xref: /freebsd/sys/kern/kern_condvar.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*-
2  * Copyright (c) 2000 Jake Burkholder <jake@freebsd.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include "opt_ktrace.h"
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/lock.h>
34 #include <sys/mutex.h>
35 #include <sys/proc.h>
36 #include <sys/kernel.h>
37 #include <sys/ktr.h>
38 #include <sys/condvar.h>
39 #include <sys/signalvar.h>
40 #include <sys/resourcevar.h>
41 #ifdef KTRACE
42 #include <sys/uio.h>
43 #include <sys/ktrace.h>
44 #endif
45 
46 /*
47  * Common sanity checks for cv_wait* functions.
48  */
49 #define	CV_ASSERT(cvp, mp, td) do {					\
50 	KASSERT((td) != NULL, ("%s: curthread NULL", __func__));	\
51 	KASSERT((td)->td_state == TDS_RUNNING, ("%s: not TDS_RUNNING", __func__));	\
52 	KASSERT((cvp) != NULL, ("%s: cvp NULL", __func__));		\
53 	KASSERT((mp) != NULL, ("%s: mp NULL", __func__));		\
54 	mtx_assert((mp), MA_OWNED | MA_NOTRECURSED);			\
55 } while (0)
56 
57 #ifdef INVARIANTS
58 #define	CV_WAIT_VALIDATE(cvp, mp) do {					\
59 	if (TAILQ_EMPTY(&(cvp)->cv_waitq)) {				\
60 		/* Only waiter. */					\
61 		(cvp)->cv_mtx = (mp);					\
62 	} else {							\
63 		/*							\
64 		 * Other waiter; assert that we're using the		\
65 		 * same mutex.						\
66 		 */							\
67 		KASSERT((cvp)->cv_mtx == (mp),				\
68 		    ("%s: Multiple mutexes", __func__));		\
69 	}								\
70 } while (0)
71 #define	CV_SIGNAL_VALIDATE(cvp) do {					\
72 	if (!TAILQ_EMPTY(&(cvp)->cv_waitq)) {				\
73 		KASSERT(mtx_owned((cvp)->cv_mtx),			\
74 		    ("%s: Mutex not owned", __func__));		\
75 	}								\
76 } while (0)
77 #else
78 #define	CV_WAIT_VALIDATE(cvp, mp)
79 #define	CV_SIGNAL_VALIDATE(cvp)
80 #endif
81 
82 static void cv_timedwait_end(void *arg);
83 static void cv_check_upcall(struct thread *td);
84 
85 /*
86  * Initialize a condition variable.  Must be called before use.
87  */
88 void
89 cv_init(struct cv *cvp, const char *desc)
90 {
91 
92 	TAILQ_INIT(&cvp->cv_waitq);
93 	cvp->cv_mtx = NULL;
94 	cvp->cv_description = desc;
95 }
96 
97 /*
98  * Destroy a condition variable.  The condition variable must be re-initialized
99  * in order to be re-used.
100  */
101 void
102 cv_destroy(struct cv *cvp)
103 {
104 
105 	KASSERT(cv_waitq_empty(cvp), ("%s: cv_waitq non-empty", __func__));
106 }
107 
108 /*
109  * Common code for cv_wait* functions.  All require sched_lock.
110  */
111 
112 /*
113  * Decide if we need to queue an upcall.
114  * This is copied from msleep(), perhaps this should be a common function.
115  */
116 static void
117 cv_check_upcall(struct thread *td)
118 {
119 
120 	/*
121 	 * If we are capable of async syscalls and there isn't already
122 	 * another one ready to return, start a new thread
123 	 * and queue it as ready to run. Note that there is danger here
124 	 * because we need to make sure that we don't sleep allocating
125 	 * the thread (recursion here might be bad).
126 	 * Hence the TDF_INMSLEEP flag.
