xref: /freebsd/sys/kern/kern_clocksource.c (revision 5944f899a2519c6321bac3c17cc076418643a088)
1 /*-
2  * Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * Common routines to manage event timers hardware.
32  */
33 
34 #include "opt_device_polling.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51 
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56 
57 int			cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
58 int			cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
59 
60 static void		setuptimer(void);
61 static void		loadtimer(sbintime_t now, int first);
62 static int		doconfigtimer(void);
63 static void		configtimer(int start);
64 static int		round_freq(struct eventtimer *et, int freq);
65 
66 static sbintime_t	getnextcpuevent(int idle);
67 static sbintime_t	getnextevent(void);
68 static int		handleevents(sbintime_t now, int fake);
69 
70 static struct mtx	et_hw_mtx;
71 
72 #define	ET_HW_LOCK(state)						\
73 	{								\
74 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
75 			mtx_lock_spin(&(state)->et_hw_mtx);		\
76 		else							\
77 			mtx_lock_spin(&et_hw_mtx);			\
78 	}
79 
80 #define	ET_HW_UNLOCK(state)						\
81 	{								\
82 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
83 			mtx_unlock_spin(&(state)->et_hw_mtx);		\
84 		else							\
85 			mtx_unlock_spin(&et_hw_mtx);			\
86 	}
87 
88 static struct eventtimer *timer = NULL;
89 static sbintime_t	timerperiod;	/* Timer period for periodic mode. */
90 static sbintime_t	statperiod;	/* statclock() events period. */
91 static sbintime_t	profperiod;	/* profclock() events period. */
92 static sbintime_t	nexttick;	/* Next global timer tick time. */
93 static u_int		busy = 1;	/* Reconfiguration is in progress. */
94 static int		profiling;	/* Profiling events enabled. */
95 
96 static char		timername[32];	/* Wanted timer. */
97 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
98 
99 static int		singlemul;	/* Multiplier for periodic mode. */
100 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RWTUN, &singlemul,
101     0, "Multiplier for periodic mode");
102 
103 static u_int		idletick;	/* Run periodic events when idle. */
104 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RWTUN, &idletick,
105     0, "Run periodic events when idle");
106 
107 static int		periodic;	/* Periodic or one-shot mode. */
108 static int		want_periodic;	/* What mode to prefer. */
109 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
110 
111 struct pcpu_state {
112 	struct mtx	et_hw_mtx;	/* Per-CPU timer mutex. */
113 	u_int		action;		/* Reconfiguration requests. */
114 	u_int		handle;		/* Immediate handle resuests. */
115 	sbintime_t	now;		/* Last tick time. */
116 	sbintime_t	nextevent;	/* Next scheduled event on this CPU. */
117 	sbintime_t	nexttick;	/* Next timer tick time. */
118 	sbintime_t	nexthard;	/* Next hardclock() event. */
119 	sbintime_t	nextstat;	/* Next statclock() event. */
120 	sbintime_t	nextprof;	/* Next profclock() event. */
121 	sbintime_t	nextcall;	/* Next callout event. */
122 	sbintime_t	nextcallopt;	/* Next optional callout event. */
123 	int		ipi;		/* This CPU needs IPI. */
124 	int		idle;		/* This CPU is in idle mode. */
125 };
126 
127 static DPCPU_DEFINE(struct pcpu_state, timerstate);
128 DPCPU_DEFINE(sbintime_t, hardclocktime);
129 
130 /*
131  * Timer broadcast IPI handler.
