1 /*- 2 * Copyright (c) 2000 Jake Burkholder <jake@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include "opt_ktrace.h" 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/lock.h> 34 #include <sys/mutex.h> 35 #include <sys/proc.h> 36 #include <sys/kernel.h> 37 #include <sys/ktr.h> 38 #include <sys/condvar.h> 39 #include <sys/sched.h> 40 #include <sys/signalvar.h> 41 #include <sys/resourcevar.h> 42 #ifdef KTRACE 43 #include <sys/uio.h> 44 #include <sys/ktrace.h> 45 #endif 46 47 /* 48 * Common sanity checks for cv_wait* functions. 49 */ 50 #define CV_ASSERT(cvp, mp, td) do { \ 51 KASSERT((td) != NULL, ("%s: curthread NULL", __func__)); \ 52 KASSERT(TD_IS_RUNNING(td), ("%s: not TDS_RUNNING", __func__)); \ 53 KASSERT((cvp) != NULL, ("%s: cvp NULL", __func__)); \ 54 KASSERT((mp) != NULL, ("%s: mp NULL", __func__)); \ 55 mtx_assert((mp), MA_OWNED | MA_NOTRECURSED); \ 56 } while (0) 57 58 #ifdef INVARIANTS 59 #define CV_WAIT_VALIDATE(cvp, mp) do { \ 60 if (TAILQ_EMPTY(&(cvp)->cv_waitq)) { \ 61 /* Only waiter. */ \ 62 (cvp)->cv_mtx = (mp); \ 63 } else { \ 64 /* \ 65 * Other waiter; assert that we're using the \ 66 * same mutex. \ 67 */ \ 68 KASSERT((cvp)->cv_mtx == (mp), \ 69 ("%s: Multiple mutexes", __func__)); \ 70 } \ 71 } while (0) 72 73 #define CV_SIGNAL_VALIDATE(cvp) do { \ 74 if (!TAILQ_EMPTY(&(cvp)->cv_waitq)) { \ 75 KASSERT(mtx_owned((cvp)->cv_mtx), \ 76 ("%s: Mutex not owned", __func__)); \ 77 } \ 78 } while (0) 79 80 #else 81 #define CV_WAIT_VALIDATE(cvp, mp) 82 #define CV_SIGNAL_VALIDATE(cvp) 83 #endif 84 85 static void cv_timedwait_end(void *arg); 86 87 /* 88 * Initialize a condition variable. Must be called before use. 89 */ 90 void 91 cv_init(struct cv *cvp, const char *desc) 92 { 93 94 TAILQ_INIT(&cvp->cv_waitq); 95 cvp->cv_mtx = NULL; 96 cvp->cv_description = desc; 97 } 98 99 /* 100 * Destroy a condition variable. The condition variable must be re-initialized 101 * in order to be re-used. 102 */ 103 void 104 cv_destroy(struct cv *cvp) 105 { 106 107 KASSERT(cv_waitq_empty(cvp), ("%s: cv_waitq non-empty", __func__)); 108 } 109 110 /* 111 * Common code for cv_wait* functions. All require sched_lock. 112 */ 113 114 /* 115 * Switch context. 116 */ 117 static __inline void 118 cv_switch(struct thread *td) 119 { 120 TD_SET_SLEEPING(td); 121 td->td_proc->p_stats->p_ru.ru_nvcsw++; 122 mi_switch(); 123 CTR3(KTR_PROC, "cv_switch: resume thread %p (pid %d, %s)", td, 124 td->td_proc->p_pid, td->td_proc->p_comm); 125 } 126 127 /* 128 * Switch context, catching signals. 129 */ 130 static __inline int 131 cv_switch_catch(struct thread *td) 132 { 133 struct proc *p; 134 int sig; 135 136 /* 137 * We put ourselves on the sleep queue and start our timeout before 138 * calling cursig, as we could stop there, and a wakeup or a SIGCONT (or 139 * both) could occur while we were stopped. A SIGCONT would cause us to 140 * be marked as TDS_SLP without resuming us, thus we must be ready for 141 * sleep when cursig is called. If the wakeup happens while we're 142 * stopped, td->td_wchan will be 0 upon return from cursig, 143 * and TD_ON_SLEEPQ() will return false. 