREACH(set_arr, &rel_sets, link) 371 cpufreq_expand_set(sc, set_arr); 372 373 /* If the caller doesn't have enough space, return the actual count. */ 374 if (sc->all_count > *count) { 375 *count = sc->all_count; 376 error = E2BIG; 377 goto out; 378 } 379 380 /* Finally, output the list of levels. */ 381 i = 0; 382 TAILQ_FOREACH(lev, &sc->all_levels, link) { 383 levels[i] = *lev; 384 i++; 385 } 386 *count = sc->all_count; 387 error = 0; 388 389 out: 390 /* Clear all levels since we regenerate them each time. */ 391 while ((lev = TAILQ_FIRST(&sc->all_levels)) != NULL) { 392 TAILQ_REMOVE(&sc->all_levels, lev, link); 393 free(lev, M_TEMP); 394 } 395 while ((set_arr = TAILQ_FIRST(&rel_sets)) != NULL) { 396 TAILQ_REMOVE(&rel_sets, set_arr, link); 397 free(set_arr, M_TEMP); 398 } 399 sc->all_count = 0; 400 free(devs, M_TEMP); 401 free(sets, M_TEMP); 402 return (error); 403 } 404 405 /* 406 * Create levels for an array of absolute settings and insert them in 407 * sorted order in the specified list. 408 */ 409 static int 410 cpufreq_insert_abs(struct cpufreq_softc *sc, struct cf_setting *sets, 411 int count) 412 { 413 struct cf_level_lst *list; 414 struct cf_level *level, *search; 415 int i; 416 417 list = &sc->all_levels; 418 for (i = 0; i < count; i++) { 419 level = malloc(sizeof(*level), M_TEMP, M_NOWAIT | M_ZERO); 420 if (level == NULL) 421 return (ENOMEM); 422 level->abs_set = sets[i]; 423 level->total_set = sets[i]; 424 level->total_set.dev = NULL; 425 sc->all_count++; 426 427 if (TAILQ_EMPTY(list)) { 428 TAILQ_INSERT_HEAD(list, level, link); 429 continue; 430 } 431 432 TAILQ_FOREACH_REVERSE(search, list, cf_level_lst, link) { 433 if (sets[i].freq <= search->total_set.freq) { 434 TAILQ_INSERT_AFTER(list, search, level, link); 435 break; 436 } 437 } 438 } 439 return (0); 440 } 441 442 /* 443 * Expand a group of relative settings, creating derived levels from them. 444 */ 445 static int 446 cpufreq_expand_set(struct cpufreq_softc *sc, struct cf_setting_array *set_arr) 447 { 448 struct cf_level *fill, *search; 449 struct cf_setting *set; 450 int i; 451 452 TAILQ_FOREACH(search, &sc->all_levels, link) { 453 /* Skip this level if we've already modified it. */ 454 for (i = 0; i < search->rel_count; i++) { 455 if (search->rel_set[i].dev == set_arr->sets[0].dev) 456 break; 457 } 458 if (i != search->rel_count) 459 continue; 460 461 /* Add each setting to the level, duplicating if necessary. */ 462 for (i = 0; i < set_arr->count; i++) { 463 set = &set_arr->sets[i]; 464 465 /* 466 * If this setting is less than 100%, split the level 467 * into two and add this setting to the new level. 468 */ 469 fill = search; 470 if (set->freq < 10000) 471 fill = cpufreq_dup_set(sc, search, set); 472 473 /* 474 * The new level was a duplicate of an existing level 475 * so we freed it. Go to the next setting. 476 */ 477 if (fill == NULL) 478 continue; 479 480 /* Add this setting to the existing or new level. */ 481 KASSERT(fill->rel_count < MAX_SETTINGS, 482 ("cpufreq: too many relative drivers (%d)", 483 MAX_SETTINGS)); 484 fill->rel_set[fill->rel_count] = *set; 485 fill->rel_count++; 486 } 487 } 488 489 return (0); 490 } 491 492 static struct cf_level * 493 cpufreq_dup_set(struct cpufreq_softc *sc, struct cf_level *dup, 494 struct cf_setting *set) 495 { 496 struct cf_level_lst *list; 497 struct cf_level *fill, *itr; 498 struct cf_setting *fill_set, *itr_set; 499 int i; 500 501 /* 502 * Create a new level, copy it from the old one, and update the 503 * total frequency and power by the percentage specified in the 504 * relative setting. 505 */ 506 fill = malloc(sizeof(*fill), M_TEMP, M_NOWAIT); 507 if (fill == NULL) 508 return (NULL); 509 *fill = *dup; 510 fill_set = &fill->total_set; 511 fill_set->freq = 512 ((uint64_t)fill_set->freq * set->freq) / 10000; 513 if (fill_set->power != CPUFREQ_VAL_UNKNOWN) { 514 fill_set->power = ((uint64_t)fill_set->power * set->freq) 515 / 10000; 516 } 517 if (set->lat != CPUFREQ_VAL_UNKNOWN) { 518 if (fill_set->lat != CPUFREQ_VAL_UNKNOWN) 519 fill_set->lat += set->lat; 520 else 521 fill_set->lat = set->lat; 522 } 523 524 /* 525 * If we copied an old level that we already modified (say, at 100%), 526 * we need to remove that setting before adding this one. Since we 527 * process each setting array in order, we know any settings for this 528 * driver will be found at the end. 529 */ 530 for (i = fill->rel_count; i != 0; i--) { 531 if (fill->rel_set[i - 1].dev != set->dev) 532 break; 533 fill->rel_count--; 534 } 535 536 /* 537 * Insert the new level in sorted order. If we find a duplicate, 538 * free the new level. We can do this since any existing level will 539 * be guaranteed to have the same or less settings and thus consume 540 * less power. For example, a level with one absolute setting of 541 * 800 Mhz uses less power than one composed of an absolute setting 542 * of 1600 Mhz and a relative setting at 50%. 