xref: /freebsd/sys/kern/kern_cpu.c (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004-2007 Nate Lawson (SDG)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/bus.h>
31 #include <sys/cpu.h>
32 #include <sys/eventhandler.h>
33 #include <sys/kernel.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/proc.h>
38 #include <sys/queue.h>
39 #include <sys/sbuf.h>
40 #include <sys/sched.h>
41 #include <sys/smp.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/sx.h>
45 #include <sys/timetc.h>
46 #include <sys/taskqueue.h>
47 
48 #include "cpufreq_if.h"
49 
50 /*
51  * Common CPU frequency glue code.  Drivers for specific hardware can
52  * attach this interface to allow users to get/set the CPU frequency.
53  */
54 
55 /*
56  * Number of levels we can handle.  Levels are synthesized from settings
57  * so for M settings and N drivers, there may be M*N levels.
58  */
59 #define CF_MAX_LEVELS	256
60 
61 struct cf_saved_freq {
62 	struct cf_level			level;
63 	int				priority;
64 	SLIST_ENTRY(cf_saved_freq)	link;
65 };
66 
67 struct cpufreq_softc {
68 	struct sx			lock;
69 	struct cf_level			curr_level;
70 	int				curr_priority;
71 	SLIST_HEAD(, cf_saved_freq)	saved_freq;
72 	struct cf_level_lst		all_levels;
73 	int				all_count;
74 	int				max_mhz;
75 	device_t			dev;
76 	device_t			cf_drv_dev;
77 	struct sysctl_ctx_list		sysctl_ctx;
78 	struct task			startup_task;
79 	struct cf_level			*levels_buf;
80 };
81 
82 struct cf_setting_array {
83 	struct cf_setting		sets[MAX_SETTINGS];
84 	int				count;
85 	TAILQ_ENTRY(cf_setting_array)	link;
86 };
87 
88 TAILQ_HEAD(cf_setting_lst, cf_setting_array);
89 
90 #define CF_MTX_INIT(x)		sx_init((x), "cpufreq lock")
91 #define CF_MTX_LOCK(x)		sx_xlock((x))
92 #define CF_MTX_UNLOCK(x)	sx_xunlock((x))
93 #define CF_MTX_ASSERT(x)	sx_assert((x), SX_XLOCKED)
94 
95 #define CF_DEBUG(msg...)	do {		\
96 	if (cf_verbose)				\
97 		printf("cpufreq: " msg);	\
98 	} while (0)
99 
100 static int	cpufreq_attach(device_t dev);
101 static void	cpufreq_startup_task(void *ctx, int pending);
102 static int	cpufreq_detach(device_t dev);
103 static int	cf_set_method(device_t dev, const struct cf_level *level,
104 		    int priority);
105 static int	cf_get_method(device_t dev, struct cf_level *level);
106 static int	cf_levels_method(device_t dev, struct cf_level *levels,
107 		    int *count);
108 static int	cpufreq_insert_abs(struct cpufreq_softc *sc,
109 		    struct cf_setting *sets, int count);
110 static int	cpufreq_expand_set(struct cpufreq_softc *sc,
111 		    struct cf_setting_array *set_arr);
112 static struct cf_level *cpufreq_dup_set(struct cpufreq_softc *sc,
113 		    struct cf_level *dup, struct cf_setting *set);
114 static int	cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS);
115 static int	cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS);
116 static int	cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS);
117 
118 static device_method_t cpufreq_methods[] = {
119 	DEVMETHOD(device_probe,		bus_generic_probe),
120 	DEVMETHOD(device_attach,	cpufreq_attach),
121 	DEVMETHOD(device_detach,	cpufreq_detach),
122 
123         DEVMETHOD(cpufreq_set,		cf_set_method),
124         DEVMETHOD(cpufreq_get,		cf_get_method),
125         DEVMETHOD(cpufreq_levels,	cf_levels_method),
126 	{0, 0}
127 };
128 
129 static driver_t cpufreq_driver = {
130 	"cpufreq", cpufreq_methods, sizeof(struct cpufreq_softc)
131 };
132 
133 DRIVER_MODULE(cpufreq, cpu, cpufreq_driver, 0, 0);
134 
135 static int		cf_lowest_freq;
136 static int		cf_verbose;
137 static SYSCTL_NODE(_debug, OID_AUTO, cpufreq, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
138     "cpufreq debugging");
139 SYSCTL_INT(_debug_cpufreq, OID_AUTO, lowest, CTLFLAG_RWTUN, &cf_lowest_freq, 1,
140     "Don't provide levels below this frequency.");
141 SYSCTL_INT(_debug_cpufreq, OID_AUTO, verbose, CTLFLAG_RWTUN, &cf_verbose, 1,
142     "Print verbose debugging messages");
143 
144 /*
145  * This is called as the result of a hardware specific frequency control driver
146  * calling cpufreq_register. It provides a general interface for system wide
147  * frequency controls and operates on a per cpu basis.