144 */ 145 td->td_flags |= TDF_SINTR; 146 mtx_unlock_spin(&sched_lock); 147 p = td->td_proc; 148 PROC_LOCK(p); 149 sig = cursig(td); 150 if (thread_suspend_check(1)) 151 sig = SIGSTOP; 152 mtx_lock_spin(&sched_lock); 153 PROC_UNLOCK(p); 154 if (sig != 0) { 155 if (TD_ON_SLEEPQ(td)) 156 cv_waitq_remove(td); 157 TD_SET_RUNNING(td); 158 } else if (TD_ON_SLEEPQ(td)) { 159 cv_switch(td); 160 } 161 td->td_flags &= ~TDF_SINTR; 162 163 return sig; 164 } 165 166 /* 167 * Add a thread to the wait queue of a condition variable. 168 */ 169 static __inline void 170 cv_waitq_add(struct cv *cvp, struct thread *td) 171 { 172 173 td->td_flags |= TDF_CVWAITQ; 174 TD_SET_ON_SLEEPQ(td); 175 td->td_wchan = cvp; 176 td->td_wmesg = cvp->cv_description; 177 CTR3(KTR_PROC, "cv_waitq_add: thread %p (pid %d, %s)", td, 178 td->td_proc->p_pid, td->td_proc->p_comm); 179 TAILQ_INSERT_TAIL(&cvp->cv_waitq, td, td_slpq); 180 sched_sleep(td, td->td_priority); 181 } 182 183 /* 184 * Wait on a condition variable. The current thread is placed on the condition 185 * variable's wait queue and suspended. A cv_signal or cv_broadcast on the same 186 * condition variable will resume the thread. The mutex is released before 187 * sleeping and will be held on return. It is recommended that the mutex be 188 * held when cv_signal or cv_broadcast are called. 189 */ 190 void 191 cv_wait(struct cv *cvp, struct mtx *mp) 192 { 193 struct thread *td; 194 WITNESS_SAVE_DECL(mp); 195 196 td = curthread; 197 #ifdef KTRACE 198 if (KTRPOINT(td, KTR_CSW)) 199 ktrcsw(1, 0); 200 #endif 201 CV_ASSERT(cvp, mp, td); 202 WITNESS_SLEEP(0, &mp->mtx_object); 203 WITNESS_SAVE(&mp->mtx_object, mp); 204 205 if (cold ) { 206 /* 207 * During autoconfiguration, just give interrupts 208 * a chance, then just return. Don't run any other 209 * thread or panic below, in case this is the idle 210 * process and already asleep. 211 */ 212 return; 213 } 214 215 mtx_lock_spin(&sched_lock); 216 217 CV_WAIT_VALIDATE(cvp, mp); 218 219 DROP_GIANT(); 220 mtx_unlock(mp); 221 222 cv_waitq_add(cvp, td); 223 cv_switch(td); 224 225 mtx_unlock_spin(&sched_lock); 226 #ifdef KTRACE 227 if (KTRPOINT(td, KTR_CSW)) 228 ktrcsw(0, 0); 229 #endif 230 PICKUP_GIANT(); 231 mtx_lock(mp); 232 WITNESS_RESTORE(&mp->mtx_object, mp); 233 } 234 235 /* 236 * Wait on a condition variable, allowing interruption by signals. Return 0 if 237 * the thread was resumed with cv_signal or cv_broadcast, EINTR or ERESTART if 238 * a signal was caught. If ERESTART is returned the system call should be 239 * restarted if possible. 