127 	 */
128 	if ((td->td_proc->p_flag & P_KSES) && td->td_mailbox &&
129 	    (td->td_flags & TDF_INMSLEEP) == 0) {
130 		/*
131 		 * If we have no queued work to do,
132 		 * upcall to the UTS to see if it has more work.
133 		 * We don't need to upcall now, just queue it.
134 		 */
135 		if (TAILQ_FIRST(&td->td_ksegrp->kg_runq) == NULL) {
136 			/* Don't recurse here! */
137 			td->td_flags |= TDF_INMSLEEP;
138 			thread_schedule_upcall(td, td->td_kse);
139 			td->td_flags &= ~TDF_INMSLEEP;
140 		}
141 	}
142 }
143 
144 /*
145  * Switch context.
146  */
147 static __inline void
148 cv_switch(struct thread *td)
149 {
150 
151 	td->td_state = TDS_SLP;
152 	td->td_proc->p_stats->p_ru.ru_nvcsw++;
153 	cv_check_upcall(td);
154 	mi_switch();
155 	CTR3(KTR_PROC, "cv_switch: resume thread %p (pid %d, %s)", td,
156 	    td->td_proc->p_pid, td->td_proc->p_comm);
157 }
158 
159 /*
160  * Switch context, catching signals.
161  */
162 static __inline int
163 cv_switch_catch(struct thread *td)
164 {
165 	struct proc *p;
166 	int sig;
167 
168 	/*
169 	 * We put ourselves on the sleep queue and start our timeout before
170 	 * calling cursig, as we could stop there, and a wakeup or a SIGCONT (or
171 	 * both) could occur while we were stopped.  A SIGCONT would cause us to
172 	 * be marked as TDS_SLP without resuming us, thus we must be ready for
173 	 * sleep when cursig is called.  If the wakeup happens while we're
174 	 * stopped, td->td_wchan will be 0 upon return from cursig.
175 	 */
176 	td->td_flags |= TDF_SINTR;
177 	mtx_unlock_spin(&sched_lock);
178 	p = td->td_proc;
179 	PROC_LOCK(p);
180 	sig = cursig(td);	/* XXXKSE */
181 	if (thread_suspend_check(1))
182 		sig = SIGSTOP;
183 	mtx_lock_spin(&sched_lock);
184 	PROC_UNLOCK(p);
185 	if (sig != 0) {
186 		if (td->td_wchan != NULL)
187 			cv_waitq_remove(td);
188 		td->td_state = TDS_RUNNING;	/* XXXKSE */
189 	} else if (td->td_wchan != NULL) {
190 		cv_switch(td);
191 	}
192 	td->td_flags &= ~TDF_SINTR;
193 
194 	return sig;
195 }
196 
197 /*
198  * Add a thread to the wait queue of a condition variable.
199  */
200 static __inline void
201 cv_waitq_add(struct cv *cvp, struct thread *td)
202 {
203 
204 	/*
205 	 * Process may be sitting on a slpque if asleep() was called, remove it
206 	 * before re-adding.
207 	 */
208 	if (td->td_wchan != NULL)
209 		unsleep(td);
210 
211 	td->td_flags |= TDF_CVWAITQ;
212 	td->td_wchan = cvp;
213 	td->td_wmesg = cvp->cv_description;
214 	td->td_ksegrp->kg_slptime = 0; /* XXXKSE */
215 	td->td_base_pri = td->td_priority;
216 	CTR3(KTR_PROC, "cv_waitq_add: thread %p (pid %d, %s)", td,
217 	    td->td_proc->p_pid, td->td_proc->p_comm);
218 	TAILQ_INSERT_TAIL(&cvp->cv_waitq, td, td_slpq);
219 }
220 
221 /*
222  * Wait on a condition variable.  The current thread is placed on the condition
223  * variable's wait queue and suspended.  A cv_signal or cv_broadcast on the same
224  * condition variable will resume the thread.  The mutex is released before
225  * sleeping and will be held on return.  It is recommended that the mutex be
226  * held when cv_signal or cv_broadcast are called.