148  */
149 static int
150 cpufreq_attach(device_t dev)
151 {
152 	struct cpufreq_softc *sc;
153 	struct pcpu *pc;
154 	device_t parent;
155 	uint64_t rate;
156 
157 	CF_DEBUG("initializing %s\n", device_get_nameunit(dev));
158 	sc = device_get_softc(dev);
159 	parent = device_get_parent(dev);
160 	sc->dev = dev;
161 	sysctl_ctx_init(&sc->sysctl_ctx);
162 	TAILQ_INIT(&sc->all_levels);
163 	CF_MTX_INIT(&sc->lock);
164 	sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN;
165 	SLIST_INIT(&sc->saved_freq);
166 	/* Try to get nominal CPU freq to use it as maximum later if needed */
167 	sc->max_mhz = cpu_get_nominal_mhz(dev);
168 	/* If that fails, try to measure the current rate */
169 	if (sc->max_mhz <= 0) {
170 		CF_DEBUG("Unable to obtain nominal frequency.\n");
171 		pc = cpu_get_pcpu(dev);
172 		if (cpu_est_clockrate(pc->pc_cpuid, &rate) == 0)
173 			sc->max_mhz = rate / 1000000;
174 		else
175 			sc->max_mhz = CPUFREQ_VAL_UNKNOWN;
176 	}
177 
178 	CF_DEBUG("initializing one-time data for %s\n",
179 	    device_get_nameunit(dev));
180 	sc->levels_buf = malloc(CF_MAX_LEVELS * sizeof(*sc->levels_buf),
181 	    M_DEVBUF, M_WAITOK);
182 	SYSCTL_ADD_PROC(&sc->sysctl_ctx,
183 	    SYSCTL_CHILDREN(device_get_sysctl_tree(parent)),
184 	    OID_AUTO, "freq", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185 	    sc, 0, cpufreq_curr_sysctl, "I", "Current CPU frequency");
186 	SYSCTL_ADD_PROC(&sc->sysctl_ctx,
187 	    SYSCTL_CHILDREN(device_get_sysctl_tree(parent)),
188 	    OID_AUTO, "freq_levels",
189 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
190 	    cpufreq_levels_sysctl, "A", "CPU frequency levels");
191 
192 	/*
193 	 * Queue a one-shot broadcast that levels have changed.
194 	 * It will run once the system has completed booting.
195 	 */
196 	TASK_INIT(&sc->startup_task, 0, cpufreq_startup_task, dev);
197 	taskqueue_enqueue(taskqueue_thread, &sc->startup_task);
198 
199 	return (0);
200 }
201 
202 /* Handle any work to be done for all drivers that attached during boot. */
203 static void
204 cpufreq_startup_task(void *ctx, int pending)
205 {
206 
207 	cpufreq_settings_changed((device_t)ctx);
208 }
209 
210 static int
211 cpufreq_detach(device_t dev)
212 {
213 	struct cpufreq_softc *sc;
214 	struct cf_saved_freq *saved_freq;
215 
216 	CF_DEBUG("shutdown %s\n", device_get_nameunit(dev));
217 	sc = device_get_softc(dev);
218 	sysctl_ctx_free(&sc->sysctl_ctx);
219 
220 	while ((saved_freq = SLIST_FIRST(&sc->saved_freq)) != NULL) {
221 		SLIST_REMOVE_HEAD(&sc->saved_freq, link);
222 		free(saved_freq, M_TEMP);
223 	}
224 
225 	free(sc->levels_buf, M_DEVBUF);
226 
227 	return (0);
228 }
229 
230 static int
231 cf_set_method(device_t dev, const struct cf_level *level, int priority)
232 {
233 	struct cpufreq_softc *sc;
234 	const struct cf_setting *set;
235 	struct cf_saved_freq *saved_freq, *curr_freq;
236 	struct pcpu *pc;
237 	int error, i;
238 	u_char pri;
239 
240 	sc = device_get_softc(dev);
241 	error = 0;
242 	set = NULL;
243 	saved_freq = NULL;
244 
245 	/* We are going to change levels so notify the pre-change handler. */
246 	EVENTHANDLER_INVOKE(cpufreq_pre_change, level, &error);
247 	if (error != 0) {
248 		EVENTHANDLER_INVOKE(cpufreq_post_change, level, error);
249 		return (error);
250 	}
251 
252 	CF_MTX_LOCK(&sc->lock);
253 
254 #ifdef SMP
255 #ifdef EARLY_AP_STARTUP
256 	MPASS(mp_ncpus == 1 || smp_started);
257 #else
258 	/*
259 	 * If still booting and secondary CPUs not started yet, don't allow
260 	 * changing the frequency until they're online.  This is because we
261 	 * can't switch to them using sched_bind() and thus we'd only be
262 	 * switching the main CPU.  XXXTODO: Need to think more about how to
263 	 * handle having different CPUs at different frequencies.
264 	 */
265 	if (mp_ncpus > 1 && !smp_started) {
266 		device_printf(dev, "rejecting change, SMP not started yet\n");
267 		error = ENXIO;
268 		goto out;
269 	}
270 #endif
271 #endif /* SMP */
272 
273 	/*
274 	 * If the requested level has a lower priority, don't allow
275 	 * the new level right now.
276 	 */
277 	if (priority < sc->curr_priority) {
278 		CF_DEBUG("ignoring, curr prio %d less than %d\n", priority,
279 		    sc->curr_priority);
280 		error = EPERM;
281 		goto out;
282 	}
283 
284 	/*
285 	 * If the caller didn't specify a level and one is saved, prepare to
286 	 * restore the saved level.  If none has been saved, return an error.