240 */ 241 int 242 cv_wait_sig(struct cv *cvp, struct mtx *mp) 243 { 244 struct thread *td; 245 struct proc *p; 246 int rval; 247 int sig; 248 WITNESS_SAVE_DECL(mp); 249 250 td = curthread; 251 p = td->td_proc; 252 rval = 0; 253 #ifdef KTRACE 254 if (KTRPOINT(td, KTR_CSW)) 255 ktrcsw(1, 0); 256 #endif 257 CV_ASSERT(cvp, mp, td); 258 WITNESS_SLEEP(0, &mp->mtx_object); 259 WITNESS_SAVE(&mp->mtx_object, mp); 260 261 if (cold || panicstr) { 262 /* 263 * After a panic, or during autoconfiguration, just give 264 * interrupts a chance, then just return; don't run any other 265 * procs or panic below, in case this is the idle process and 266 * already asleep. 267 */ 268 return 0; 269 } 270 271 mtx_lock_spin(&sched_lock); 272 273 CV_WAIT_VALIDATE(cvp, mp); 274 275 DROP_GIANT(); 276 mtx_unlock(mp); 277 278 cv_waitq_add(cvp, td); 279 sig = cv_switch_catch(td); 280 281 mtx_unlock_spin(&sched_lock); 282 283 PROC_LOCK(p); 284 if (sig == 0) 285 sig = cursig(td); /* XXXKSE */ 286 if (sig != 0) { 287 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 288 rval = EINTR; 289 else 290 rval = ERESTART; 291 } 292 PROC_UNLOCK(p); 293 if (p->p_flag & P_WEXIT) 294 rval = EINTR; 295 296 #ifdef KTRACE 297 if (KTRPOINT(td, KTR_CSW)) 298 ktrcsw(0, 0); 299 #endif 300 PICKUP_GIANT(); 301 mtx_lock(mp); 302 WITNESS_RESTORE(&mp->mtx_object, mp); 303 304 return (rval); 305 } 306 307 /* 308 * Wait on a condition variable for at most timo/hz seconds. Returns 0 if the 309 * process was resumed by cv_signal or cv_broadcast, EWOULDBLOCK if the timeout 310 * expires. 311 */ 312 int 313 cv_timedwait(struct cv *cvp, struct mtx *mp, int timo) 314 { 315 struct thread *td; 316 int rval; 317 WITNESS_SAVE_DECL(mp); 318 319 td = curthread; 320 rval = 0; 321 #ifdef KTRACE 322 if (KTRPOINT(td, KTR_CSW)) 323 ktrcsw(1, 0); 324 #endif 325 CV_ASSERT(cvp, mp, td); 326 WITNESS_SLEEP(0, &mp->mtx_object); 327 WITNESS_SAVE(&mp->mtx_object, mp); 328 329 if (cold || panicstr) { 330 /* 331 * After a panic, or during autoconfiguration, just give 332 * interrupts a chance, then just return; don't run any other 333 * thread or panic below, in case this is the idle process and 334 * already asleep. 335 */ 336 return 0; 337 } 338 339 mtx_lock_spin(&sched_lock); 340 341 CV_WAIT_VALIDATE(cvp, mp); 342 343 DROP_GIANT(); 344 mtx_unlock(mp); 345 346 cv_waitq_add(cvp, td); 347 callout_reset(&td->td_slpcallout, timo, cv_timedwait_end, td); 348 cv_switch(td); 349 350 if (td->td_flags & TDF_TIMEOUT) { 351 td->td_flags &= ~TDF_TIMEOUT; 352 rval = EWOULDBLOCK; 353 } else if (td->td_flags & TDF_TIMOFAIL) 354 td->td_flags &= ~TDF_TIMOFAIL; 355 else if (callout_stop(&td->td_slpcallout) == 0) { 356 /* 357 * Work around race with cv_timedwait_end similar to that 358 * between msleep and endtsleep. 359 * Go back to sleep. 