132  */
133 int
134 hardclockintr(void)
135 {
136 	sbintime_t now;
137 	struct pcpu_state *state;
138 	int done;
139 
140 	if (doconfigtimer() || busy)
141 		return (FILTER_HANDLED);
142 	state = DPCPU_PTR(timerstate);
143 	now = state->now;
144 	CTR3(KTR_SPARE2, "ipi  at %d:    now  %d.%08x",
145 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
146 	done = handleevents(now, 0);
147 	return (done ? FILTER_HANDLED : FILTER_STRAY);
148 }
149 
150 /*
151  * Handle all events for specified time on this CPU
152  */
153 static int
154 handleevents(sbintime_t now, int fake)
155 {
156 	sbintime_t t, *hct;
157 	struct trapframe *frame;
158 	struct pcpu_state *state;
159 	int usermode;
160 	int done, runs;
161 
162 	CTR3(KTR_SPARE2, "handle at %d:  now  %d.%08x",
163 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
164 	done = 0;
165 	if (fake) {
166 		frame = NULL;
167 		usermode = 0;
168 	} else {
169 		frame = curthread->td_intr_frame;
170 		usermode = TRAPF_USERMODE(frame);
171 	}
172 
173 	state = DPCPU_PTR(timerstate);
174 
175 	runs = 0;
176 	while (now >= state->nexthard) {
177 		state->nexthard += tick_sbt;
178 		runs++;
179 	}
180 	if (runs) {
181 		hct = DPCPU_PTR(hardclocktime);
182 		*hct = state->nexthard - tick_sbt;
183 		if (fake < 2) {
184 			hardclock_cnt(runs, usermode);
185 			done = 1;
186 		}
187 	}
188 	runs = 0;
189 	while (now >= state->nextstat) {
190 		state->nextstat += statperiod;
191 		runs++;
192 	}
193 	if (runs && fake < 2) {
194 		statclock_cnt(runs, usermode);
195 		done = 1;
196 	}
197 	if (profiling) {
198 		runs = 0;
199 		while (now >= state->nextprof) {
200 			state->nextprof += profperiod;
201 			runs++;
202 		}
203 		if (runs && !fake) {
204 			profclock_cnt(runs, usermode, TRAPF_PC(frame));
205 			done = 1;
206 		}
207 	} else
208 		state->nextprof = state->nextstat;
209 	if (now >= state->nextcallopt || now >= state->nextcall) {
210 		state->nextcall = state->nextcallopt = SBT_MAX;
211 		callout_process(now);
212 	}
213 
214 	t = getnextcpuevent(0);
215 	ET_HW_LOCK(state);
216 	if (!busy) {
217 		state->idle = 0;
218 		state->nextevent = t;
219 		loadtimer(now, (fake == 2) &&
220 		    (timer->et_flags & ET_FLAGS_PERCPU));
221 	}
222 	ET_HW_UNLOCK(state);
223 	return (done);
224 }
225 
226 /*
227  * Schedule binuptime of the next event on current CPU.
228  */
229 static sbintime_t
230 getnextcpuevent(int idle)
231 {
232 	sbintime_t event;
233 	struct pcpu_state *state;
234 	u_int hardfreq;
235 
236 	state = DPCPU_PTR(timerstate);
237 	/* Handle hardclock() events, skipping some if CPU is idle. */
238 	event = state->nexthard;
239 	if (idle) {
240 		hardfreq = (u_int)hz / 2;
241 		if (tc_min_ticktock_freq > 2
242 #ifdef SMP
243 		    && curcpu == CPU_FIRST()
244 #endif
245 		    )
246 			hardfreq = hz / tc_min_ticktock_freq;
247 		if (hardfreq > 1)
248 			event += tick_sbt * (hardfreq - 1);
249 	}
250 	/* Handle callout events. */
251 	if (event > state->nextcall)
252 		event = state->nextcall;
253 	if (!idle) { /* If CPU is active - handle other types of events. */
254 		if (event > state->nextstat)
255 			event = state->nextstat;
256 		if (profiling && event > state->nextprof)
257 			event = state->nextprof;
258 	}
259 	return (event);
260 }
261 
262 /*
263  * Schedule binuptime of the next event on all CPUs.