287 	 */
288 	if (level == NULL) {
289 		saved_freq = SLIST_FIRST(&sc->saved_freq);
290 		if (saved_freq == NULL) {
291 			CF_DEBUG("NULL level, no saved level\n");
292 			error = ENXIO;
293 			goto out;
294 		}
295 		level = &saved_freq->level;
296 		priority = saved_freq->priority;
297 		CF_DEBUG("restoring saved level, freq %d prio %d\n",
298 		    level->total_set.freq, priority);
299 	}
300 
301 	/* Reject levels that are below our specified threshold. */
302 	if (level->total_set.freq < cf_lowest_freq) {
303 		CF_DEBUG("rejecting freq %d, less than %d limit\n",
304 		    level->total_set.freq, cf_lowest_freq);
305 		error = EINVAL;
306 		goto out;
307 	}
308 
309 	/* If already at this level, just return. */
310 	if (sc->curr_level.total_set.freq == level->total_set.freq) {
311 		CF_DEBUG("skipping freq %d, same as current level %d\n",
312 		    level->total_set.freq, sc->curr_level.total_set.freq);
313 		goto skip;
314 	}
315 
316 	/* First, set the absolute frequency via its driver. */
317 	set = &level->abs_set;
318 	if (set->dev) {
319 		if (!device_is_attached(set->dev)) {
320 			error = ENXIO;
321 			goto out;
322 		}
323 
324 		/* Bind to the target CPU before switching. */
325 		pc = cpu_get_pcpu(set->dev);
326 
327 		/* Skip settings if CPU is not started. */
328 		if (pc == NULL) {
329 			error = 0;
330 			goto out;
331 		}
332 		thread_lock(curthread);
333 		pri = curthread->td_priority;
334 		sched_prio(curthread, PRI_MIN);
335 		sched_bind(curthread, pc->pc_cpuid);
336 		thread_unlock(curthread);
337 		CF_DEBUG("setting abs freq %d on %s (cpu %d)\n", set->freq,
338 		    device_get_nameunit(set->dev), PCPU_GET(cpuid));
339 		error = CPUFREQ_DRV_SET(set->dev, set);
340 		thread_lock(curthread);
341 		sched_unbind(curthread);
342 		sched_prio(curthread, pri);
343 		thread_unlock(curthread);
344 		if (error) {
345 			goto out;
346 		}
347 	}
348 
349 	/* Next, set any/all relative frequencies via their drivers. */
350 	for (i = 0; i < level->rel_count; i++) {
351 		set = &level->rel_set[i];
352 		if (!device_is_attached(set->dev)) {
353 			error = ENXIO;
354 			goto out;
355 		}
356 
357 		/* Bind to the target CPU before switching. */
358 		pc = cpu_get_pcpu(set->dev);
359 		thread_lock(curthread);
360 		pri = curthread->td_priority;
361 		sched_prio(curthread, PRI_MIN);
362 		sched_bind(curthread, pc->pc_cpuid);
363 		thread_unlock(curthread);
364 		CF_DEBUG("setting rel freq %d on %s (cpu %d)\n", set->freq,
365 		    device_get_nameunit(set->dev), PCPU_GET(cpuid));
366 		error = CPUFREQ_DRV_SET(set->dev, set);
367 		thread_lock(curthread);
368 		sched_unbind(curthread);
369 		sched_prio(curthread, pri);
370 		thread_unlock(curthread);
371 		if (error) {
372 			/* XXX Back out any successful setting? */
373 			goto out;
374 		}
375 	}
376 
377 skip:
378 	/*
379 	 * Before recording the current level, check if we're going to a
380 	 * higher priority.  If so, save the previous level and priority.
381 	 */
382 	if (sc->curr_level.total_set.freq != CPUFREQ_VAL_UNKNOWN &&
383 	    priority > sc->curr_priority) {
384 		CF_DEBUG("saving level, freq %d prio %d\n",
385 		    sc->curr_level.total_set.freq, sc->curr_priority);
386 		curr_freq = malloc(sizeof(*curr_freq), M_TEMP, M_NOWAIT);
387 		if (curr_freq == NULL) {
388 			error = ENOMEM;
389 			goto out;
390 		}
391 		curr_freq->level = sc->curr_level;
392 		curr_freq->priority = sc->curr_priority;
393 		SLIST_INSERT_HEAD(&sc->saved_freq, curr_freq, link);
394 	}
395 	sc->curr_level = *level;
396 	sc->curr_priority = priority;
397 
398 	/* If we were restoring a saved state, reset it to "unused". */
399 	if (saved_freq != NULL) {
400 		CF_DEBUG("resetting saved level\n");
401 		sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN;
402 		SLIST_REMOVE_HEAD(&sc->saved_freq, link);
403 		free(saved_freq, M_TEMP);
404 	}
405 
406 out:
407 	CF_MTX_UNLOCK(&sc->lock);
408 
409 	/*
410 	 * We changed levels (or attempted to) so notify the post-change
411 	 * handler of new frequency or error.
412 	 */
413 	EVENTHANDLER_INVOKE(cpufreq_post_change, level, error);
414 	if (error && set)
415 		device_printf(set->dev, "set freq failed, err %d\n", error);
416 
417 	return (error);
418 }
419 
420 static int
421 cpufreq_get_frequency(device_t dev)
422 {
423 	struct cf_setting set;
424 
425 	if (CPUFREQ_DRV_GET(dev, &set) != 0)
426 		return (-1);
427 
428 	return (set.freq);
429 }
430 
431 /* Returns the index into *levels with the match */
432 static int
433 cpufreq_get_level(device_t dev, struct cf_level *levels, int count)
434 {
435 	int i, freq;
436 
437 	if ((freq = cpufreq_get_frequency(dev)) < 0)
438 		return (-1);
439 	for (i = 0; i < count; i++)
440 		if (freq == levels[i].total_set.freq)
441 			return (i);
442 
443 	return (-1);
444 }
445 
446 /*
447  * Used by the cpufreq core, this function will populate *level with the current
448  * frequency as either determined by a cached value sc->curr_level, or in the
449  * case the lower level driver has set the CPUFREQ_FLAG_UNCACHED flag, it will
450  * obtain the frequency from the driver itself.
