xref: /freebsd/sys/kern/kern_clocksource.c (revision 8ef24a0d4b28fe230e20637f56869cc4148cd2ca)
1 /*-
2  * Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * Common routines to manage event timers hardware.
32  */
33 
34 #include "opt_device_polling.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51 
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56 
57 int			cpu_deepest_sleep = 0;	/* Deepest Cx state available. */
58 int			cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
59 int			cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
60 
61 static void		setuptimer(void);
62 static void		loadtimer(sbintime_t now, int first);
63 static int		doconfigtimer(void);
64 static void		configtimer(int start);
65 static int		round_freq(struct eventtimer *et, int freq);
66 
67 static sbintime_t	getnextcpuevent(int idle);
68 static sbintime_t	getnextevent(void);
69 static int		handleevents(sbintime_t now, int fake);
70 
71 static struct mtx	et_hw_mtx;
72 
73 #define	ET_HW_LOCK(state)						\
74 	{								\
75 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
76 			mtx_lock_spin(&(state)->et_hw_mtx);		\
77 		else							\
78 			mtx_lock_spin(&et_hw_mtx);			\
79 	}
80 
81 #define	ET_HW_UNLOCK(state)						\
82 	{								\
83 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
84 			mtx_unlock_spin(&(state)->et_hw_mtx);		\
85 		else							\
86 			mtx_unlock_spin(&et_hw_mtx);			\
87 	}
88 
89 static struct eventtimer *timer = NULL;
90 static sbintime_t	timerperiod;	/* Timer period for periodic mode. */
91 static sbintime_t	statperiod;	/* statclock() events period. */
92 static sbintime_t	profperiod;	/* profclock() events period. */
93 static sbintime_t	nexttick;	/* Next global timer tick time. */
94 static u_int		busy = 1;	/* Reconfiguration is in progress. */
95 static int		profiling;	/* Profiling events enabled. */
96 
97 static char		timername[32];	/* Wanted timer. */
98 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
99 
100 static int		singlemul;	/* Multiplier for periodic mode. */
101 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RWTUN, &singlemul,
102     0, "Multiplier for periodic mode");
103 
104 static u_int		idletick;	/* Run periodic events when idle. */
105 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RWTUN, &idletick,
106     0, "Run periodic events when idle");
107 
108 static int		periodic;	/* Periodic or one-shot mode. */
109 static int		want_periodic;	/* What mode to prefer. */
110 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
111 
112 struct pcpu_state {
113 	struct mtx	et_hw_mtx;	/* Per-CPU timer mutex. */
114 	u_int		action;		/* Reconfiguration requests. */
115 	u_int		handle;		/* Immediate handle resuests. */
116 	sbintime_t	now;		/* Last tick time. */
117 	sbintime_t	nextevent;	/* Next scheduled event on this CPU. */
118 	sbintime_t	nexttick;	/* Next timer tick time. */
119 	sbintime_t	nexthard;	/* Next hardclock() event. */
120 	sbintime_t	nextstat;	/* Next statclock() event. */
121 	sbintime_t	nextprof;	/* Next profclock() event. */
122 	sbintime_t	nextcall;	/* Next callout event. */
123 	sbintime_t	nextcallopt;	/* Next optional callout event. */
124 	int		ipi;		/* This CPU needs IPI. */
125 	int		idle;		/* This CPU is in idle mode. */
126 };
127 
128 static DPCPU_DEFINE(struct pcpu_state, timerstate);
129 DPCPU_DEFINE(sbintime_t, hardclocktime);
130 
131 /*
132  * Timer broadcast IPI handler.