543 */ 544 list = &sc->all_levels; 545 if (TAILQ_EMPTY(list)) { 546 TAILQ_INSERT_HEAD(list, fill, link); 547 } else { 548 TAILQ_FOREACH_REVERSE(itr, list, cf_level_lst, link) { 549 itr_set = &itr->total_set; 550 if (CPUFREQ_CMP(fill_set->freq, itr_set->freq)) { 551 free(fill, M_TEMP); 552 fill = NULL; 553 break; 554 } else if (fill_set->freq < itr_set->freq) { 555 TAILQ_INSERT_AFTER(list, itr, fill, link); 556 sc->all_count++; 557 break; 558 } 559 } 560 } 561 562 return (fill); 563 } 564 565 static int 566 cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS) 567 { 568 struct cpufreq_softc *sc; 569 struct cf_level *levels; 570 int count, error, freq, i; 571 572 sc = oidp->oid_arg1; 573 count = CF_MAX_LEVELS; 574 levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT); 575 if (levels == NULL) 576 return (ENOMEM); 577 578 error = CPUFREQ_GET(sc->dev, &levels[0]); 579 if (error) 580 goto out; 581 freq = levels[0].total_set.freq; 582 error = sysctl_handle_int(oidp, &freq, 0, req); 583 if (error != 0 || req->newptr == NULL) 584 goto out; 585 586 error = CPUFREQ_LEVELS(sc->dev, levels, &count); 587 if (error) 588 goto out; 589 for (i = 0; i < count; i++) { 590 if (CPUFREQ_CMP(levels[i].total_set.freq, freq)) { 591 error = CPUFREQ_SET(sc->dev, &levels[i], 592 CPUFREQ_PRIO_USER); 593 break; 594 } 595 } 596 if (i == count) 597 error = EINVAL; 598 599 out: 600 if (levels) 601 free(levels, M_TEMP); 602 return (error); 603 } 604 605 static int 606 cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS) 607 { 608 struct cpufreq_softc *sc; 609 struct cf_level *levels; 610 struct cf_setting *set; 611 struct sbuf sb; 612 int count, error, i; 613 614 sc = oidp->oid_arg1; 615 sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND); 616 617 /* Get settings from the device and generate the output string. */ 618 count = CF_MAX_LEVELS; 619 levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT); 620 if (levels == NULL) 621 return (ENOMEM); 622 error = CPUFREQ_LEVELS(sc->dev, levels, &count); 623 if (error) 624 goto out; 625 if (count) { 626 for (i = 0; i < count; i++) { 627 set = &levels[i].total_set; 628 sbuf_printf(&sb, "%d/%d ", set->freq, set->power); 629 } 630 } else 631 sbuf_cpy(&sb, "0"); 632 sbuf_trim(&sb); 633 sbuf_finish(&sb); 634 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 635 636 out: 637 free(levels, M_TEMP); 638 sbuf_delete(&sb); 639 return (error); 640 } 641 642 int 643 cpufreq_register(device_t dev) 644 { 645 device_t cf_dev, cpu_dev; 646 647 /* 648 * Only add one cpufreq device (on cpu0) for all control. Once 649 * independent multi-cpu control appears, we can assign one cpufreq 650 * device per cpu. 651 */ 652 cf_dev = devclass_get_device(cpufreq_dc, 0); 653 if (cf_dev) 654 return (0); 655 656 /* Add the child device and sysctls. */ 657 cpu_dev = devclass_get_device(devclass_find("cpu"), 0); 658 cf_dev = BUS_ADD_CHILD(cpu_dev, 0, "cpufreq", 0); 659 if (cf_dev == NULL) 660 return (ENOMEM); 661 device_quiet(cf_dev); 662 663 return (device_probe_and_attach(cf_dev)); 664 } 665 666 int 667 cpufreq_unregister(device_t dev) 668 { 669 device_t cf_dev, *devs; 670 int cfcount, count, devcount, error, i, type; 671 struct cf_setting set; 672 673 /* 674 * If this is the last cpufreq child device, remove the control 675 * device as well. We identify cpufreq children by calling a method 676 * they support. 677 */ 678 error = device_get_children(device_get_parent(dev), &devs, &devcount); 679 if (error) 680 return (error); 681 cf_dev = devclass_get_device(cpufreq_dc, 0); 682 KASSERT(cf_dev != NULL, ("unregister with no cpufreq dev")); 683 cfcount = 0; 684 for (i = 0; i < devcount; i++) { 685 if (!device_is_attached(devs[i])) 686 continue; 687 count = 1; 688 if (CPUFREQ_DRV_SETTINGS(devs[i], &set, &count, &type) == 0) 689 cfcount++; 690 } 691 if (cfcount <= 1) { 692 device_delete_child(device_get_parent(cf_dev), cf_dev); 693 } 694 free(devs, M_TEMP); 695 696 return (0); 697 } 698