264  */
265 static sbintime_t
266 getnextevent(void)
267 {
268 	struct pcpu_state *state;
269 	sbintime_t event;
270 #ifdef SMP
271 	int	cpu;
272 #endif
273 	int	c;
274 
275 	state = DPCPU_PTR(timerstate);
276 	event = state->nextevent;
277 	c = -1;
278 #ifdef SMP
279 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
280 		CPU_FOREACH(cpu) {
281 			state = DPCPU_ID_PTR(cpu, timerstate);
282 			if (event > state->nextevent) {
283 				event = state->nextevent;
284 				c = cpu;
285 			}
286 		}
287 	}
288 #endif
289 	CTR4(KTR_SPARE2, "next at %d:    next %d.%08x by %d",
290 	    curcpu, (int)(event >> 32), (u_int)(event & 0xffffffff), c);
291 	return (event);
292 }
293 
294 /* Hardware timer callback function. */
295 static void
296 timercb(struct eventtimer *et, void *arg)
297 {
298 	sbintime_t now;
299 	sbintime_t *next;
300 	struct pcpu_state *state;
301 #ifdef SMP
302 	int cpu, bcast;
303 #endif
304 
305 	/* Do not touch anything if somebody reconfiguring timers. */
306 	if (busy)
307 		return;
308 	/* Update present and next tick times. */
309 	state = DPCPU_PTR(timerstate);
310 	if (et->et_flags & ET_FLAGS_PERCPU) {
311 		next = &state->nexttick;
312 	} else
313 		next = &nexttick;
314 	now = sbinuptime();
315 	if (periodic)
316 		*next = now + timerperiod;
317 	else
318 		*next = -1;	/* Next tick is not scheduled yet. */
319 	state->now = now;
320 	CTR3(KTR_SPARE2, "intr at %d:    now  %d.%08x",
321 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
322 
323 #ifdef SMP
324 #ifdef EARLY_AP_STARTUP
325 	MPASS(mp_ncpus == 1 || smp_started);
326 #endif
327 	/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
328 	bcast = 0;
329 #ifdef EARLY_AP_STARTUP
330 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0) {
331 #else
332 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
333 #endif
334 		CPU_FOREACH(cpu) {
335 			state = DPCPU_ID_PTR(cpu, timerstate);
336 			ET_HW_LOCK(state);
337 			state->now = now;
338 			if (now >= state->nextevent) {
339 				state->nextevent += SBT_1S;
340 				if (curcpu != cpu) {
341 					state->ipi = 1;
342 					bcast = 1;
343 				}
344 			}
345 			ET_HW_UNLOCK(state);
346 		}
347 	}
348 #endif
349 
350 	/* Handle events for this time on this CPU. */
351 	handleevents(now, 0);
352 
353 #ifdef SMP
354 	/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
355 	if (bcast) {
356 		CPU_FOREACH(cpu) {
357 			if (curcpu == cpu)
358 				continue;
359 			state = DPCPU_ID_PTR(cpu, timerstate);
360 			if (state->ipi) {
361 				state->ipi = 0;
362 				ipi_cpu(cpu, IPI_HARDCLOCK);
363 			}
364 		}
365 	}
366 #endif
367 }
368 
369 /*
370  * Load new value into hardware timer.
371  */
372 static void
373 loadtimer(sbintime_t now, int start)
374 {
375 	struct pcpu_state *state;
376 	sbintime_t new;
377 	sbintime_t *next;
378 	uint64_t tmp;
379 	int eq;
380 
381 	if (timer->et_flags & ET_FLAGS_PERCPU) {
382 		state = DPCPU_PTR(timerstate);
383 		next = &state->nexttick;
384 	} else
385 		next = &nexttick;
386 	if (periodic) {
387 		if (start) {
388 			/*
389 			 * Try to start all periodic timers aligned
390 			 * to period to make events synchronous.
391 			 */
392 			tmp = now % timerperiod;
393 			new = timerperiod - tmp;
394 			if (new < tmp)		/* Left less then passed. */
395 				new += timerperiod;
396 			CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
397 			    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff),
398 			    (int)(new >> 32), (u_int)(new & 0xffffffff));
399 			*next = new + now;
400 			et_start(timer, new, timerperiod);
401 		}
402 	} else {
403 		new = getnextevent();
404 		eq = (new == *next);
405 		CTR4(KTR_SPARE2, "load at %d:    next %d.%08x eq %d",
406 		    curcpu, (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
407 		if (!eq) {
408 			*next = new;
409 			et_start(timer, new - now, 0);
410 		}
411 	}
412 }
413 
414 /*
415  * Prepare event timer parameters after configuration changes.
416  */
417 static void
418 setuptimer(void)
419 {
420 	int freq;
421 
422 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
423 		periodic = 0;
424 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
425 		periodic = 1;
426 	singlemul = MIN(MAX(singlemul, 1), 20);
427 	freq = hz * singlemul;
428 	while (freq < (profiling ? profhz : stathz))
429 		freq += hz;
430 	freq = round_freq(timer, freq);
431 	timerperiod = SBT_1S / freq;
432 }
433 
434 /*
435  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
436  */
437 static int
438 doconfigtimer(void)
439 {
440 	sbintime_t now;
441 	struct pcpu_state *state;
442 
443 	state = DPCPU_PTR(timerstate);
444 	switch (atomic_load_acq_int(&state->action)) {
445 	case 1:
446 		now = sbinuptime();
447 		ET_HW_LOCK(state);
448 		loadtimer(now, 1);
449 		ET_HW_UNLOCK(state);
450 		state->handle = 0;
451 		atomic_store_rel_int(&state->action, 0);
452 		return (1);
453 	case 2:
454 		ET_HW_LOCK(state);
455 		et_stop(timer);
456 		ET_HW_UNLOCK(state);
457 		state->handle = 0;
458 		atomic_store_rel_int(&state->action, 0);
459 		return (1);
460 	}
461 	if (atomic_readandclear_int(&state->handle) && !busy) {
462 		now = sbinuptime();
463 		handleevents(now, 0);
464 		return (1);
465 	}
466 	return (0);
467 }
468 
469 /*
470  * Reconfigure specified timer.