133  */
134 int
135 hardclockintr(void)
136 {
137 	sbintime_t now;
138 	struct pcpu_state *state;
139 	int done;
140 
141 	if (doconfigtimer() || busy)
142 		return (FILTER_HANDLED);
143 	state = DPCPU_PTR(timerstate);
144 	now = state->now;
145 	CTR3(KTR_SPARE2, "ipi  at %d:    now  %d.%08x",
146 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
147 	done = handleevents(now, 0);
148 	return (done ? FILTER_HANDLED : FILTER_STRAY);
149 }
150 
151 /*
152  * Handle all events for specified time on this CPU
153  */
154 static int
155 handleevents(sbintime_t now, int fake)
156 {
157 	sbintime_t t, *hct;
158 	struct trapframe *frame;
159 	struct pcpu_state *state;
160 	int usermode;
161 	int done, runs;
162 
163 	CTR3(KTR_SPARE2, "handle at %d:  now  %d.%08x",
164 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
165 	done = 0;
166 	if (fake) {
167 		frame = NULL;
168 		usermode = 0;
169 	} else {
170 		frame = curthread->td_intr_frame;
171 		usermode = TRAPF_USERMODE(frame);
172 	}
173 
174 	state = DPCPU_PTR(timerstate);
175 
176 	runs = 0;
177 	while (now >= state->nexthard) {
178 		state->nexthard += tick_sbt;
179 		runs++;
180 	}
181 	if (runs) {
182 		hct = DPCPU_PTR(hardclocktime);
183 		*hct = state->nexthard - tick_sbt;
184 		if (fake < 2) {
185 			hardclock_cnt(runs, usermode);
186 			done = 1;
187 		}
188 	}
189 	runs = 0;
190 	while (now >= state->nextstat) {
191 		state->nextstat += statperiod;
192 		runs++;
193 	}
194 	if (runs && fake < 2) {
195 		statclock_cnt(runs, usermode);
196 		done = 1;
197 	}
198 	if (profiling) {
199 		runs = 0;
200 		while (now >= state->nextprof) {
201 			state->nextprof += profperiod;
202 			runs++;
203 		}
204 		if (runs && !fake) {
205 			profclock_cnt(runs, usermode, TRAPF_PC(frame));
206 			done = 1;
207 		}
208 	} else
209 		state->nextprof = state->nextstat;
210 	if (now >= state->nextcallopt) {
211 		state->nextcall = state->nextcallopt = SBT_MAX;
212 		callout_process(now);
213 	}
214 
215 	t = getnextcpuevent(0);
216 	ET_HW_LOCK(state);
217 	if (!busy) {
218 		state->idle = 0;
219 		state->nextevent = t;
220 		loadtimer(now, (fake == 2) &&
221 		    (timer->et_flags & ET_FLAGS_PERCPU));
222 	}
223 	ET_HW_UNLOCK(state);
224 	return (done);
225 }
226 
227 /*
228  * Schedule binuptime of the next event on current CPU.
229  */
230 static sbintime_t
231 getnextcpuevent(int idle)
232 {
233 	sbintime_t event;
234 	struct pcpu_state *state;
235 	u_int hardfreq;
236 
237 	state = DPCPU_PTR(timerstate);
238 	/* Handle hardclock() events, skipping some if CPU is idle. */
239 	event = state->nexthard;
240 	if (idle) {
241 		hardfreq = (u_int)hz / 2;
242 		if (tc_min_ticktock_freq > 2
243 #ifdef SMP
244 		    && curcpu == CPU_FIRST()
245 #endif
246 		    )
247 			hardfreq = hz / tc_min_ticktock_freq;
248 		if (hardfreq > 1)
249 			event += tick_sbt * (hardfreq - 1);
250 	}
251 	/* Handle callout events. */
252 	if (event > state->nextcall)
253 		event = state->nextcall;
254 	if (!idle) { /* If CPU is active - handle other types of events. */
255 		if (event > state->nextstat)
256 			event = state->nextstat;
257 		if (profiling && event > state->nextprof)
258 			event = state->nextprof;
259 	}
260 	return (event);
261 }
262 
263 /*
264  * Schedule binuptime of the next event on all CPUs.
