1 /*- 2 * Copyright (c) 2000 Jake Burkholder <jake@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include "opt_ktrace.h" 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/lock.h> 34 #include <sys/mutex.h> 35 #include <sys/proc.h> 36 #include <sys/kernel.h> 37 #include <sys/ktr.h> 38 #include <sys/condvar.h> 39 #include <sys/signalvar.h> 40 #include <sys/resourcevar.h> 41 #ifdef KTRACE 42 #include <sys/uio.h> 43 #include <sys/ktrace.h> 44 #endif 45 46 /* 47 * Common sanity checks for cv_wait* functions. 48 */ 49 #define CV_ASSERT(cvp, mp, td) do { \ 50 KASSERT((td) != NULL, ("%s: curthread NULL", __func__)); \ 51 KASSERT((td)->td_proc->p_stat == SRUN, ("%s: not SRUN", __func__)); \ 52 KASSERT((cvp) != NULL, ("%s: cvp NULL", __func__)); \ 53 KASSERT((mp) != NULL, ("%s: mp NULL", __func__)); \ 54 mtx_assert((mp), MA_OWNED | MA_NOTRECURSED); \ 55 } while (0) 56 57 #ifdef INVARIANTS 58 #define CV_WAIT_VALIDATE(cvp, mp) do { \ 59 if (TAILQ_EMPTY(&(cvp)->cv_waitq)) { \ 60 /* Only waiter. */ \ 61 (cvp)->cv_mtx = (mp); \ 62 } else { \ 63 /* \ 64 * Other waiter; assert that we're using the \ 65 * same mutex. \ 66 */ \ 67 KASSERT((cvp)->cv_mtx == (mp), \ 68 ("%s: Multiple mutexes", __func__)); \ 69 } \ 70 } while (0) 71 #define CV_SIGNAL_VALIDATE(cvp) do { \ 72 if (!TAILQ_EMPTY(&(cvp)->cv_waitq)) { \ 73 KASSERT(mtx_owned((cvp)->cv_mtx), \ 74 ("%s: Mutex not owned", __func__)); \ 75 } \ 76 } while (0) 77 #else 78 #define CV_WAIT_VALIDATE(cvp, mp) 79 #define CV_SIGNAL_VALIDATE(cvp) 80 #endif 81 82 static void cv_timedwait_end(void *arg); 83 84 /* 85 * Initialize a condition variable. Must be called before use. 86 */ 87 void 88 cv_init(struct cv *cvp, const char *desc) 89 { 90 91 TAILQ_INIT(&cvp->cv_waitq); 92 cvp->cv_mtx = NULL; 93 cvp->cv_description = desc; 94 } 95 96 /* 97 * Destroy a condition variable. The condition variable must be re-initialized 98 * in order to be re-used. 99 */ 100 void 101 cv_destroy(struct cv *cvp) 102 { 103 104 KASSERT(cv_waitq_empty(cvp), ("%s: cv_waitq non-empty", __func__)); 105 } 106 107 /* 108 * Common code for cv_wait* functions. All require sched_lock. 109 */ 110 111 /* 112 * Switch context. 113 */ 114 static __inline void 115 cv_switch(struct thread *td) 116 { 117 118 td->td_proc->p_stat = SSLEEP; 119 td->td_proc->p_stats->p_ru.ru_nvcsw++; 120 mi_switch(); 121 CTR3(KTR_PROC, "cv_switch: resume thread %p (pid %d, %s)", td, 122 td->td_proc->p_pid, td->td_proc->p_comm); 123 } 124 125 /* 126 * Switch context, catching signals. 127 */ 128 static __inline int 129 cv_switch_catch(struct thread *td) 130 { 131 struct proc *p; 132 int sig; 133 134 /* 135 * We put ourselves on the sleep queue and start our timeout before 136 * calling CURSIG, as we could stop there, and a wakeup or a SIGCONT (or 137 * both) could occur while we were stopped. A SIGCONT would cause us to 138 * be marked as SSLEEP without resuming us, thus we must be ready for 139 * sleep when CURSIG is called. If the wakeup happens while we're 140 * stopped, td->td_wchan will be 0 upon return from CURSIG. 