xref: /freebsd/sys/kern/kern_condvar.c (revision 729362425c09cf6b362366aabc6fb547eee8035a)
1 /*-
2  * Copyright (c) 2000 Jake Burkholder <jake@freebsd.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include "opt_ktrace.h"
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/lock.h>
34 #include <sys/mutex.h>
35 #include <sys/proc.h>
36 #include <sys/kernel.h>
37 #include <sys/ktr.h>
38 #include <sys/condvar.h>
39 #include <sys/sched.h>
40 #include <sys/signalvar.h>
41 #include <sys/resourcevar.h>
42 #ifdef KTRACE
43 #include <sys/uio.h>
44 #include <sys/ktrace.h>
45 #endif
46 
47 /*
48  * Common sanity checks for cv_wait* functions.
49  */
50 #define	CV_ASSERT(cvp, mp, td) do {					\
51 	KASSERT((td) != NULL, ("%s: curthread NULL", __func__));	\
52 	KASSERT(TD_IS_RUNNING(td), ("%s: not TDS_RUNNING", __func__));	\
53 	KASSERT((cvp) != NULL, ("%s: cvp NULL", __func__));		\
54 	KASSERT((mp) != NULL, ("%s: mp NULL", __func__));		\
55 	mtx_assert((mp), MA_OWNED | MA_NOTRECURSED);			\
56 } while (0)
57 
58 #ifdef INVARIANTS
59 #define	CV_WAIT_VALIDATE(cvp, mp) do {					\
60 	if (TAILQ_EMPTY(&(cvp)->cv_waitq)) {				\
61 		/* Only waiter. */					\
62 		(cvp)->cv_mtx = (mp);					\
63 	} else {							\
64 		/*							\
65 		 * Other waiter; assert that we're using the		\
66 		 * same mutex.						\
67 		 */							\
68 		KASSERT((cvp)->cv_mtx == (mp),				\
69 		    ("%s: Multiple mutexes", __func__));		\
70 	}								\
71 } while (0)
72 
73 #define	CV_SIGNAL_VALIDATE(cvp) do {					\
74 	if (!TAILQ_EMPTY(&(cvp)->cv_waitq)) {				\
75 		KASSERT(mtx_owned((cvp)->cv_mtx),			\
76 		    ("%s: Mutex not owned", __func__));			\
77 	}								\
78 } while (0)
79 
80 #else
81 #define	CV_WAIT_VALIDATE(cvp, mp)
82 #define	CV_SIGNAL_VALIDATE(cvp)
83 #endif
84 
85 static void cv_timedwait_end(void *arg);
86 
87 /*
88  * Initialize a condition variable.  Must be called before use.
89  */
90 void
91 cv_init(struct cv *cvp, const char *desc)
92 {
93 
94 	TAILQ_INIT(&cvp->cv_waitq);
95 	cvp->cv_mtx = NULL;
96 	cvp->cv_description = desc;
97 }
98 
99 /*
100  * Destroy a condition variable.  The condition variable must be re-initialized
101  * in order to be re-used.
102  */
103 void
104 cv_destroy(struct cv *cvp)
105 {
106 
107 	KASSERT(cv_waitq_empty(cvp), ("%s: cv_waitq non-empty", __func__));
108 }
109 
110 /*
111  * Common code for cv_wait* functions.  All require sched_lock.
112  */
113 
114 /*
115  * Switch context.
116  */
117 static __inline void
118 cv_switch(struct thread *td)
119 {
120 	TD_SET_SLEEPING(td);
121 	td->td_proc->p_stats->p_ru.ru_nvcsw++;
122 	mi_switch();
123 	CTR3(KTR_PROC, "cv_switch: resume thread %p (pid %d, %s)", td,
124 	    td->td_proc->p_pid, td->td_proc->p_comm);
125 }
126 
127 /*
128  * Switch context, catching signals.
129  */
130 static __inline int
131 cv_switch_catch(struct thread *td)
132 {
133 	struct proc *p;
134 	int sig;
135 
136 	/*
137 	 * We put ourselves on the sleep queue and start our timeout before
138 	 * calling cursig, as we could stop there, and a wakeup or a SIGCONT (or
139 	 * both) could occur while we were stopped.  A SIGCONT would cause us to
140 	 * be marked as TDS_SLP without resuming us, thus we must be ready for
141 	 * sleep when cursig is called.  If the wakeup happens while we're
142 	 * stopped, td->td_wchan will be 0 upon return from cursig,
143 	 * and TD_ON_SLEEPQ() will return false.