265  */
266 static sbintime_t
267 getnextevent(void)
268 {
269 	struct pcpu_state *state;
270 	sbintime_t event;
271 #ifdef SMP
272 	int	cpu;
273 #endif
274 	int	c;
275 
276 	state = DPCPU_PTR(timerstate);
277 	event = state->nextevent;
278 	c = -1;
279 #ifdef SMP
280 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
281 		CPU_FOREACH(cpu) {
282 			state = DPCPU_ID_PTR(cpu, timerstate);
283 			if (event > state->nextevent) {
284 				event = state->nextevent;
285 				c = cpu;
286 			}
287 		}
288 	}
289 #endif
290 	CTR4(KTR_SPARE2, "next at %d:    next %d.%08x by %d",
291 	    curcpu, (int)(event >> 32), (u_int)(event & 0xffffffff), c);
292 	return (event);
293 }
294 
295 /* Hardware timer callback function. */
296 static void
297 timercb(struct eventtimer *et, void *arg)
298 {
299 	sbintime_t now;
300 	sbintime_t *next;
301 	struct pcpu_state *state;
302 #ifdef SMP
303 	int cpu, bcast;
304 #endif
305 
306 	/* Do not touch anything if somebody reconfiguring timers. */
307 	if (busy)
308 		return;
309 	/* Update present and next tick times. */
310 	state = DPCPU_PTR(timerstate);
311 	if (et->et_flags & ET_FLAGS_PERCPU) {
312 		next = &state->nexttick;
313 	} else
314 		next = &nexttick;
315 	now = sbinuptime();
316 	if (periodic)
317 		*next = now + timerperiod;
318 	else
319 		*next = -1;	/* Next tick is not scheduled yet. */
320 	state->now = now;
321 	CTR3(KTR_SPARE2, "intr at %d:    now  %d.%08x",
322 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
323 
324 #ifdef SMP
325 #ifdef EARLY_AP_STARTUP
326 	MPASS(mp_ncpus == 1 || smp_started);
327 #endif
328 	/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
329 	bcast = 0;
330 #ifdef EARLY_AP_STARTUP
331 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0) {
332 #else
333 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
334 #endif
335 		CPU_FOREACH(cpu) {
336 			state = DPCPU_ID_PTR(cpu, timerstate);
337 			ET_HW_LOCK(state);
338 			state->now = now;
339 			if (now >= state->nextevent) {
340 				state->nextevent += SBT_1S;
341 				if (curcpu != cpu) {
342 					state->ipi = 1;
343 					bcast = 1;
344 				}
345 			}
346 			ET_HW_UNLOCK(state);
347 		}
348 	}
349 #endif
350 
351 	/* Handle events for this time on this CPU. */
352 	handleevents(now, 0);
353 
354 #ifdef SMP
355 	/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
356 	if (bcast) {
357 		CPU_FOREACH(cpu) {
358 			if (curcpu == cpu)
359 				continue;
360 			state = DPCPU_ID_PTR(cpu, timerstate);
361 			if (state->ipi) {
362 				state->ipi = 0;
363 				ipi_cpu(cpu, IPI_HARDCLOCK);
364 			}
365 		}
366 	}
367 #endif
368 }
369 
370 /*
371  * Load new value into hardware timer.
372  */
373 static void
374 loadtimer(sbintime_t now, int start)
375 {
376 	struct pcpu_state *state;
377 	sbintime_t new;
378 	sbintime_t *next;
379 	uint64_t tmp;
380 	int eq;
381 
382 	if (timer->et_flags & ET_FLAGS_PERCPU) {
383 		state = DPCPU_PTR(timerstate);
384 		next = &state->nexttick;
385 	} else
386 		next = &nexttick;
387 	if (periodic) {
388 		if (start) {
389 			/*
390 			 * Try to start all periodic timers aligned
391 			 * to period to make events synchronous.
392 			 */
393 			tmp = now % timerperiod;
394 			new = timerperiod - tmp;
395 			if (new < tmp)		/* Left less then passed. */
396 				new += timerperiod;
397 			CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
398 			    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff),
399 			    (int)(new >> 32), (u_int)(new & 0xffffffff));
400 			*next = new + now;
401 			et_start(timer, new, timerperiod);
402 		}
403 	} else {
404 		new = getnextevent();
405 		eq = (new == *next);
406 		CTR4(KTR_SPARE2, "load at %d:    next %d.%08x eq %d",
407 		    curcpu, (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
408 		if (!eq) {
409 			*next = new;
410 			et_start(timer, new - now, 0);
411 		}
412 	}
413 }
414 
415 /*
416  * Prepare event timer parameters after configuration changes.