227  */
228 void
229 cv_wait(struct cv *cvp, struct mtx *mp)
230 {
231 	struct thread *td;
232 	WITNESS_SAVE_DECL(mp);
233 
234 	td = curthread;
235 #ifdef KTRACE
236 	if (KTRPOINT(td, KTR_CSW))
237 		ktrcsw(1, 0);
238 #endif
239 	CV_ASSERT(cvp, mp, td);
240 	WITNESS_SLEEP(0, &mp->mtx_object);
241 	WITNESS_SAVE(&mp->mtx_object, mp);
242 
243 	if (cold ) {
244 		/*
245 		 * During autoconfiguration, just give interrupts
246 		 * a chance, then just return.  Don't run any other
247 		 * thread or panic below, in case this is the idle
248 		 * process and already asleep.
249 		 */
250 		return;
251 	}
252 
253 	mtx_lock_spin(&sched_lock);
254 
255 	CV_WAIT_VALIDATE(cvp, mp);
256 
257 	DROP_GIANT();
258 	mtx_unlock(mp);
259 
260 	cv_waitq_add(cvp, td);
261 	cv_switch(td);
262 
263 	mtx_unlock_spin(&sched_lock);
264 #ifdef KTRACE
265 	if (KTRPOINT(td, KTR_CSW))
266 		ktrcsw(0, 0);
267 #endif
268 	PICKUP_GIANT();
269 	mtx_lock(mp);
270 	WITNESS_RESTORE(&mp->mtx_object, mp);
271 }
272 
273 /*
274  * Wait on a condition variable, allowing interruption by signals.  Return 0 if
275  * the thread was resumed with cv_signal or cv_broadcast, EINTR or ERESTART if
276  * a signal was caught.  If ERESTART is returned the system call should be
277  * restarted if possible.
278  */
279 int
280 cv_wait_sig(struct cv *cvp, struct mtx *mp)
281 {
282 	struct thread *td;
283 	struct proc *p;
284 	int rval;
285 	int sig;
286 	WITNESS_SAVE_DECL(mp);
287 
288 	td = curthread;
289 	p = td->td_proc;
290 	rval = 0;
291 #ifdef KTRACE
292 	if (KTRPOINT(td, KTR_CSW))
293 		ktrcsw(1, 0);
294 #endif
295 	CV_ASSERT(cvp, mp, td);
296 	WITNESS_SLEEP(0, &mp->mtx_object);
297 	WITNESS_SAVE(&mp->mtx_object, mp);
298 
299 	if (cold || panicstr) {
300 		/*
301 		 * After a panic, or during autoconfiguration, just give
302 		 * interrupts a chance, then just return; don't run any other
303 		 * procs or panic below, in case this is the idle process and
304 		 * already asleep.
305 		 */
306 		return 0;
307 	}
308 
309 	mtx_lock_spin(&sched_lock);
310 
311 	CV_WAIT_VALIDATE(cvp, mp);
312 
313 	DROP_GIANT();
314 	mtx_unlock(mp);
315 
316 	cv_waitq_add(cvp, td);
317 	sig = cv_switch_catch(td);
318 
319 	mtx_unlock_spin(&sched_lock);
320 
321 	PROC_LOCK(p);
322 	if (sig == 0)
323 		sig = cursig(td);	/* XXXKSE */
324 	if (sig != 0) {
325 		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
326 			rval = EINTR;
327 		else
328 			rval = ERESTART;
329 	}
330 	PROC_UNLOCK(p);
331 	if (p->p_flag & P_WEXIT)
332 		rval = EINTR;
333 
334 #ifdef KTRACE
335 	if (KTRPOINT(td, KTR_CSW))
336 		ktrcsw(0, 0);
337 #endif
338 	PICKUP_GIANT();
339 	mtx_lock(mp);
340 	WITNESS_RESTORE(&mp->mtx_object, mp);
341 
342 	return (rval);
343 }
344 
345 /*
346  * Wait on a condition variable for at most timo/hz seconds.  Returns 0 if the
347  * process was resumed by cv_signal or cv_broadcast, EWOULDBLOCK if the timeout
348  * expires.