141 */ 142 td->td_flags |= TDF_SINTR; 143 mtx_unlock_spin(&sched_lock); 144 p = td->td_proc; 145 PROC_LOCK(p); 146 sig = CURSIG(p); /* XXXKSE */ 147 mtx_lock_spin(&sched_lock); 148 PROC_UNLOCK(p); 149 if (sig != 0) { 150 if (td->td_wchan != NULL) 151 cv_waitq_remove(td); 152 td->td_proc->p_stat = SRUN; 153 } else if (td->td_wchan != NULL) { 154 cv_switch(td); 155 } 156 td->td_flags &= ~TDF_SINTR; 157 158 return sig; 159 } 160 161 /* 162 * Add a thread to the wait queue of a condition variable. 163 */ 164 static __inline void 165 cv_waitq_add(struct cv *cvp, struct thread *td) 166 { 167 168 /* 169 * Process may be sitting on a slpque if asleep() was called, remove it 170 * before re-adding. 171 */ 172 if (td->td_wchan != NULL) 173 unsleep(td); 174 175 td->td_flags |= TDF_CVWAITQ; 176 td->td_wchan = cvp; 177 td->td_wmesg = cvp->cv_description; 178 td->td_kse->ke_slptime = 0; /* XXXKSE */ 179 td->td_ksegrp->kg_slptime = 0; /* XXXKSE */ 180 td->td_base_pri = td->td_priority; 181 CTR3(KTR_PROC, "cv_waitq_add: thread %p (pid %d, %s)", td, 182 td->td_proc->p_pid, td->td_proc->p_comm); 183 TAILQ_INSERT_TAIL(&cvp->cv_waitq, td, td_slpq); 184 } 185 186 /* 187 * Wait on a condition variable. The current thread is placed on the condition 188 * variable's wait queue and suspended. A cv_signal or cv_broadcast on the same 189 * condition variable will resume the thread. The mutex is released before 190 * sleeping and will be held on return. It is recommended that the mutex be 191 * held when cv_signal or cv_broadcast are called. 192 */ 193 void 194 cv_wait(struct cv *cvp, struct mtx *mp) 195 { 196 struct thread *td; 197 WITNESS_SAVE_DECL(mp); 198 199 td = curthread; 200 #ifdef KTRACE 201 if (td->td_proc && KTRPOINT(td->td_proc, KTR_CSW)) 202 ktrcsw(td->td_proc->p_tracep, 1, 0); 203 #endif 204 CV_ASSERT(cvp, mp, td); 205 WITNESS_SLEEP(0, &mp->mtx_object); 206 WITNESS_SAVE(&mp->mtx_object, mp); 207 208 if (cold || panicstr) { 209 /* 210 * After a panic, or during autoconfiguration, just give 211 * interrupts a chance, then just return; don't run any other 212 * thread or panic below, in case this is the idle process and 213 * already asleep. 214 */ 215 return; 216 } 217 218 mtx_lock_spin(&sched_lock); 219 220 CV_WAIT_VALIDATE(cvp, mp); 221 222 DROP_GIANT(); 223 mtx_unlock(mp); 224 225 cv_waitq_add(cvp, td); 226 cv_switch(td); 227 228 mtx_unlock_spin(&sched_lock); 229 #ifdef KTRACE 230 if (KTRPOINT(td->td_proc, KTR_CSW)) 231 ktrcsw(td->td_proc->p_tracep, 0, 0); 232 #endif 233 PICKUP_GIANT(); 234 mtx_lock(mp); 235 WITNESS_RESTORE(&mp->mtx_object, mp); 236 } 237 238 /* 239 * Wait on a condition variable, allowing interruption by signals. Return 0 if 240 * the thread was resumed with cv_signal or cv_broadcast, EINTR or ERESTART if 241 * a signal was caught. If ERESTART is returned the system call should be 242 * restarted if possible. 