417  */
418 static void
419 setuptimer(void)
420 {
421 	int freq;
422 
423 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
424 		periodic = 0;
425 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
426 		periodic = 1;
427 	singlemul = MIN(MAX(singlemul, 1), 20);
428 	freq = hz * singlemul;
429 	while (freq < (profiling ? profhz : stathz))
430 		freq += hz;
431 	freq = round_freq(timer, freq);
432 	timerperiod = SBT_1S / freq;
433 }
434 
435 /*
436  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
437  */
438 static int
439 doconfigtimer(void)
440 {
441 	sbintime_t now;
442 	struct pcpu_state *state;
443 
444 	state = DPCPU_PTR(timerstate);
445 	switch (atomic_load_acq_int(&state->action)) {
446 	case 1:
447 		now = sbinuptime();
448 		ET_HW_LOCK(state);
449 		loadtimer(now, 1);
450 		ET_HW_UNLOCK(state);
451 		state->handle = 0;
452 		atomic_store_rel_int(&state->action, 0);
453 		return (1);
454 	case 2:
455 		ET_HW_LOCK(state);
456 		et_stop(timer);
457 		ET_HW_UNLOCK(state);
458 		state->handle = 0;
459 		atomic_store_rel_int(&state->action, 0);
460 		return (1);
461 	}
462 	if (atomic_readandclear_int(&state->handle) && !busy) {
463 		now = sbinuptime();
464 		handleevents(now, 0);
465 		return (1);
466 	}
467 	return (0);
468 }
469 
470 /*
471  * Reconfigure specified timer.
472  * For per-CPU timers use IPI to make other CPUs to reconfigure.
473  */
474 static void
475 configtimer(int start)
476 {
477 	sbintime_t now, next;
478 	struct pcpu_state *state;
479 	int cpu;
480 
481 	if (start) {
482 		setuptimer();
483 		now = sbinuptime();
484 	} else
485 		now = 0;
486 	critical_enter();
487 	ET_HW_LOCK(DPCPU_PTR(timerstate));
488 	if (start) {
489 		/* Initialize time machine parameters. */
490 		next = now + timerperiod;
491 		if (periodic)
492 			nexttick = next;
493 		else
494 			nexttick = -1;
495 #ifdef EARLY_AP_STARTUP
496 		MPASS(mp_ncpus == 1 || smp_started);
497 #endif
498 		CPU_FOREACH(cpu) {
499 			state = DPCPU_ID_PTR(cpu, timerstate);
500 			state->now = now;
501 #ifndef EARLY_AP_STARTUP
502 			if (!smp_started && cpu != CPU_FIRST())
503 				state->nextevent = SBT_MAX;
504 			else
505 #endif
506 				state->nextevent = next;
507 			if (periodic)
508 				state->nexttick = next;
509 			else
510 				state->nexttick = -1;
511 			state->nexthard = next;
512 			state->nextstat = next;
513 			state->nextprof = next;
514 			state->nextcall = next;
515 			state->nextcallopt = next;
516 			hardclock_sync(cpu);
517 		}
518 		busy = 0;
519 		/* Start global timer or per-CPU timer of this CPU. */
520 		loadtimer(now, 1);
521 	} else {
522 		busy = 1;
523 		/* Stop global timer or per-CPU timer of this CPU. */
524 		et_stop(timer);
525 	}
526 	ET_HW_UNLOCK(DPCPU_PTR(timerstate));
527 #ifdef SMP
528 #ifdef EARLY_AP_STARTUP
529 	/* If timer is global we are done. */
530 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
531 #else
532 	/* If timer is global or there is no other CPUs yet - we are done. */
533 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
534 #endif
535 		critical_exit();
536 		return;
537 	}
538 	/* Set reconfigure flags for other CPUs. */
539 	CPU_FOREACH(cpu) {
540 		state = DPCPU_ID_PTR(cpu, timerstate);
541 		atomic_store_rel_int(&state->action,
542 		    (cpu == curcpu) ? 0 : ( start ? 1 : 2));
543 	}
544 	/* Broadcast reconfigure IPI. */
545 	ipi_all_but_self(IPI_HARDCLOCK);
546 	/* Wait for reconfiguration completed. */
547 restart:
548 	cpu_spinwait();
549 	CPU_FOREACH(cpu) {
550 		if (cpu == curcpu)
551 			continue;
552 		state = DPCPU_ID_PTR(cpu, timerstate);
553 		if (atomic_load_acq_int(&state->action))
554 			goto restart;
555 	}
556 #endif
557 	critical_exit();
558 }
559 
560 /*
561  * Calculate nearest frequency supported by hardware timer.