349  */
350 int
351 cv_timedwait(struct cv *cvp, struct mtx *mp, int timo)
352 {
353 	struct thread *td;
354 	int rval;
355 	WITNESS_SAVE_DECL(mp);
356 
357 	td = curthread;
358 	rval = 0;
359 #ifdef KTRACE
360 	if (KTRPOINT(td, KTR_CSW))
361 		ktrcsw(1, 0);
362 #endif
363 	CV_ASSERT(cvp, mp, td);
364 	WITNESS_SLEEP(0, &mp->mtx_object);
365 	WITNESS_SAVE(&mp->mtx_object, mp);
366 
367 	if (cold || panicstr) {
368 		/*
369 		 * After a panic, or during autoconfiguration, just give
370 		 * interrupts a chance, then just return; don't run any other
371 		 * thread or panic below, in case this is the idle process and
372 		 * already asleep.
373 		 */
374 		return 0;
375 	}
376 
377 	mtx_lock_spin(&sched_lock);
378 
379 	CV_WAIT_VALIDATE(cvp, mp);
380 
381 	DROP_GIANT();
382 	mtx_unlock(mp);
383 
384 	cv_waitq_add(cvp, td);
385 	callout_reset(&td->td_slpcallout, timo, cv_timedwait_end, td);
386 	cv_switch(td);
387 
388 	if (td->td_flags & TDF_TIMEOUT) {
389 		td->td_flags &= ~TDF_TIMEOUT;
390 		rval = EWOULDBLOCK;
391 	} else if (td->td_flags & TDF_TIMOFAIL)
392 		td->td_flags &= ~TDF_TIMOFAIL;
393 	else if (callout_stop(&td->td_slpcallout) == 0) {
394 		/*
395 		 * Work around race with cv_timedwait_end similar to that
396 		 * between msleep and endtsleep.
397 		 * Go back to sleep.
398 		 */
399 		td->td_flags |= TDF_TIMEOUT;
400 		td->td_state = TDS_SLP;
401 		td->td_proc->p_stats->p_ru.ru_nivcsw++;
402 		mi_switch();
403 	}
404 
405 	if (td->td_proc->p_flag & P_WEXIT)
406 		rval = EWOULDBLOCK;
407 	mtx_unlock_spin(&sched_lock);
408 #ifdef KTRACE
409 	if (KTRPOINT(td, KTR_CSW))
410 		ktrcsw(0, 0);
411 #endif
412 	PICKUP_GIANT();
413 	mtx_lock(mp);
414 	WITNESS_RESTORE(&mp->mtx_object, mp);
415 
416 	return (rval);
417 }
418 
419 /*
420  * Wait on a condition variable for at most timo/hz seconds, allowing
421  * interruption by signals.  Returns 0 if the thread was resumed by cv_signal
422  * or cv_broadcast, EWOULDBLOCK if the timeout expires, and EINTR or ERESTART if
423  * a signal was caught.
424  */
425 int
426 cv_timedwait_sig(struct cv *cvp, struct mtx *mp, int timo)
427 {
428 	struct thread *td;
429 	struct proc *p;
430 	int rval;
431 	int sig;
432 	WITNESS_SAVE_DECL(mp);
433 
434 	td = curthread;
435 	p = td->td_proc;
436 	rval = 0;
437 #ifdef KTRACE
438 	if (KTRPOINT(td, KTR_CSW))
439 		ktrcsw(1, 0);
440 #endif
441 	CV_ASSERT(cvp, mp, td);
442 	WITNESS_SLEEP(0, &mp->mtx_object);
443 	WITNESS_SAVE(&mp->mtx_object, mp);
444 
445 	if (cold || panicstr) {
446 		/*
447 		 * After a panic, or during autoconfiguration, just give
448 		 * interrupts a chance, then just return; don't run any other
449 		 * thread or panic below, in case this is the idle process and
450 		 * already asleep.