471  * For per-CPU timers use IPI to make other CPUs to reconfigure.
472  */
473 static void
474 configtimer(int start)
475 {
476 	sbintime_t now, next;
477 	struct pcpu_state *state;
478 	int cpu;
479 
480 	if (start) {
481 		setuptimer();
482 		now = sbinuptime();
483 	} else
484 		now = 0;
485 	critical_enter();
486 	ET_HW_LOCK(DPCPU_PTR(timerstate));
487 	if (start) {
488 		/* Initialize time machine parameters. */
489 		next = now + timerperiod;
490 		if (periodic)
491 			nexttick = next;
492 		else
493 			nexttick = -1;
494 #ifdef EARLY_AP_STARTUP
495 		MPASS(mp_ncpus == 1 || smp_started);
496 #endif
497 		CPU_FOREACH(cpu) {
498 			state = DPCPU_ID_PTR(cpu, timerstate);
499 			state->now = now;
500 #ifndef EARLY_AP_STARTUP
501 			if (!smp_started && cpu != CPU_FIRST())
502 				state->nextevent = SBT_MAX;
503 			else
504 #endif
505 				state->nextevent = next;
506 			if (periodic)
507 				state->nexttick = next;
508 			else
509 				state->nexttick = -1;
510 			state->nexthard = next;
511 			state->nextstat = next;
512 			state->nextprof = next;
513 			state->nextcall = next;
514 			state->nextcallopt = next;
515 			hardclock_sync(cpu);
516 		}
517 		busy = 0;
518 		/* Start global timer or per-CPU timer of this CPU. */
519 		loadtimer(now, 1);
520 	} else {
521 		busy = 1;
522 		/* Stop global timer or per-CPU timer of this CPU. */
523 		et_stop(timer);
524 	}
525 	ET_HW_UNLOCK(DPCPU_PTR(timerstate));
526 #ifdef SMP
527 #ifdef EARLY_AP_STARTUP
528 	/* If timer is global we are done. */
529 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
530 #else
531 	/* If timer is global or there is no other CPUs yet - we are done. */
532 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
533 #endif
534 		critical_exit();
535 		return;
536 	}
537 	/* Set reconfigure flags for other CPUs. */
538 	CPU_FOREACH(cpu) {
539 		state = DPCPU_ID_PTR(cpu, timerstate);
540 		atomic_store_rel_int(&state->action,
541 		    (cpu == curcpu) ? 0 : ( start ? 1 : 2));
542 	}
543 	/* Broadcast reconfigure IPI. */
544 	ipi_all_but_self(IPI_HARDCLOCK);
545 	/* Wait for reconfiguration completed. */
546 restart:
547 	cpu_spinwait();
548 	CPU_FOREACH(cpu) {
549 		if (cpu == curcpu)
550 			continue;
551 		state = DPCPU_ID_PTR(cpu, timerstate);
552 		if (atomic_load_acq_int(&state->action))
553 			goto restart;
554 	}
555 #endif
556 	critical_exit();
557 }
558 
559 /*
560  * Calculate nearest frequency supported by hardware timer.
561  */
562 static int
563 round_freq(struct eventtimer *et, int freq)
564 {
565 	uint64_t div;
566 
567 	if (et->et_frequency != 0) {
568 		div = lmax((et->et_frequency + freq / 2) / freq, 1);
569 		if (et->et_flags & ET_FLAGS_POW2DIV)
570 			div = 1 << (flsl(div + div / 2) - 1);
571 		freq = (et->et_frequency + div / 2) / div;
572 	}
573 	if (et->et_min_period > SBT_1S)
574 		panic("Event timer \"%s\" doesn't support sub-second periods!",
575 		    et->et_name);
576 	else if (et->et_min_period != 0)
577 		freq = min(freq, SBT2FREQ(et->et_min_period));
578 	if (et->et_max_period < SBT_1S && et->et_max_period != 0)
579 		freq = max(freq, SBT2FREQ(et->et_max_period));
580 	return (freq);
581 }
582 
583 /*
584  * Configure and start event timers (BSP part).