451  */
452 static int
453 cf_get_method(device_t dev, struct cf_level *level)
454 {
455 	struct cpufreq_softc *sc;
456 	struct cf_level *levels;
457 	struct cf_setting *curr_set;
458 	struct pcpu *pc;
459 	int bdiff, count, diff, error, i, type;
460 	uint64_t rate;
461 
462 	sc = device_get_softc(dev);
463 	error = 0;
464 	levels = NULL;
465 
466 	/*
467 	 * If we already know the current frequency, and the driver didn't ask
468 	 * for uncached usage, we're done.
469 	 */
470 	CF_MTX_LOCK(&sc->lock);
471 	curr_set = &sc->curr_level.total_set;
472 	error = CPUFREQ_DRV_TYPE(sc->cf_drv_dev, &type);
473 	if (error == 0 && (type & CPUFREQ_FLAG_UNCACHED)) {
474 		struct cf_setting set;
475 
476 		/*
477 		 * If the driver wants to always report back the real frequency,
478 		 * first try the driver and if that fails, fall back to
479 		 * estimating.
480 		 */
481 		if (CPUFREQ_DRV_GET(sc->cf_drv_dev, &set) == 0) {
482 			sc->curr_level.total_set = set;
483 			CF_DEBUG("get returning immediate freq %d\n",
484 			    curr_set->freq);
485 			goto out;
486 		}
487 	} else if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) {
488 		CF_DEBUG("get returning known freq %d\n", curr_set->freq);
489 		error = 0;
490 		goto out;
491 	}
492 	CF_MTX_UNLOCK(&sc->lock);
493 
494 	/*
495 	 * We need to figure out the current level.  Loop through every
496 	 * driver, getting the current setting.  Then, attempt to get a best
497 	 * match of settings against each level.
498 	 */
499 	count = CF_MAX_LEVELS;
500 	levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
501 	if (levels == NULL)
502 		return (ENOMEM);
503 	error = CPUFREQ_LEVELS(sc->dev, levels, &count);
504 	if (error) {
505 		if (error == E2BIG)
506 			printf("cpufreq: need to increase CF_MAX_LEVELS\n");
507 		free(levels, M_TEMP);
508 		return (error);
509 	}
510 
511 	/*
512 	 * Reacquire the lock and search for the given level.
513 	 *
514 	 * XXX Note: this is not quite right since we really need to go
515 	 * through each level and compare both absolute and relative
516 	 * settings for each driver in the system before making a match.
517 	 * The estimation code below catches this case though.
518 	 */
519 	CF_MTX_LOCK(&sc->lock);
520 	i = cpufreq_get_level(sc->cf_drv_dev, levels, count);
521 	if (i >= 0)
522 		sc->curr_level = levels[i];
523 	else
524 		CF_DEBUG("Couldn't find supported level for %s\n",
525 		    device_get_nameunit(sc->cf_drv_dev));
526 
527 	if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) {
528 		CF_DEBUG("get matched freq %d from drivers\n", curr_set->freq);
529 		goto out;
530 	}
531 
532 	/*
533 	 * We couldn't find an exact match, so attempt to estimate and then
534 	 * match against a level.
535 	 */
536 	pc = cpu_get_pcpu(dev);
537 	if (pc == NULL) {
538 		error = ENXIO;
539 		goto out;
540 	}
541 	cpu_est_clockrate(pc->pc_cpuid, &rate);
542 	rate /= 1000000;
543 	bdiff = 1 << 30;
544 	for (i = 0; i < count; i++) {
545 		diff = abs(levels[i].total_set.freq - rate);
546 		if (diff < bdiff) {
547 			bdiff = diff;
548 			sc->curr_level = levels[i];
549 		}
550 	}
551 	CF_DEBUG("get estimated freq %d\n", curr_set->freq);
552 
553 out:
554 	if (error == 0)
555 		*level = sc->curr_level;
556 
557 	CF_MTX_UNLOCK(&sc->lock);
558 	if (levels)
559 		free(levels, M_TEMP);
560 	return (error);
561 }
562 
563 /*
564  * Either directly obtain settings from the cpufreq driver, or build a list of
565  * relative settings to be integrated later against an absolute max.
566  */
567 static int
568 cpufreq_add_levels(device_t cf_dev, struct cf_setting_lst *rel_sets)
569 {
570 	struct cf_setting_array *set_arr;
571 	struct cf_setting *sets;
572 	device_t dev;
573 	struct cpufreq_softc *sc;
574 	int type, set_count, error;
575 
576 	sc = device_get_softc(cf_dev);
577 	dev = sc->cf_drv_dev;
578 
579 	/* Skip devices that aren't ready. */
580 	if (!device_is_attached(cf_dev))
581 		return (0);
582 
583 	/*
584 	 * Get settings, skipping drivers that offer no settings or
585 	 * provide settings for informational purposes only.