451 		 */
452 		return 0;
453 	}
454 
455 	mtx_lock_spin(&sched_lock);
456 
457 	CV_WAIT_VALIDATE(cvp, mp);
458 
459 	DROP_GIANT();
460 	mtx_unlock(mp);
461 
462 	cv_waitq_add(cvp, td);
463 	callout_reset(&td->td_slpcallout, timo, cv_timedwait_end, td);
464 	sig = cv_switch_catch(td);
465 
466 	if (td->td_flags & TDF_TIMEOUT) {
467 		td->td_flags &= ~TDF_TIMEOUT;
468 		rval = EWOULDBLOCK;
469 	} else if (td->td_flags & TDF_TIMOFAIL)
470 		td->td_flags &= ~TDF_TIMOFAIL;
471 	else if (callout_stop(&td->td_slpcallout) == 0) {
472 		/*
473 		 * Work around race with cv_timedwait_end similar to that
474 		 * between msleep and endtsleep.
475 		 * Go back to sleep.
476 		 */
477 		td->td_flags |= TDF_TIMEOUT;
478 		td->td_state = TDS_SLP;
479 		td->td_proc->p_stats->p_ru.ru_nivcsw++;
480 		mi_switch();
481 	}
482 	mtx_unlock_spin(&sched_lock);
483 
484 	PROC_LOCK(p);
485 	if (sig == 0)
486 		sig = cursig(td);
487 	if (sig != 0) {
488 		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
489 			rval = EINTR;
490 		else
491 			rval = ERESTART;
492 	}
493 	PROC_UNLOCK(p);
494 
495 	if (p->p_flag & P_WEXIT)
496 		rval = EINTR;
497 
498 #ifdef KTRACE
499 	if (KTRPOINT(td, KTR_CSW))
500 		ktrcsw(0, 0);
501 #endif
502 	PICKUP_GIANT();
503 	mtx_lock(mp);
504 	WITNESS_RESTORE(&mp->mtx_object, mp);
505 
506 	return (rval);
507 }
508 
509 /*
510  * Common code for signal and broadcast.  Assumes waitq is not empty.  Must be
511  * called with sched_lock held.
512  */
513 static __inline void
514 cv_wakeup(struct cv *cvp)
515 {
516 	struct thread *td;
517 
518 	mtx_assert(&sched_lock, MA_OWNED);
519 	td = TAILQ_FIRST(&cvp->cv_waitq);
520 	KASSERT(td->td_wchan == cvp, ("%s: bogus wchan", __func__));
521 	KASSERT(td->td_flags & TDF_CVWAITQ, ("%s: not on waitq", __func__));
522 	TAILQ_REMOVE(&cvp->cv_waitq, td, td_slpq);
523 	td->td_flags &= ~TDF_CVWAITQ;
524 	td->td_wchan = 0;
525 	if (td->td_state == TDS_SLP) {
526 		/* OPTIMIZED EXPANSION OF setrunnable(td); */
527 		CTR3(KTR_PROC, "cv_signal: thread %p (pid %d, %s)",
528 		    td, td->td_proc->p_pid, td->td_proc->p_comm);
529 		if (td->td_ksegrp->kg_slptime > 1) /* XXXKSE */
530 			updatepri(td);
531 		td->td_ksegrp->kg_slptime = 0;
532 		if (td->td_proc->p_sflag & PS_INMEM) {
533 			setrunqueue(td);
534 			maybe_resched(td);
535 		} else {
536 			td->td_proc->p_sflag |= PS_SWAPINREQ;
537 			wakeup(&proc0); /* XXXKSE */
538 		}
539 		/* END INLINE EXPANSION */
540 	}
541 }
542 
543 /*
544  * Signal a condition variable, wakes up one waiting thread.  Will also wakeup
545  * the swapper if the process is not in memory, so that it can bring the
546  * sleeping process in.  Note that this may also result in additional threads
547  * being made runnable.  Should be called with the same mutex as was passed to
548  * cv_wait held.