144 	 */
145 	td->td_flags |= TDF_SINTR;
146 	mtx_unlock_spin(&sched_lock);
147 	p = td->td_proc;
148 	PROC_LOCK(p);
149 	sig = cursig(td);
150 	if (thread_suspend_check(1))
151 		sig = SIGSTOP;
152 	mtx_lock_spin(&sched_lock);
153 	PROC_UNLOCK(p);
154 	if (sig != 0) {
155 		if (TD_ON_SLEEPQ(td))
156 			cv_waitq_remove(td);
157 		TD_SET_RUNNING(td);
158 	} else if (TD_ON_SLEEPQ(td)) {
159 		cv_switch(td);
160 	}
161 	td->td_flags &= ~TDF_SINTR;
162 
163 	return sig;
164 }
165 
166 /*
167  * Add a thread to the wait queue of a condition variable.
168  */
169 static __inline void
170 cv_waitq_add(struct cv *cvp, struct thread *td)
171 {
172 
173 	td->td_flags |= TDF_CVWAITQ;
174 	TD_SET_ON_SLEEPQ(td);
175 	td->td_wchan = cvp;
176 	td->td_wmesg = cvp->cv_description;
177 	CTR3(KTR_PROC, "cv_waitq_add: thread %p (pid %d, %s)", td,
178 	    td->td_proc->p_pid, td->td_proc->p_comm);
179 	TAILQ_INSERT_TAIL(&cvp->cv_waitq, td, td_slpq);
180 	sched_sleep(td, td->td_priority);
181 }
182 
183 /*
184  * Wait on a condition variable.  The current thread is placed on the condition
185  * variable's wait queue and suspended.  A cv_signal or cv_broadcast on the same
186  * condition variable will resume the thread.  The mutex is released before
187  * sleeping and will be held on return.  It is recommended that the mutex be
188  * held when cv_signal or cv_broadcast are called.
189  */
190 void
191 cv_wait(struct cv *cvp, struct mtx *mp)
192 {
193 	struct thread *td;
194 	WITNESS_SAVE_DECL(mp);
195 
196 	td = curthread;
197 #ifdef KTRACE
198 	if (KTRPOINT(td, KTR_CSW))
199 		ktrcsw(1, 0);
200 #endif
201 	CV_ASSERT(cvp, mp, td);
202 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mp->mtx_object,
203 	    "Waiting on \"%s\"", cvp->cv_description);
204 	WITNESS_SAVE(&mp->mtx_object, mp);
205 
206 	if (cold ) {
207 		/*
208 		 * During autoconfiguration, just give interrupts
209 		 * a chance, then just return.  Don't run any other
210 		 * thread or panic below, in case this is the idle
211 		 * process and already asleep.
212 		 */
213 		return;
214 	}
215 
216 	mtx_lock_spin(&sched_lock);
217 
218 	CV_WAIT_VALIDATE(cvp, mp);
219 
220 	DROP_GIANT();
221 	mtx_unlock(mp);
222 
223 	cv_waitq_add(cvp, td);
224 	cv_switch(td);
225 
226 	mtx_unlock_spin(&sched_lock);
227 #ifdef KTRACE
228 	if (KTRPOINT(td, KTR_CSW))
229 		ktrcsw(0, 0);
230 #endif
231 	PICKUP_GIANT();
232 	mtx_lock(mp);
233 	WITNESS_RESTORE(&mp->mtx_object, mp);
234 }
235 
236 /*
237  * Wait on a condition variable, allowing interruption by signals.  Return 0 if
238  * the thread was resumed with cv_signal or cv_broadcast, EINTR or ERESTART if
239  * a signal was caught.  If ERESTART is returned the system call should be
240  * restarted if possible.