243 */ 244 int 245 cv_wait_sig(struct cv *cvp, struct mtx *mp) 246 { 247 struct thread *td; 248 struct proc *p; 249 int rval; 250 int sig; 251 WITNESS_SAVE_DECL(mp); 252 253 td = curthread; 254 p = td->td_proc; 255 rval = 0; 256 #ifdef KTRACE 257 if (td->td_proc && KTRPOINT(td->td_proc, KTR_CSW)) 258 ktrcsw(td->td_proc->p_tracep, 1, 0); 259 #endif 260 CV_ASSERT(cvp, mp, td); 261 WITNESS_SLEEP(0, &mp->mtx_object); 262 WITNESS_SAVE(&mp->mtx_object, mp); 263 264 if (cold || panicstr) { 265 /* 266 * After a panic, or during autoconfiguration, just give 267 * interrupts a chance, then just return; don't run any other 268 * procs or panic below, in case this is the idle process and 269 * already asleep. 270 */ 271 return 0; 272 } 273 274 mtx_lock_spin(&sched_lock); 275 276 CV_WAIT_VALIDATE(cvp, mp); 277 278 DROP_GIANT(); 279 mtx_unlock(mp); 280 281 cv_waitq_add(cvp, td); 282 sig = cv_switch_catch(td); 283 284 mtx_unlock_spin(&sched_lock); 285 PICKUP_GIANT(); 286 287 PROC_LOCK(p); 288 if (sig == 0) 289 sig = CURSIG(p); /* XXXKSE */ 290 if (sig != 0) { 291 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 292 rval = EINTR; 293 else 294 rval = ERESTART; 295 } 296 PROC_UNLOCK(p); 297 298 #ifdef KTRACE 299 mtx_lock(&Giant); 300 if (KTRPOINT(td->td_proc, KTR_CSW)) 301 ktrcsw(td->td_proc->p_tracep, 0, 0); 302 mtx_unlock(&Giant); 303 #endif 304 mtx_lock(mp); 305 WITNESS_RESTORE(&mp->mtx_object, mp); 306 307 return (rval); 308 } 309 310 /* 311 * Wait on a condition variable for at most timo/hz seconds. Returns 0 if the 312 * process was resumed by cv_signal or cv_broadcast, EWOULDBLOCK if the timeout 313 * expires. 314 */ 315 int 316 cv_timedwait(struct cv *cvp, struct mtx *mp, int timo) 317 { 318 struct thread *td; 319 int rval; 320 WITNESS_SAVE_DECL(mp); 321 322 td = curthread; 323 rval = 0; 324 #ifdef KTRACE 325 ktrcsw(td->td_proc->p_tracep, 1, 0); 326 #endif 327 CV_ASSERT(cvp, mp, td); 328 WITNESS_SLEEP(0, &mp->mtx_object); 329 WITNESS_SAVE(&mp->mtx_object, mp); 330 331 if (cold || panicstr) { 332 /* 333 * After a panic, or during autoconfiguration, just give 334 * interrupts a chance, then just return; don't run any other 335 * thread or panic below, in case this is the idle process and 336 * already asleep. 337 */ 338 return 0; 339 } 340 341 mtx_lock_spin(&sched_lock); 342 343 CV_WAIT_VALIDATE(cvp, mp); 344 345 DROP_GIANT(); 346 mtx_unlock(mp); 347 348 cv_waitq_add(cvp, td); 349 callout_reset(&td->td_slpcallout, timo, cv_timedwait_end, td); 350 cv_switch(td); 351 352 if (td->td_flags & TDF_TIMEOUT) { 353 td->td_flags &= ~TDF_TIMEOUT; 354 rval = EWOULDBLOCK; 355 } else if (td->td_flags & TDF_TIMOFAIL) 356 td->td_flags &= ~TDF_TIMOFAIL; 357 else if (callout_stop(&td->td_slpcallout) == 0) { 358 /* 359 * Work around race with cv_timedwait_end similar to that 360 * between msleep and endtsleep. 