360 */ 361 TD_SET_SLEEPING(td); 362 td->td_proc->p_stats->p_ru.ru_nivcsw++; 363 mi_switch(); 364 td->td_flags &= ~TDF_TIMOFAIL; 365 } 366 367 if (td->td_proc->p_flag & P_WEXIT) 368 rval = EWOULDBLOCK; 369 mtx_unlock_spin(&sched_lock); 370 #ifdef KTRACE 371 if (KTRPOINT(td, KTR_CSW)) 372 ktrcsw(0, 0); 373 #endif 374 PICKUP_GIANT(); 375 mtx_lock(mp); 376 WITNESS_RESTORE(&mp->mtx_object, mp); 377 378 return (rval); 379 } 380 381 /* 382 * Wait on a condition variable for at most timo/hz seconds, allowing 383 * interruption by signals. Returns 0 if the thread was resumed by cv_signal 384 * or cv_broadcast, EWOULDBLOCK if the timeout expires, and EINTR or ERESTART if 385 * a signal was caught. 386 */ 387 int 388 cv_timedwait_sig(struct cv *cvp, struct mtx *mp, int timo) 389 { 390 struct thread *td; 391 struct proc *p; 392 int rval; 393 int sig; 394 WITNESS_SAVE_DECL(mp); 395 396 td = curthread; 397 p = td->td_proc; 398 rval = 0; 399 #ifdef KTRACE 400 if (KTRPOINT(td, KTR_CSW)) 401 ktrcsw(1, 0); 402 #endif 403 CV_ASSERT(cvp, mp, td); 404 WITNESS_SLEEP(0, &mp->mtx_object); 405 WITNESS_SAVE(&mp->mtx_object, mp); 406 407 if (cold || panicstr) { 408 /* 409 * After a panic, or during autoconfiguration, just give 410 * interrupts a chance, then just return; don't run any other 411 * thread or panic below, in case this is the idle process and 412 * already asleep. 413 */ 414 return 0; 415 } 416 417 mtx_lock_spin(&sched_lock); 418 419 CV_WAIT_VALIDATE(cvp, mp); 420 421 DROP_GIANT(); 422 mtx_unlock(mp); 423 424 cv_waitq_add(cvp, td); 425 callout_reset(&td->td_slpcallout, timo, cv_timedwait_end, td); 426 sig = cv_switch_catch(td); 427 428 if (td->td_flags & TDF_TIMEOUT) { 429 td->td_flags &= ~TDF_TIMEOUT; 430 rval = EWOULDBLOCK; 431 } else if (td->td_flags & TDF_TIMOFAIL) 432 td->td_flags &= ~TDF_TIMOFAIL; 433 else if (callout_stop(&td->td_slpcallout) == 0) { 434 /* 435 * Work around race with cv_timedwait_end similar to that 436 * between msleep and endtsleep. 437 * Go back to sleep. 438 */ 439 TD_SET_SLEEPING(td); 440 td->td_proc->p_stats->p_ru.ru_nivcsw++; 441 mi_switch(); 442 td->td_flags &= ~TDF_TIMOFAIL; 443 } 444 mtx_unlock_spin(&sched_lock); 445 446 PROC_LOCK(p); 447 if (sig == 0) 448 sig = cursig(td); 449 if (sig != 0) { 450 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 451 rval = EINTR; 452 else 453 rval = ERESTART; 454 } 455 PROC_UNLOCK(p); 456 457 if (p->p_flag & P_WEXIT) 458 rval = EINTR; 459 460 #ifdef KTRACE 461 if (KTRPOINT(td, KTR_CSW)) 462 ktrcsw(0, 0); 463 #endif 464 PICKUP_GIANT(); 465 mtx_lock(mp); 466 WITNESS_RESTORE(&mp->mtx_object, mp); 467 468 return (rval); 469 } 470 471 /* 472 * Common code for signal and broadcast. Assumes waitq is not empty. Must be 473 * called with sched_lock held. 474 */ 475 static __inline void 476 cv_wakeup(struct cv *cvp) 477 { 478 struct thread *td; 479 480 mtx_assert(&sched_lock, MA_OWNED); 481 td = TAILQ_FIRST(&cvp->cv_waitq); 482 KASSERT(td->td_wchan == cvp, ("%s: bogus wchan", __func__)); 483 KASSERT(td->td_flags & TDF_CVWAITQ, ("%s: not on waitq", __func__)); 484 cv_waitq_remove(td); 485 TD_CLR_SLEEPING(td); 486 setrunnable(td); 487 } 488 489 /* 490 * Signal a condition variable, wakes up one waiting thread. Will also wakeup 491 * the swapper if the process is not in memory, so that it can bring the 492 * sleeping process in. Note that this may also result in additional threads 493 * being made runnable. Should be called with the same mutex as was passed to 494 * cv_wait held. 495 */ 496 void 497 cv_signal(struct cv *cvp) 498 { 499 500 KASSERT(cvp != NULL, ("%s: cvp NULL", __func__)); 501 mtx_lock_spin(&sched_lock); 502 if (!TAILQ_EMPTY(&cvp->cv_waitq)) { 503 CV_SIGNAL_VALIDATE(cvp); 504 cv_wakeup(cvp); 505 } 506 mtx_unlock_spin(&sched_lock); 507 } 508 509 /* 510 * Broadcast a signal to a condition variable. Wakes up all waiting threads. 511 * Should be called with the same mutex as was passed to cv_wait held. 512 */ 513 void 514 cv_broadcast(struct cv *cvp) 515 { 516 517 KASSERT(cvp != NULL, ("%s: cvp NULL", __func__)); 518 mtx_lock_spin(&sched_lock); 519 CV_SIGNAL_VALIDATE(cvp); 520 while (!TAILQ_EMPTY(&cvp->cv_waitq)) 521 cv_wakeup(cvp); 522 mtx_unlock_spin(&sched_lock); 523 } 524 525 /* 526 * Remove a thread from the wait queue of its condition variable. This may be 527 * called externally. 528 */ 529 void 530 cv_waitq_remove(struct thread *td) 531 { 532 struct cv *cvp; 533 534 mtx_assert(&sched_lock, MA_OWNED); 535 if ((cvp = td->td_wchan) != NULL && td->td_flags & TDF_CVWAITQ) { 536 TAILQ_REMOVE(&cvp->cv_waitq, td, td_slpq); 537 td->td_flags &= ~TDF_CVWAITQ; 538 td->td_wmesg = NULL; 539 TD_CLR_ON_SLEEPQ(td); 540 } 541 } 542 543 /* 544 * Timeout function for cv_timedwait. Put the thread on the runqueue and set 545 * its timeout flag. 546 */ 547 static void 548 cv_timedwait_end(void *arg) 549 { 550 struct thread *td; 551 552 td = arg; 553 CTR3(KTR_PROC, "cv_timedwait_end: thread %p (pid %d, %s)", 554 td, td->td_proc->p_pid, td->td_proc->p_comm); 555 mtx_lock_spin(&sched_lock); 556 if (TD_ON_SLEEPQ(td)) { 557 cv_waitq_remove(td); 558 td->td_flags |= TDF_TIMEOUT; 559 } else { 560 td->td_flags |= TDF_TIMOFAIL; 561 } 562 TD_CLR_SLEEPING(td); 563 setrunnable(td); 564 mtx_unlock_spin(&sched_lock); 565 } 566 567 /* 568 * For now only abort interruptable waits. 569 * The others will have to either complete on their own or have a timeout. 570 */ 571 void 572 cv_abort(struct thread *td) 573 { 574 575 CTR3(KTR_PROC, "cv_abort: thread %p (pid %d, %s)", td, 576 td->td_proc->p_pid, td->td_proc->p_comm); 577 mtx_lock_spin(&sched_lock); 578 if ((td->td_flags & (TDF_SINTR|TDF_TIMEOUT)) == TDF_SINTR) { 579 if (TD_ON_SLEEPQ(td)) { 580 cv_waitq_remove(td); 581 } 582 TD_CLR_SLEEPING(td); 583 setrunnable(td); 584 } 585 mtx_unlock_spin(&sched_lock); 586 } 587 588