241  */
242 int
243 cv_wait_sig(struct cv *cvp, struct mtx *mp)
244 {
245 	struct thread *td;
246 	struct proc *p;
247 	int rval;
248 	int sig;
249 	WITNESS_SAVE_DECL(mp);
250 
251 	td = curthread;
252 	p = td->td_proc;
253 	rval = 0;
254 #ifdef KTRACE
255 	if (KTRPOINT(td, KTR_CSW))
256 		ktrcsw(1, 0);
257 #endif
258 	CV_ASSERT(cvp, mp, td);
259 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mp->mtx_object,
260 	    "Waiting on \"%s\"", cvp->cv_description);
261 	WITNESS_SAVE(&mp->mtx_object, mp);
262 
263 	if (cold || panicstr) {
264 		/*
265 		 * After a panic, or during autoconfiguration, just give
266 		 * interrupts a chance, then just return; don't run any other
267 		 * procs or panic below, in case this is the idle process and
268 		 * already asleep.
269 		 */
270 		return 0;
271 	}
272 
273 	mtx_lock_spin(&sched_lock);
274 
275 	CV_WAIT_VALIDATE(cvp, mp);
276 
277 	DROP_GIANT();
278 	mtx_unlock(mp);
279 
280 	cv_waitq_add(cvp, td);
281 	sig = cv_switch_catch(td);
282 
283 	mtx_unlock_spin(&sched_lock);
284 
285 	PROC_LOCK(p);
286 	if (sig == 0)
287 		sig = cursig(td);	/* XXXKSE */
288 	if (sig != 0) {
289 		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
290 			rval = EINTR;
291 		else
292 			rval = ERESTART;
293 	}
294 	PROC_UNLOCK(p);
295 	if (p->p_flag & P_WEXIT)
296 		rval = EINTR;
297 
298 #ifdef KTRACE
299 	if (KTRPOINT(td, KTR_CSW))
300 		ktrcsw(0, 0);
301 #endif
302 	PICKUP_GIANT();
303 	mtx_lock(mp);
304 	WITNESS_RESTORE(&mp->mtx_object, mp);
305 
306 	return (rval);
307 }
308 
309 /*
310  * Wait on a condition variable for at most timo/hz seconds.  Returns 0 if the
311  * process was resumed by cv_signal or cv_broadcast, EWOULDBLOCK if the timeout
312  * expires.
313  */
314 int
315 cv_timedwait(struct cv *cvp, struct mtx *mp, int timo)
316 {
317 	struct thread *td;
318 	int rval;
319 	WITNESS_SAVE_DECL(mp);
320 
321 	td = curthread;
322 	rval = 0;
323 #ifdef KTRACE
324 	if (KTRPOINT(td, KTR_CSW))
325 		ktrcsw(1, 0);
326 #endif
327 	CV_ASSERT(cvp, mp, td);
328 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mp->mtx_object,
329 	    "Waiting on \"%s\"", cvp->cv_description);
330 	WITNESS_SAVE(&mp->mtx_object, mp);
331 
332 	if (cold || panicstr) {
333 		/*
334 		 * After a panic, or during autoconfiguration, just give
335 		 * interrupts a chance, then just return; don't run any other
336 		 * thread or panic below, in case this is the idle process and
337 		 * already asleep.
338 		 */
339 		return 0;
340 	}
341 
342 	mtx_lock_spin(&sched_lock);
343 
344 	CV_WAIT_VALIDATE(cvp, mp);
345 
346 	DROP_GIANT();
347 	mtx_unlock(mp);
348 
349 	cv_waitq_add(cvp, td);
350 	callout_reset(&td->td_slpcallout, timo, cv_timedwait_end, td);
351 	cv_switch(td);
352 
353 	if (td->td_flags & TDF_TIMEOUT) {
354 		td->td_flags &= ~TDF_TIMEOUT;
355 		rval = EWOULDBLOCK;
356 	} else if (td->td_flags & TDF_TIMOFAIL)
357 		td->td_flags &= ~TDF_TIMOFAIL;
358 	else if (callout_stop(&td->td_slpcallout) == 0) {
359 		/*
360 		 * Work around race with cv_timedwait_end similar to that
361 		 * between msleep and endtsleep.
362 		 * Go back to sleep.