562  */
563 static int
564 round_freq(struct eventtimer *et, int freq)
565 {
566 	uint64_t div;
567 
568 	if (et->et_frequency != 0) {
569 		div = lmax((et->et_frequency + freq / 2) / freq, 1);
570 		if (et->et_flags & ET_FLAGS_POW2DIV)
571 			div = 1 << (flsl(div + div / 2) - 1);
572 		freq = (et->et_frequency + div / 2) / div;
573 	}
574 	if (et->et_min_period > SBT_1S)
575 		panic("Event timer \"%s\" doesn't support sub-second periods!",
576 		    et->et_name);
577 	else if (et->et_min_period != 0)
578 		freq = min(freq, SBT2FREQ(et->et_min_period));
579 	if (et->et_max_period < SBT_1S && et->et_max_period != 0)
580 		freq = max(freq, SBT2FREQ(et->et_max_period));
581 	return (freq);
582 }
583 
584 /*
585  * Configure and start event timers (BSP part).
586  */
587 void
588 cpu_initclocks_bsp(void)
589 {
590 	struct pcpu_state *state;
591 	int base, div, cpu;
592 
593 	mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
594 	CPU_FOREACH(cpu) {
595 		state = DPCPU_ID_PTR(cpu, timerstate);
596 		mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
597 		state->nextcall = SBT_MAX;
598 		state->nextcallopt = SBT_MAX;
599 	}
600 	periodic = want_periodic;
601 	/* Grab requested timer or the best of present. */
602 	if (timername[0])
603 		timer = et_find(timername, 0, 0);
604 	if (timer == NULL && periodic) {
605 		timer = et_find(NULL,
606 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
607 	}
608 	if (timer == NULL) {
609 		timer = et_find(NULL,
610 		    ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
611 	}
612 	if (timer == NULL && !periodic) {
613 		timer = et_find(NULL,
614 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
615 	}
616 	if (timer == NULL)
617 		panic("No usable event timer found!");
618 	et_init(timer, timercb, NULL, NULL);
619 
620 	/* Adapt to timer capabilities. */
621 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
622 		periodic = 0;
623 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
624 		periodic = 1;
625 	if (timer->et_flags & ET_FLAGS_C3STOP)
626 		cpu_disable_c3_sleep++;
627 
628 	/*
629 	 * We honor the requested 'hz' value.
630 	 * We want to run stathz in the neighborhood of 128hz.
631 	 * We would like profhz to run as often as possible.
632 	 */
633 	if (singlemul <= 0 || singlemul > 20) {
634 		if (hz >= 1500 || (hz % 128) == 0)
635 			singlemul = 1;
636 		else if (hz >= 750)
637 			singlemul = 2;
638 		else
639 			singlemul = 4;
640 	}
641 	if (periodic) {
642 		base = round_freq(timer, hz * singlemul);
643 		singlemul = max((base + hz / 2) / hz, 1);
644 		hz = (base + singlemul / 2) / singlemul;
645 		if (base <= 128)
646 			stathz = base;
647 		else {
648 			div = base / 128;
649 			if (div >= singlemul && (div % singlemul) == 0)
650 				div++;
651 			stathz = base / div;
652 		}
653 		profhz = stathz;
654 		while ((profhz + stathz) <= 128 * 64)
655 			profhz += stathz;
656 		profhz = round_freq(timer, profhz);
657 	} else {
658 		hz = round_freq(timer, hz);
659 		stathz = round_freq(timer, 127);
660 		profhz = round_freq(timer, stathz * 64);
661 	}
662 	tick = 1000000 / hz;
663 	tick_sbt = SBT_1S / hz;
664 	tick_bt = sbttobt(tick_sbt);
665 	statperiod = SBT_1S / stathz;
666 	profperiod = SBT_1S / profhz;
667 	ET_LOCK();
668 	configtimer(1);
669 	ET_UNLOCK();
670 }
671 
672 /*
673  * Start per-CPU event timers on APs.
674  */
675 void
676 cpu_initclocks_ap(void)
677 {
678 	sbintime_t now;
679 	struct pcpu_state *state;
680 	struct thread *td;
681 
682 	state = DPCPU_PTR(timerstate);
683 	now = sbinuptime();
684 	ET_HW_LOCK(state);
685 	state->now = now;
686 	hardclock_sync(curcpu);
687 	spinlock_enter();
688 	ET_HW_UNLOCK(state);
689 	td = curthread;
690 	td->td_intr_nesting_level++;
691 	handleevents(state->now, 2);
692 	td->td_intr_nesting_level--;
693 	spinlock_exit();
694 }
695 
696 /*
697  * Switch to profiling clock rates.