549  */
550 void
551 cv_signal(struct cv *cvp)
552 {
553 
554 	KASSERT(cvp != NULL, ("%s: cvp NULL", __func__));
555 	mtx_lock_spin(&sched_lock);
556 	if (!TAILQ_EMPTY(&cvp->cv_waitq)) {
557 		CV_SIGNAL_VALIDATE(cvp);
558 		cv_wakeup(cvp);
559 	}
560 	mtx_unlock_spin(&sched_lock);
561 }
562 
563 /*
564  * Broadcast a signal to a condition variable.  Wakes up all waiting threads.
565  * Should be called with the same mutex as was passed to cv_wait held.
566  */
567 void
568 cv_broadcast(struct cv *cvp)
569 {
570 
571 	KASSERT(cvp != NULL, ("%s: cvp NULL", __func__));
572 	mtx_lock_spin(&sched_lock);
573 	CV_SIGNAL_VALIDATE(cvp);
574 	while (!TAILQ_EMPTY(&cvp->cv_waitq))
575 		cv_wakeup(cvp);
576 	mtx_unlock_spin(&sched_lock);
577 }
578 
579 /*
580  * Remove a thread from the wait queue of its condition variable.  This may be
581  * called externally.
582  */
583 void
584 cv_waitq_remove(struct thread *td)
585 {
586 	struct cv *cvp;
587 
588 	mtx_lock_spin(&sched_lock);
589 	if ((cvp = td->td_wchan) != NULL && td->td_flags & TDF_CVWAITQ) {
590 		TAILQ_REMOVE(&cvp->cv_waitq, td, td_slpq);
591 		td->td_flags &= ~TDF_CVWAITQ;
592 		td->td_wchan = NULL;
593 	}
594 	mtx_unlock_spin(&sched_lock);
595 }
596 
597 /*
598  * Timeout function for cv_timedwait.  Put the thread on the runqueue and set
599  * its timeout flag.
600  */
601 static void
602 cv_timedwait_end(void *arg)
603 {
604 	struct thread *td;
605 
606 	td = arg;
607 	CTR3(KTR_PROC, "cv_timedwait_end: thread %p (pid %d, %s)", td, td->td_proc->p_pid,
608 	    td->td_proc->p_comm);
609 	mtx_lock_spin(&sched_lock);
610 	if (td->td_flags & TDF_TIMEOUT) {
611 		td->td_flags &= ~TDF_TIMEOUT;
612 		setrunqueue(td);
613 	} else if (td->td_wchan != NULL) {
614 		if (td->td_state == TDS_SLP)	/* XXXKSE */
615 			setrunnable(td);
616 		else
617 			cv_waitq_remove(td);
618 		td->td_flags |= TDF_TIMEOUT;
619 	} else
620 		td->td_flags |= TDF_TIMOFAIL;
621 	mtx_unlock_spin(&sched_lock);
622 }
623 
624 /*
625  * For now only abort interruptable waits.
626  * The others will have to either complete on their own or have a timeout.
627  */
628 void
629 cv_abort(struct thread *td)
630 {
631 
632 	CTR3(KTR_PROC, "cv_abort: thread %p (pid %d, %s)", td,
633 	    td->td_proc->p_pid,
634 	    td->td_proc->p_comm);
635 	mtx_lock_spin(&sched_lock);
636 	if ((td->td_flags & (TDF_SINTR|TDF_TIMEOUT)) == TDF_SINTR) {
637 		if (td->td_wchan != NULL) {
638 			if (td->td_state == TDS_SLP)
639 				setrunnable(td);
640 			else
641 				cv_waitq_remove(td);
642 		}
643 	}
644 	mtx_unlock_spin(&sched_lock);
645 }
646 
647