586 	 */
587 	error = CPUFREQ_DRV_TYPE(dev, &type);
588 	if (error != 0 || (type & CPUFREQ_FLAG_INFO_ONLY)) {
589 		if (error == 0) {
590 			CF_DEBUG("skipping info-only driver %s\n",
591 			    device_get_nameunit(cf_dev));
592 		}
593 		return (error);
594 	}
595 
596 	sets = malloc(MAX_SETTINGS * sizeof(*sets), M_TEMP, M_NOWAIT);
597 	if (sets == NULL)
598 		return (ENOMEM);
599 
600 	set_count = MAX_SETTINGS;
601 	error = CPUFREQ_DRV_SETTINGS(dev, sets, &set_count);
602 	if (error != 0 || set_count == 0)
603 		goto out;
604 
605 	/* Add the settings to our absolute/relative lists. */
606 	switch (type & CPUFREQ_TYPE_MASK) {
607 	case CPUFREQ_TYPE_ABSOLUTE:
608 		error = cpufreq_insert_abs(sc, sets, set_count);
609 		break;
610 	case CPUFREQ_TYPE_RELATIVE:
611 		CF_DEBUG("adding %d relative settings\n", set_count);
612 		set_arr = malloc(sizeof(*set_arr), M_TEMP, M_NOWAIT);
613 		if (set_arr == NULL) {
614 			error = ENOMEM;
615 			goto out;
616 		}
617 		bcopy(sets, set_arr->sets, set_count * sizeof(*sets));
618 		set_arr->count = set_count;
619 		TAILQ_INSERT_TAIL(rel_sets, set_arr, link);
620 		break;
621 	default:
622 		error = EINVAL;
623 	}
624 
625 out:
626 	free(sets, M_TEMP);
627 	return (error);
628 }
629 
630 static int
631 cf_levels_method(device_t dev, struct cf_level *levels, int *count)
632 {
633 	struct cf_setting_array *set_arr;
634 	struct cf_setting_lst rel_sets;
635 	struct cpufreq_softc *sc;
636 	struct cf_level *lev;
637 	struct pcpu *pc;
638 	int error, i;
639 	uint64_t rate;
640 
641 	if (levels == NULL || count == NULL)
642 		return (EINVAL);
643 
644 	TAILQ_INIT(&rel_sets);
645 	sc = device_get_softc(dev);
646 
647 	CF_MTX_LOCK(&sc->lock);
648 	error = cpufreq_add_levels(sc->dev, &rel_sets);
649 	if (error)
650 		goto out;
651 
652 	/*
653 	 * If there are no absolute levels, create a fake one at 100%.  We
654 	 * then cache the clockrate for later use as our base frequency.
655 	 */
656 	if (TAILQ_EMPTY(&sc->all_levels)) {
657 		struct cf_setting set;
658 
659 		CF_DEBUG("No absolute levels returned by driver\n");
660 
661 		if (sc->max_mhz == CPUFREQ_VAL_UNKNOWN) {
662 			sc->max_mhz = cpu_get_nominal_mhz(dev);
663 			/*
664 			 * If the CPU can't report a rate for 100%, hope
665 			 * the CPU is running at its nominal rate right now,
666 			 * and use that instead.
667 			 */
668 			if (sc->max_mhz <= 0) {
669 				pc = cpu_get_pcpu(dev);
670 				cpu_est_clockrate(pc->pc_cpuid, &rate);
671 				sc->max_mhz = rate / 1000000;
672 			}
673 		}
674 		memset(&set, CPUFREQ_VAL_UNKNOWN, sizeof(set));
675 		set.freq = sc->max_mhz;
676 		set.dev = NULL;
677 		error = cpufreq_insert_abs(sc, &set, 1);
678 		if (error)
679 			goto out;
680 	}
681 
682 	/* Create a combined list of absolute + relative levels. */
683 	TAILQ_FOREACH(set_arr, &rel_sets, link)
684 		cpufreq_expand_set(sc, set_arr);
685 
686 	/* If the caller doesn't have enough space, return the actual count. */
687 	if (sc->all_count > *count) {
688 		*count = sc->all_count;
689 		error = E2BIG;
690 		goto out;
691 	}
692 
693 	/* Finally, output the list of levels. */
694 	i = 0;
695 	TAILQ_FOREACH(lev, &sc->all_levels, link) {
696 		/* Skip levels that have a frequency that is too low. */
697 		if (lev->total_set.freq < cf_lowest_freq) {
698 			sc->all_count--;
699 			continue;
700 		}
701 
702 		levels[i] = *lev;
703 		i++;
704 	}
705 	*count = sc->all_count;
706 	error = 0;
707 
708 out:
709 	/* Clear all levels since we regenerate them each time. */
710 	while ((lev = TAILQ_FIRST(&sc->all_levels)) != NULL) {
711 		TAILQ_REMOVE(&sc->all_levels, lev, link);
712 		free(lev, M_TEMP);
713 	}
714 	sc->all_count = 0;
715 
716 	CF_MTX_UNLOCK(&sc->lock);
717 	while ((set_arr = TAILQ_FIRST(&rel_sets)) != NULL) {
718 		TAILQ_REMOVE(&rel_sets, set_arr, link);
719 		free(set_arr, M_TEMP);
720 	}
721 	return (error);
722 }
723 
724 /*
725  * Create levels for an array of absolute settings and insert them in
726  * sorted order in the specified list.