698  */
699 void
700 cpu_startprofclock(void)
701 {
702 
703 	ET_LOCK();
704 	if (profiling == 0) {
705 		if (periodic) {
706 			configtimer(0);
707 			profiling = 1;
708 			configtimer(1);
709 		} else
710 			profiling = 1;
711 	} else
712 		profiling++;
713 	ET_UNLOCK();
714 }
715 
716 /*
717  * Switch to regular clock rates.
718  */
719 void
720 cpu_stopprofclock(void)
721 {
722 
723 	ET_LOCK();
724 	if (profiling == 1) {
725 		if (periodic) {
726 			configtimer(0);
727 			profiling = 0;
728 			configtimer(1);
729 		} else
730 		profiling = 0;
731 	} else
732 		profiling--;
733 	ET_UNLOCK();
734 }
735 
736 /*
737  * Switch to idle mode (all ticks handled).
738  */
739 sbintime_t
740 cpu_idleclock(void)
741 {
742 	sbintime_t now, t;
743 	struct pcpu_state *state;
744 
745 	if (idletick || busy ||
746 	    (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
747 #ifdef DEVICE_POLLING
748 	    || curcpu == CPU_FIRST()
749 #endif
750 	    )
751 		return (-1);
752 	state = DPCPU_PTR(timerstate);
753 	if (periodic)
754 		now = state->now;
755 	else
756 		now = sbinuptime();
757 	CTR3(KTR_SPARE2, "idle at %d:    now  %d.%08x",
758 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
759 	t = getnextcpuevent(1);
760 	ET_HW_LOCK(state);
761 	state->idle = 1;
762 	state->nextevent = t;
763 	if (!periodic)
764 		loadtimer(now, 0);
765 	ET_HW_UNLOCK(state);
766 	return (MAX(t - now, 0));
767 }
768 
769 /*
770  * Switch to active mode (skip empty ticks).
771  */
772 void
773 cpu_activeclock(void)
774 {
775 	sbintime_t now;
776 	struct pcpu_state *state;
777 	struct thread *td;
778 
779 	state = DPCPU_PTR(timerstate);
780 	if (state->idle == 0 || busy)
781 		return;
782 	if (periodic)
783 		now = state->now;
784 	else
785 		now = sbinuptime();
786 	CTR3(KTR_SPARE2, "active at %d:  now  %d.%08x",
787 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
788 	spinlock_enter();
789 	td = curthread;
790 	td->td_intr_nesting_level++;
791 	handleevents(now, 1);
792 	td->td_intr_nesting_level--;
793 	spinlock_exit();
794 }
795 
796 /*
797  * Change the frequency of the given timer.  This changes et->et_frequency and
798  * if et is the active timer it reconfigures the timer on all CPUs.  This is
799  * intended to be a private interface for the use of et_change_frequency() only.
800  */
801 void
802 cpu_et_frequency(struct eventtimer *et, uint64_t newfreq)
803 {
804 
805 	ET_LOCK();
806 	if (et == timer) {
807 		configtimer(0);
808 		et->et_frequency = newfreq;
809 		configtimer(1);
810 	} else
811 		et->et_frequency = newfreq;
812 	ET_UNLOCK();
813 }
814 
815 void
816 cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
817 {
818 	struct pcpu_state *state;
819 
820 	/* Do not touch anything if somebody reconfiguring timers. */
821 	if (busy)
822 		return;
823 	CTR6(KTR_SPARE2, "new co at %d:    on %d at %d.%08x - %d.%08x",
824 	    curcpu, cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
825 	    (int)(bt >> 32), (u_int)(bt & 0xffffffff));
826 	state = DPCPU_ID_PTR(cpu, timerstate);
827 	ET_HW_LOCK(state);
828 
829 	/*
830 	 * If there is callout time already set earlier -- do nothing.
831 	 * This check may appear redundant because we check already in
832 	 * callout_process() but this double check guarantees we're safe
833 	 * with respect to race conditions between interrupts execution
834 	 * and scheduling.