363 		 */
364 		TD_SET_SLEEPING(td);
365 		td->td_proc->p_stats->p_ru.ru_nivcsw++;
366 		mi_switch();
367 		td->td_flags &= ~TDF_TIMOFAIL;
368 	}
369 
370 	if (td->td_proc->p_flag & P_WEXIT)
371 		rval = EWOULDBLOCK;
372 	mtx_unlock_spin(&sched_lock);
373 #ifdef KTRACE
374 	if (KTRPOINT(td, KTR_CSW))
375 		ktrcsw(0, 0);
376 #endif
377 	PICKUP_GIANT();
378 	mtx_lock(mp);
379 	WITNESS_RESTORE(&mp->mtx_object, mp);
380 
381 	return (rval);
382 }
383 
384 /*
385  * Wait on a condition variable for at most timo/hz seconds, allowing
386  * interruption by signals.  Returns 0 if the thread was resumed by cv_signal
387  * or cv_broadcast, EWOULDBLOCK if the timeout expires, and EINTR or ERESTART if
388  * a signal was caught.
389  */
390 int
391 cv_timedwait_sig(struct cv *cvp, struct mtx *mp, int timo)
392 {
393 	struct thread *td;
394 	struct proc *p;
395 	int rval;
396 	int sig;
397 	WITNESS_SAVE_DECL(mp);
398 
399 	td = curthread;
400 	p = td->td_proc;
401 	rval = 0;
402 #ifdef KTRACE
403 	if (KTRPOINT(td, KTR_CSW))
404 		ktrcsw(1, 0);
405 #endif
406 	CV_ASSERT(cvp, mp, td);
407 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mp->mtx_object,
408 	    "Waiting on \"%s\"", cvp->cv_description);
409 	WITNESS_SAVE(&mp->mtx_object, mp);
410 
411 	if (cold || panicstr) {
412 		/*
413 		 * After a panic, or during autoconfiguration, just give
414 		 * interrupts a chance, then just return; don't run any other
415 		 * thread or panic below, in case this is the idle process and
416 		 * already asleep.
417 		 */
418 		return 0;
419 	}
420 
421 	mtx_lock_spin(&sched_lock);
422 
423 	CV_WAIT_VALIDATE(cvp, mp);
424 
425 	DROP_GIANT();
426 	mtx_unlock(mp);
427 
428 	cv_waitq_add(cvp, td);
429 	callout_reset(&td->td_slpcallout, timo, cv_timedwait_end, td);
430 	sig = cv_switch_catch(td);
431 
432 	if (td->td_flags & TDF_TIMEOUT) {
433 		td->td_flags &= ~TDF_TIMEOUT;
434 		rval = EWOULDBLOCK;
435 	} else if (td->td_flags & TDF_TIMOFAIL)
436 		td->td_flags &= ~TDF_TIMOFAIL;
437 	else if (callout_stop(&td->td_slpcallout) == 0) {
438 		/*
439 		 * Work around race with cv_timedwait_end similar to that
440 		 * between msleep and endtsleep.
441 		 * Go back to sleep.
442 		 */
443 		TD_SET_SLEEPING(td);
444 		td->td_proc->p_stats->p_ru.ru_nivcsw++;
445 		mi_switch();
446 		td->td_flags &= ~TDF_TIMOFAIL;
447 	}
448 	mtx_unlock_spin(&sched_lock);
449 
450 	PROC_LOCK(p);
451 	if (sig == 0)
452 		sig = cursig(td);
453 	if (sig != 0) {
454 		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
455 			rval = EINTR;
456 		else
457 			rval = ERESTART;
458 	}
459 	PROC_UNLOCK(p);
460 
461 	if (p->p_flag & P_WEXIT)
462 		rval = EINTR;
463 
464 #ifdef KTRACE
465 	if (KTRPOINT(td, KTR_CSW))
466 		ktrcsw(0, 0);
467 #endif
468 	PICKUP_GIANT();
469 	mtx_lock(mp);
470 	WITNESS_RESTORE(&mp->mtx_object, mp);
471 
472 	return (rval);
473 }
474 
475 /*
476  * Common code for signal and broadcast.  Assumes waitq is not empty.  Must be
477  * called with sched_lock held.