361 */ 362 td->td_flags |= TDF_TIMEOUT; 363 td->td_proc->p_stats->p_ru.ru_nivcsw++; 364 mi_switch(); 365 } 366 367 mtx_unlock_spin(&sched_lock); 368 #ifdef KTRACE 369 if (KTRPOINT(td->td_proc, KTR_CSW)) 370 ktrcsw(td->td_proc->p_tracep, 0, 0); 371 #endif 372 PICKUP_GIANT(); 373 mtx_lock(mp); 374 WITNESS_RESTORE(&mp->mtx_object, mp); 375 376 return (rval); 377 } 378 379 /* 380 * Wait on a condition variable for at most timo/hz seconds, allowing 381 * interruption by signals. Returns 0 if the thread was resumed by cv_signal 382 * or cv_broadcast, EWOULDBLOCK if the timeout expires, and EINTR or ERESTART if 383 * a signal was caught. 384 */ 385 int 386 cv_timedwait_sig(struct cv *cvp, struct mtx *mp, int timo) 387 { 388 struct thread *td; 389 struct proc *p; 390 int rval; 391 int sig; 392 WITNESS_SAVE_DECL(mp); 393 394 td = curthread; 395 p = td->td_proc; 396 rval = 0; 397 #ifdef KTRACE 398 if (td->td_proc && KTRPOINT(td->td_proc, KTR_CSW)) 399 ktrcsw(td->td_proc->p_tracep, 1, 0); 400 #endif 401 CV_ASSERT(cvp, mp, td); 402 WITNESS_SLEEP(0, &mp->mtx_object); 403 WITNESS_SAVE(&mp->mtx_object, mp); 404 405 if (cold || panicstr) { 406 /* 407 * After a panic, or during autoconfiguration, just give 408 * interrupts a chance, then just return; don't run any other 409 * thread or panic below, in case this is the idle process and 410 * already asleep. 411 */ 412 return 0; 413 } 414 415 mtx_lock_spin(&sched_lock); 416 417 CV_WAIT_VALIDATE(cvp, mp); 418 419 DROP_GIANT(); 420 mtx_unlock(mp); 421 422 cv_waitq_add(cvp, td); 423 callout_reset(&td->td_slpcallout, timo, cv_timedwait_end, td); 424 sig = cv_switch_catch(td); 425 426 if (td->td_flags & TDF_TIMEOUT) { 427 td->td_flags &= ~TDF_TIMEOUT; 428 rval = EWOULDBLOCK; 429 } else if (td->td_flags & TDF_TIMOFAIL) 430 td->td_flags &= ~TDF_TIMOFAIL; 431 else if (callout_stop(&td->td_slpcallout) == 0) { 432 /* 433 * Work around race with cv_timedwait_end similar to that 434 * between msleep and endtsleep. 435 */ 436 td->td_flags |= TDF_TIMEOUT; 437 td->td_proc->p_stats->p_ru.ru_nivcsw++; 438 mi_switch(); 439 } 440 441 mtx_unlock_spin(&sched_lock); 442 PICKUP_GIANT(); 443 444 PROC_LOCK(p); 445 if (sig == 0) 446 sig = CURSIG(p); 447 if (sig != 0) { 448 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 449 rval = EINTR; 450 else 451 rval = ERESTART; 452 } 453 PROC_UNLOCK(p); 454 455 #ifdef KTRACE 456 mtx_lock(&Giant); 457 if (KTRPOINT(td->td_proc, KTR_CSW)) 458 ktrcsw(td->td_proc->p_tracep, 0, 0); 459 mtx_unlock(&Giant); 460 #endif 461 mtx_lock(mp); 462 WITNESS_RESTORE(&mp->mtx_object, mp); 463 464 return (rval); 465 } 466 467 /* 468 * Common code for signal and broadcast. Assumes waitq is not empty. Must be 469 * called with sched_lock held. 470 */ 471 static __inline void 472 cv_wakeup(struct cv *cvp) 473 { 474 struct thread *td; 475 476 mtx_assert(&sched_lock, MA_OWNED); 477 td = TAILQ_FIRST(&cvp->cv_waitq); 478 KASSERT(td->td_wchan == cvp, ("%s: bogus wchan", __func__)); 479 KASSERT(td->td_flags & TDF_CVWAITQ, ("%s: not on waitq", __func__)); 