835 	 */
836 	state->nextcallopt = bt_opt;
837 	if (bt >= state->nextcall)
838 		goto done;
839 	state->nextcall = bt;
840 	/* If there is some other event set earlier -- do nothing. */
841 	if (bt >= state->nextevent)
842 		goto done;
843 	state->nextevent = bt;
844 	/* If timer is periodic -- there is nothing to reprogram. */
845 	if (periodic)
846 		goto done;
847 	/* If timer is global or of the current CPU -- reprogram it. */
848 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
849 		loadtimer(sbinuptime(), 0);
850 done:
851 		ET_HW_UNLOCK(state);
852 		return;
853 	}
854 	/* Otherwise make other CPU to reprogram it. */
855 	state->handle = 1;
856 	ET_HW_UNLOCK(state);
857 #ifdef SMP
858 	ipi_cpu(cpu, IPI_HARDCLOCK);
859 #endif
860 }
861 
862 /*
863  * Report or change the active event timers hardware.
864  */
865 static int
866 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
867 {
868 	char buf[32];
869 	struct eventtimer *et;
870 	int error;
871 
872 	ET_LOCK();
873 	et = timer;
874 	snprintf(buf, sizeof(buf), "%s", et->et_name);
875 	ET_UNLOCK();
876 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
877 	ET_LOCK();
878 	et = timer;
879 	if (error != 0 || req->newptr == NULL ||
880 	    strcasecmp(buf, et->et_name) == 0) {
881 		ET_UNLOCK();
882 		return (error);
883 	}
884 	et = et_find(buf, 0, 0);
885 	if (et == NULL) {
886 		ET_UNLOCK();
887 		return (ENOENT);
888 	}
889 	configtimer(0);
890 	et_free(timer);
891 	if (et->et_flags & ET_FLAGS_C3STOP)
892 		cpu_disable_c3_sleep++;
893 	if (timer->et_flags & ET_FLAGS_C3STOP)
894 		cpu_disable_c3_sleep--;
895 	periodic = want_periodic;
896 	timer = et;
897 	et_init(timer, timercb, NULL, NULL);
898 	configtimer(1);
899 	ET_UNLOCK();
900 	return (error);
901 }
902 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
903     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
904     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
905 
906 /*
907  * Report or change the active event timer periodicity.
908  */
909 static int
910 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
911 {
912 	int error, val;
913 
914 	val = periodic;
915 	error = sysctl_handle_int(oidp, &val, 0, req);
916 	if (error != 0 || req->newptr == NULL)
917 		return (error);
918 	ET_LOCK();
919 	configtimer(0);
920 	periodic = want_periodic = val;
921 	configtimer(1);
922 	ET_UNLOCK();
923 	return (error);
924 }
925 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
926     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
927     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
928 
929 #include "opt_ddb.h"
930 
931 #ifdef DDB
932 #include <ddb/ddb.h>
933 
934 DB_SHOW_COMMAND(clocksource, db_show_clocksource)
935 {
936 	struct pcpu_state *st;
937 	int c;
938 
939 	CPU_FOREACH(c) {
940 		st = DPCPU_ID_PTR(c, timerstate);
941 		db_printf(
942 		    "CPU %2d: action %d handle %d  ipi %d idle %d\n"
943 		    "        now %#jx nevent %#jx (%jd)\n"
944 		    "        ntick %#jx (%jd) nhard %#jx (%jd)\n"
945 		    "        nstat %#jx (%jd) nprof %#jx (%jd)\n"
946 		    "        ncall %#jx (%jd) ncallopt %#jx (%jd)\n",
947 		    c, st->action, st->handle, st->ipi, st->idle,
948 		    (uintmax_t)st->now,
949 		    (uintmax_t)st->nextevent,
950 		    (uintmax_t)(st->nextevent - st->now) / tick_sbt,
951 		    (uintmax_t)st->nexttick,
952 		    (uintmax_t)(st->nexttick - st->now) / tick_sbt,
953 		    (uintmax_t)st->nexthard,
954 		    (uintmax_t)(st->nexthard - st->now) / tick_sbt,
955 		    (uintmax_t)st->nextstat,
956 		    (uintmax_t)(st->nextstat - st->now) / tick_sbt,
957 		    (uintmax_t)st->nextprof,
958 		    (uintmax_t)(st->nextprof - st->now) / tick_sbt,
959 		    (uintmax_t)st->nextcall,
960 		    (uintmax_t)(st->nextcall - st->now) / tick_sbt,
961 		    (uintmax_t)st->nextcallopt,
962 		    (uintmax_t)(st->nextcallopt - st->now) / tick_sbt);
963 	}
964 }
965 
966 #endif
967