727  */
728 static int
729 cpufreq_insert_abs(struct cpufreq_softc *sc, struct cf_setting *sets,
730     int count)
731 {
732 	struct cf_level_lst *list;
733 	struct cf_level *level, *search;
734 	int i, inserted;
735 
736 	CF_MTX_ASSERT(&sc->lock);
737 
738 	list = &sc->all_levels;
739 	for (i = 0; i < count; i++) {
740 		level = malloc(sizeof(*level), M_TEMP, M_NOWAIT | M_ZERO);
741 		if (level == NULL)
742 			return (ENOMEM);
743 		level->abs_set = sets[i];
744 		level->total_set = sets[i];
745 		level->total_set.dev = NULL;
746 		sc->all_count++;
747 		inserted = 0;
748 
749 		if (TAILQ_EMPTY(list)) {
750 			CF_DEBUG("adding abs setting %d at head\n",
751 			    sets[i].freq);
752 			TAILQ_INSERT_HEAD(list, level, link);
753 			continue;
754 		}
755 
756 		TAILQ_FOREACH_REVERSE(search, list, cf_level_lst, link)
757 			if (sets[i].freq <= search->total_set.freq) {
758 				CF_DEBUG("adding abs setting %d after %d\n",
759 				    sets[i].freq, search->total_set.freq);
760 				TAILQ_INSERT_AFTER(list, search, level, link);
761 				inserted = 1;
762 				break;
763 			}
764 
765 		if (inserted == 0) {
766 			TAILQ_FOREACH(search, list, link)
767 				if (sets[i].freq >= search->total_set.freq) {
768 					CF_DEBUG("adding abs setting %d before %d\n",
769 					    sets[i].freq, search->total_set.freq);
770 					TAILQ_INSERT_BEFORE(search, level, link);
771 					break;
772 				}
773 		}
774 	}
775 
776 	return (0);
777 }
778 
779 /*
780  * Expand a group of relative settings, creating derived levels from them.
781  */
782 static int
783 cpufreq_expand_set(struct cpufreq_softc *sc, struct cf_setting_array *set_arr)
784 {
785 	struct cf_level *fill, *search;
786 	struct cf_setting *set;
787 	int i;
788 
789 	CF_MTX_ASSERT(&sc->lock);
790 
791 	/*
792 	 * Walk the set of all existing levels in reverse.  This is so we
793 	 * create derived states from the lowest absolute settings first
794 	 * and discard duplicates created from higher absolute settings.
795 	 * For instance, a level of 50 Mhz derived from 100 Mhz + 50% is
796 	 * preferable to 200 Mhz + 25% because absolute settings are more
797 	 * efficient since they often change the voltage as well.
798 	 */
799 	TAILQ_FOREACH_REVERSE(search, &sc->all_levels, cf_level_lst, link) {
800 		/* Add each setting to the level, duplicating if necessary. */
801 		for (i = 0; i < set_arr->count; i++) {
802 			set = &set_arr->sets[i];
803 
804 			/*
805 			 * If this setting is less than 100%, split the level
806 			 * into two and add this setting to the new level.
807 			 */
808 			fill = search;
809 			if (set->freq < 10000) {
810 				fill = cpufreq_dup_set(sc, search, set);
811 
812 				/*
813 				 * The new level was a duplicate of an existing
814 				 * level or its absolute setting is too high
815 				 * so we freed it.  For example, we discard a
816 				 * derived level of 1000 MHz/25% if a level
817 				 * of 500 MHz/100% already exists.
818 				 */
819 				if (fill == NULL)
820 					break;
821 			}
822 
823 			/* Add this setting to the existing or new level. */
824 			KASSERT(fill->rel_count < MAX_SETTINGS,
825 			    ("cpufreq: too many relative drivers (%d)",
826 			    MAX_SETTINGS));
827 			fill->rel_set[fill->rel_count] = *set;
828 			fill->rel_count++;
829 			CF_DEBUG(
830 			"expand set added rel setting %d%% to %d level\n",
831 			    set->freq / 100, fill->total_set.freq);
832 		}
833 	}
834 
835 	return (0);
836 }
837 
838 static struct cf_level *
839 cpufreq_dup_set(struct cpufreq_softc *sc, struct cf_level *dup,
840     struct cf_setting *set)
841 {
842 	struct cf_level_lst *list;
843 	struct cf_level *fill, *itr;
844 	struct cf_setting *fill_set, *itr_set;
845 	int i;
846 
847 	CF_MTX_ASSERT(&sc->lock);
848 
849 	/*
850 	 * Create a new level, copy it from the old one, and update the
851 	 * total frequency and power by the percentage specified in the
852 	 * relative setting.
853 	 */
854 	fill = malloc(sizeof(*fill), M_TEMP, M_NOWAIT);
855 	if (fill == NULL)
856 		return (NULL);
857 	*fill = *dup;
858 	fill_set = &fill->total_set;
859 	fill_set->freq =
860 	    ((uint64_t)fill_set->freq * set->freq) / 10000;
861 	if (fill_set->power != CPUFREQ_VAL_UNKNOWN) {
862 		fill_set->power = ((uint64_t)fill_set->power * set->freq)
863 		    / 10000;
864 	}
865 	if (set->lat != CPUFREQ_VAL_UNKNOWN) {
866 		if (fill_set->lat != CPUFREQ_VAL_UNKNOWN)
867 			fill_set->lat += set->lat;
868 		else
869 			fill_set->lat = set->lat;
870 	}
871 	CF_DEBUG("dup set considering derived setting %d\n", fill_set->freq);
872 
873 	/*
874 	 * If we copied an old level that we already modified (say, at 100%),
875 	 * we need to remove that setting before adding this one.  Since we
876 	 * process each setting array in order, we know any settings for this
877 	 * driver will be found at the end.