480 TAILQ_REMOVE(&cvp->cv_waitq, td, td_slpq); 481 td->td_flags &= ~TDF_CVWAITQ; 482 td->td_wchan = 0; 483 if (td->td_proc->p_stat == SSLEEP) { 484 /* OPTIMIZED EXPANSION OF setrunnable(td); */ 485 CTR3(KTR_PROC, "cv_signal: thread %p (pid %d, %s)", 486 td, td->td_proc->p_pid, td->td_proc->p_comm); 487 if (td->td_ksegrp->kg_slptime > 1) /* XXXKSE */ 488 updatepri(td); 489 td->td_kse->ke_slptime = 0; 490 td->td_ksegrp->kg_slptime = 0; 491 td->td_proc->p_stat = SRUN; 492 if (td->td_proc->p_sflag & PS_INMEM) { 493 setrunqueue(td); 494 maybe_resched(td); 495 } else { 496 td->td_proc->p_sflag |= PS_SWAPINREQ; 497 wakeup(&proc0); /* XXXKSE */ 498 } 499 /* END INLINE EXPANSION */ 500 } 501 } 502 503 /* 504 * Signal a condition variable, wakes up one waiting thread. Will also wakeup 505 * the swapper if the process is not in memory, so that it can bring the 506 * sleeping process in. Note that this may also result in additional threads 507 * being made runnable. Should be called with the same mutex as was passed to 508 * cv_wait held. 509 */ 510 void 511 cv_signal(struct cv *cvp) 512 { 513 514 KASSERT(cvp != NULL, ("%s: cvp NULL", __func__)); 515 mtx_lock_spin(&sched_lock); 516 if (!TAILQ_EMPTY(&cvp->cv_waitq)) { 517 CV_SIGNAL_VALIDATE(cvp); 518 cv_wakeup(cvp); 519 } 520 mtx_unlock_spin(&sched_lock); 521 } 522 523 /* 524 * Broadcast a signal to a condition variable. Wakes up all waiting threads. 525 * Should be called with the same mutex as was passed to cv_wait held. 526 */ 527 void 528 cv_broadcast(struct cv *cvp) 529 { 530 531 KASSERT(cvp != NULL, ("%s: cvp NULL", __func__)); 532 mtx_lock_spin(&sched_lock); 533 CV_SIGNAL_VALIDATE(cvp); 534 while (!TAILQ_EMPTY(&cvp->cv_waitq)) 535 cv_wakeup(cvp); 536 mtx_unlock_spin(&sched_lock); 537 } 538 539 /* 540 * Remove a thread from the wait queue of its condition variable. This may be 541 * called externally. 542 */ 543 void 544 cv_waitq_remove(struct thread *td) 545 { 546 struct cv *cvp; 547 548 mtx_lock_spin(&sched_lock); 549 if ((cvp = td->td_wchan) != NULL && td->td_flags & TDF_CVWAITQ) { 550 TAILQ_REMOVE(&cvp->cv_waitq, td, td_slpq); 551 td->td_flags &= ~TDF_CVWAITQ; 552 td->td_wchan = NULL; 553 } 554 mtx_unlock_spin(&sched_lock); 555 } 556 557 /* 558 * Timeout function for cv_timedwait. Put the thread on the runqueue and set 559 * its timeout flag. 560 */ 561 static void 562 cv_timedwait_end(void *arg) 563 { 564 struct thread *td; 565 566 td = arg; 567 CTR3(KTR_PROC, "cv_timedwait_end: thread %p (pid %d, %s)", td, td->td_proc->p_pid, 568 td->td_proc->p_comm); 569 mtx_lock_spin(&sched_lock); 570 if (td->td_flags & TDF_TIMEOUT) { 571 td->td_flags &= ~TDF_TIMEOUT; 572 setrunqueue(td); 573 } else if (td->td_wchan != NULL) { 574 if (td->td_proc->p_stat == SSLEEP) /* XXXKSE */ 575 setrunnable(td); 576 else 577 cv_waitq_remove(td); 578 td->td_flags |= TDF_TIMEOUT; 579 } else 580 td->td_flags |= TDF_TIMOFAIL; 581 mtx_unlock_spin(&sched_lock); 582 } 583