478  */
479 static __inline void
480 cv_wakeup(struct cv *cvp)
481 {
482 	struct thread *td;
483 
484 	mtx_assert(&sched_lock, MA_OWNED);
485 	td = TAILQ_FIRST(&cvp->cv_waitq);
486 	KASSERT(td->td_wchan == cvp, ("%s: bogus wchan", __func__));
487 	KASSERT(td->td_flags & TDF_CVWAITQ, ("%s: not on waitq", __func__));
488 	cv_waitq_remove(td);
489 	TD_CLR_SLEEPING(td);
490 	setrunnable(td);
491 }
492 
493 /*
494  * Signal a condition variable, wakes up one waiting thread.  Will also wakeup
495  * the swapper if the process is not in memory, so that it can bring the
496  * sleeping process in.  Note that this may also result in additional threads
497  * being made runnable.  Should be called with the same mutex as was passed to
498  * cv_wait held.
499  */
500 void
501 cv_signal(struct cv *cvp)
502 {
503 
504 	KASSERT(cvp != NULL, ("%s: cvp NULL", __func__));
505 	mtx_lock_spin(&sched_lock);
506 	if (!TAILQ_EMPTY(&cvp->cv_waitq)) {
507 		CV_SIGNAL_VALIDATE(cvp);
508 		cv_wakeup(cvp);
509 	}
510 	mtx_unlock_spin(&sched_lock);
511 }
512 
513 /*
514  * Broadcast a signal to a condition variable.  Wakes up all waiting threads.
515  * Should be called with the same mutex as was passed to cv_wait held.
516  */
517 void
518 cv_broadcast(struct cv *cvp)
519 {
520 
521 	KASSERT(cvp != NULL, ("%s: cvp NULL", __func__));
522 	mtx_lock_spin(&sched_lock);
523 	CV_SIGNAL_VALIDATE(cvp);
524 	while (!TAILQ_EMPTY(&cvp->cv_waitq))
525 		cv_wakeup(cvp);
526 	mtx_unlock_spin(&sched_lock);
527 }
528 
529 /*
530  * Remove a thread from the wait queue of its condition variable.  This may be
531  * called externally.
532  */
533 void
534 cv_waitq_remove(struct thread *td)
535 {
536 	struct cv *cvp;
537 
538 	mtx_assert(&sched_lock, MA_OWNED);
539 	if ((cvp = td->td_wchan) != NULL && td->td_flags & TDF_CVWAITQ) {
540 		TAILQ_REMOVE(&cvp->cv_waitq, td, td_slpq);
541 		td->td_flags &= ~TDF_CVWAITQ;
542 		td->td_wmesg = NULL;
543 		TD_CLR_ON_SLEEPQ(td);
544 	}
545 }
546 
547 /*
548  * Timeout function for cv_timedwait.  Put the thread on the runqueue and set
549  * its timeout flag.
550  */
551 static void
552 cv_timedwait_end(void *arg)
553 {
554 	struct thread *td;
555 
556 	td = arg;
557 	CTR3(KTR_PROC, "cv_timedwait_end: thread %p (pid %d, %s)",
558 	    td, td->td_proc->p_pid, td->td_proc->p_comm);
559 	mtx_lock_spin(&sched_lock);
560 	if (TD_ON_SLEEPQ(td)) {
561 		cv_waitq_remove(td);
562 		td->td_flags |= TDF_TIMEOUT;
563 	} else {
564 		td->td_flags |= TDF_TIMOFAIL;
565 	}
566 	TD_CLR_SLEEPING(td);
567 	setrunnable(td);
568 	mtx_unlock_spin(&sched_lock);
569 }
570 
571 /*
572  * For now only abort interruptable waits.
573  * The others will have to either complete on their own or have a timeout.
574  */
575 void
576 cv_abort(struct thread *td)
577 {
578 
579 	CTR3(KTR_PROC, "cv_abort: thread %p (pid %d, %s)", td,
580 	    td->td_proc->p_pid, td->td_proc->p_comm);
581 	mtx_lock_spin(&sched_lock);
582 	if ((td->td_flags & (TDF_SINTR|TDF_TIMEOUT)) == TDF_SINTR) {
583 		if (TD_ON_SLEEPQ(td)) {
584 			cv_waitq_remove(td);
585 		}
586 		TD_CLR_SLEEPING(td);
587 		setrunnable(td);
588 	}
589 	mtx_unlock_spin(&sched_lock);
590 }
591 
592