878 	 */
879 	for (i = fill->rel_count; i != 0; i--) {
880 		if (fill->rel_set[i - 1].dev != set->dev)
881 			break;
882 		CF_DEBUG("removed last relative driver: %s\n",
883 		    device_get_nameunit(set->dev));
884 		fill->rel_count--;
885 	}
886 
887 	/*
888 	 * Insert the new level in sorted order.  If it is a duplicate of an
889 	 * existing level (1) or has an absolute setting higher than the
890 	 * existing level (2), do not add it.  We can do this since any such
891 	 * level is guaranteed use less power.  For example (1), a level with
892 	 * one absolute setting of 800 Mhz uses less power than one composed
893 	 * of an absolute setting of 1600 Mhz and a relative setting at 50%.
894 	 * Also for example (2), a level of 800 Mhz/75% is preferable to
895 	 * 1600 Mhz/25% even though the latter has a lower total frequency.
896 	 */
897 	list = &sc->all_levels;
898 	KASSERT(!TAILQ_EMPTY(list), ("all levels list empty in dup set"));
899 	TAILQ_FOREACH_REVERSE(itr, list, cf_level_lst, link) {
900 		itr_set = &itr->total_set;
901 		if (CPUFREQ_CMP(fill_set->freq, itr_set->freq)) {
902 			CF_DEBUG("dup set rejecting %d (dupe)\n",
903 			    fill_set->freq);
904 			itr = NULL;
905 			break;
906 		} else if (fill_set->freq < itr_set->freq) {
907 			if (fill->abs_set.freq <= itr->abs_set.freq) {
908 				CF_DEBUG(
909 			"dup done, inserting new level %d after %d\n",
910 				    fill_set->freq, itr_set->freq);
911 				TAILQ_INSERT_AFTER(list, itr, fill, link);
912 				sc->all_count++;
913 			} else {
914 				CF_DEBUG("dup set rejecting %d (abs too big)\n",
915 				    fill_set->freq);
916 				itr = NULL;
917 			}
918 			break;
919 		}
920 	}
921 
922 	/* We didn't find a good place for this new level so free it. */
923 	if (itr == NULL) {
924 		CF_DEBUG("dup set freeing new level %d (not optimal)\n",
925 		    fill_set->freq);
926 		free(fill, M_TEMP);
927 		fill = NULL;
928 	}
929 
930 	return (fill);
931 }
932 
933 static int
934 cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS)
935 {
936 	struct cpufreq_softc *sc;
937 	struct cf_level *levels;
938 	int best, count, diff, bdiff, devcount, error, freq, i, n;
939 	device_t *devs;
940 
941 	devs = NULL;
942 	sc = oidp->oid_arg1;
943 	levels = sc->levels_buf;
944 
945 	error = CPUFREQ_GET(sc->dev, &levels[0]);
946 	if (error)
947 		goto out;
948 	freq = levels[0].total_set.freq;
949 	error = sysctl_handle_int(oidp, &freq, 0, req);
950 	if (error != 0 || req->newptr == NULL)
951 		goto out;
952 
953 	/*
954 	 * While we only call cpufreq_get() on one device (assuming all
955 	 * CPUs have equal levels), we call cpufreq_set() on all CPUs.
956 	 * This is needed for some MP systems.
957 	 */
958 	error = devclass_get_devices(devclass_find("cpufreq"), &devs, &devcount);
959 	if (error)
960 		goto out;
961 	for (n = 0; n < devcount; n++) {
962 		count = CF_MAX_LEVELS;
963 		error = CPUFREQ_LEVELS(devs[n], levels, &count);
964 		if (error) {
965 			if (error == E2BIG)
966 				printf(
967 			"cpufreq: need to increase CF_MAX_LEVELS\n");
968 			break;
969 		}
970 		best = 0;
971 		bdiff = 1 << 30;
972 		for (i = 0; i < count; i++) {
973 			diff = abs(levels[i].total_set.freq - freq);
974 			if (diff < bdiff) {
975 				bdiff = diff;
976 				best = i;
977 			}
978 		}
979 		error = CPUFREQ_SET(devs[n], &levels[best], CPUFREQ_PRIO_USER);
980 	}
981 
982 out:
983 	if (devs)
984 		free(devs, M_TEMP);
985 	return (error);
986 }
987 
988 static int
989 cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS)
990 {
991 	struct cpufreq_softc *sc;
992 	struct cf_level *levels;
993 	struct cf_setting *set;
994 	struct sbuf sb;
995 	int count, error, i;
996 
997 	sc = oidp->oid_arg1;
998 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
999 
1000 	/* Get settings from the device and generate the output string. */
1001 	count = CF_MAX_LEVELS;
1002 	levels = sc->levels_buf;
1003 	if (levels == NULL) {
1004 		sbuf_delete(&sb);
1005 		return (ENOMEM);
1006 	}
1007 	error = CPUFREQ_LEVELS(sc->dev, levels, &count);
1008 	if (error) {
1009 		if (error == E2BIG)
1010 			printf("cpufreq: need to increase CF_MAX_LEVELS\n");
1011 		goto out;
1012 	}
1013 	if (count) {
1014 		for (i = 0; i < count; i++) {
1015 			set = &levels[i].total_set;
1016 			sbuf_printf(&sb, "%d/%d ", set->freq, set->power);
1017 		}
1018 	} else
1019 		sbuf_cpy(&sb, "0");
1020 	sbuf_trim(&sb);
1021 	sbuf_finish(&sb);
1022 	error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1023 
1024 out:
1025 	sbuf_delete(&sb);
1026 	return (error);
1027 }
1028 
1029 static int
1030 cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS)
1031 {
1032 	device_t dev;
1033 	struct cf_setting *sets;
1034 	struct sbuf sb;
1035 	int error, i, set_count;
1036 
1037 	dev = oidp->oid_arg1;
1038 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
1039 
1040 	/* Get settings from the device and generate the output string. */
1041 	set_count = MAX_SETTINGS;
1042 	sets = malloc(set_count * sizeof(*sets), M_TEMP, M_NOWAIT);
1043 	if (sets == NULL) {
1044 		sbuf_delete(&sb);
1045 		return (ENOMEM);
1046 	}
1047 	error = CPUFREQ_DRV_SETTINGS(dev, sets, &set_count);
1048 	if (error)
1049 		goto out;
1050 	if (set_count) {
1051 		for (i = 0; i < set_count; i++)
1052 			sbuf_printf(&sb, "%d/%d ", sets[i].freq, sets[i].power);
1053 	} else
1054 		sbuf_cpy(&sb, "0");
1055 	sbuf_trim(&sb);
1056 	sbuf_finish(&sb);
1057 	error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1058 
1059 out:
1060 	free(sets, M_TEMP);
1061 	sbuf_delete(&sb);
1062 	return (error);
1063 }
1064 
1065 static void
1066 cpufreq_add_freq_driver_sysctl(device_t cf_dev)
1067 {
1068 	struct cpufreq_softc *sc;
1069 
1070 	sc = device_get_softc(cf_dev);
1071 	SYSCTL_ADD_CONST_STRING(&sc->sysctl_ctx,
1072 	    SYSCTL_CHILDREN(device_get_sysctl_tree(cf_dev)), OID_AUTO,
1073 	    "freq_driver", CTLFLAG_RD, device_get_nameunit(sc->cf_drv_dev),
1074 	    "cpufreq driver used by this cpu");
1075 }
1076 
1077 int
1078 cpufreq_register(device_t dev)
1079 {
1080 	struct cpufreq_softc *sc;
1081 	device_t cf_dev, cpu_dev;
1082 	int error;
1083 
1084 	/* Add a sysctl to get each driver's settings separately. */
1085 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1086 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1087 	    OID_AUTO, "freq_settings",
1088 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, dev, 0,
1089 	    cpufreq_settings_sysctl, "A", "CPU frequency driver settings");
1090 
1091 	/*
1092 	 * Add only one cpufreq device to each CPU.  Currently, all CPUs
1093 	 * must offer the same levels and be switched at the same time.
1094 	 */
1095 	cpu_dev = device_get_parent(dev);
1096 	if ((cf_dev = device_find_child(cpu_dev, "cpufreq", -1))) {
1097 		sc = device_get_softc(cf_dev);
1098 		sc->max_mhz = CPUFREQ_VAL_UNKNOWN;
1099 		MPASS(sc->cf_drv_dev != NULL);
1100 		return (0);
1101 	}
1102 
1103 	/* Add the child device and possibly sysctls. */
1104 	cf_dev = BUS_ADD_CHILD(cpu_dev, 0, "cpufreq", device_get_unit(cpu_dev));
1105 	if (cf_dev == NULL)
1106 		return (ENOMEM);
1107 	device_quiet(cf_dev);
1108 
1109 	error = device_probe_and_attach(cf_dev);
1110 	if (error)
1111 		return (error);
1112 
1113 	sc = device_get_softc(cf_dev);
1114 	sc->cf_drv_dev = dev;
1115 	cpufreq_add_freq_driver_sysctl(cf_dev);
1116 	return (error);
1117 }
1118 
1119 int
1120 cpufreq_unregister(device_t dev)
1121 {
1122 	device_t cf_dev;
1123 	struct cpufreq_softc *sc __diagused;
1124 
1125 	/*
1126 	 * If this is the last cpufreq child device, remove the control
1127 	 * device as well.  We identify cpufreq children by calling a method
1128 	 * they support.
1129 	 */
1130 	cf_dev = device_find_child(device_get_parent(dev), "cpufreq", -1);
1131 	if (cf_dev == NULL) {
1132 		device_printf(dev,
1133 	"warning: cpufreq_unregister called with no cpufreq device active\n");
1134 		return (0);
1135 	}
1136 	sc = device_get_softc(cf_dev);
1137 	MPASS(sc->cf_drv_dev == dev);
1138 	device_delete_child(device_get_parent(cf_dev), cf_dev);
1139 
1140 	return (0);
1141 }
1142 
1143 int
1144 cpufreq_settings_changed(device_t dev)
1145 {
1146 
1147 	EVENTHANDLER_INVOKE(cpufreq_levels_changed,
1148 	    device_get_unit(device_get_parent(dev)));
1149 	return (0);
1150 }
1151