585  */
586 void
587 cpu_initclocks_bsp(void)
588 {
589 	struct pcpu_state *state;
590 	int base, div, cpu;
591 
592 	mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
593 	CPU_FOREACH(cpu) {
594 		state = DPCPU_ID_PTR(cpu, timerstate);
595 		mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
596 		state->nextcall = SBT_MAX;
597 		state->nextcallopt = SBT_MAX;
598 	}
599 	periodic = want_periodic;
600 	/* Grab requested timer or the best of present. */
601 	if (timername[0])
602 		timer = et_find(timername, 0, 0);
603 	if (timer == NULL && periodic) {
604 		timer = et_find(NULL,
605 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
606 	}
607 	if (timer == NULL) {
608 		timer = et_find(NULL,
609 		    ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
610 	}
611 	if (timer == NULL && !periodic) {
612 		timer = et_find(NULL,
613 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
614 	}
615 	if (timer == NULL)
616 		panic("No usable event timer found!");
617 	et_init(timer, timercb, NULL, NULL);
618 
619 	/* Adapt to timer capabilities. */
620 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
621 		periodic = 0;
622 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
623 		periodic = 1;
624 	if (timer->et_flags & ET_FLAGS_C3STOP)
625 		cpu_disable_c3_sleep++;
626 
627 	/*
628 	 * We honor the requested 'hz' value.
629 	 * We want to run stathz in the neighborhood of 128hz.
630 	 * We would like profhz to run as often as possible.
631 	 */
632 	if (singlemul <= 0 || singlemul > 20) {
633 		if (hz >= 1500 || (hz % 128) == 0)
634 			singlemul = 1;
635 		else if (hz >= 750)
636 			singlemul = 2;
637 		else
638 			singlemul = 4;
639 	}
640 	if (periodic) {
641 		base = round_freq(timer, hz * singlemul);
642 		singlemul = max((base + hz / 2) / hz, 1);
643 		hz = (base + singlemul / 2) / singlemul;
644 		if (base <= 128)
645 			stathz = base;
646 		else {
647 			div = base / 128;
648 			if (div >= singlemul && (div % singlemul) == 0)
649 				div++;
650 			stathz = base / div;
651 		}
652 		profhz = stathz;
653 		while ((profhz + stathz) <= 128 * 64)
654 			profhz += stathz;
655 		profhz = round_freq(timer, profhz);
656 	} else {
657 		hz = round_freq(timer, hz);
658 		stathz = round_freq(timer, 127);
659 		profhz = round_freq(timer, stathz * 64);
660 	}
661 	tick = 1000000 / hz;
662 	tick_sbt = SBT_1S / hz;
663 	tick_bt = sbttobt(tick_sbt);
664 	statperiod = SBT_1S / stathz;
665 	profperiod = SBT_1S / profhz;
666 	ET_LOCK();
667 	configtimer(1);
668 	ET_UNLOCK();
669 }
670 
671 /*
672  * Start per-CPU event timers on APs.
673  */
674 void
675 cpu_initclocks_ap(void)
676 {
677 	sbintime_t now;
678 	struct pcpu_state *state;
679 	struct thread *td;
680 
681 	state = DPCPU_PTR(timerstate);
682 	now = sbinuptime();
683 	ET_HW_LOCK(state);
684 	state->now = now;
685 	hardclock_sync(curcpu);
686 	spinlock_enter();
687 	ET_HW_UNLOCK(state);
688 	td = curthread;
689 	td->td_intr_nesting_level++;
690 	handleevents(state->now, 2);
691 	td->td_intr_nesting_level--;
692 	spinlock_exit();
693 }
694 
695 /*
696  * Switch to profiling clock rates.
697  */
698 void
699 cpu_startprofclock(void)
700 {
701 
702 	ET_LOCK();
703 	if (profiling == 0) {
704 		if (periodic) {
705 			configtimer(0);
706 			profiling = 1;
707 			configtimer(1);
708 		} else
709 			profiling = 1;
710 	} else
711 		profiling++;
712 	ET_UNLOCK();
713 }
714 
715 /*
716  * Switch to regular clock rates.
717  */
718 void
719 cpu_stopprofclock(void)
720 {
721 
722 	ET_LOCK();
723 	if (profiling == 1) {
724 		if (periodic) {
725 			configtimer(0);
726 			profiling = 0;
727 			configtimer(1);
728 		} else
729 		profiling = 0;
730 	} else
731 		profiling--;
732 	ET_UNLOCK();
733 }
734 
735 /*
736  * Switch to idle mode (all ticks handled).
737  */
738 sbintime_t
739 cpu_idleclock(void)
740 {
741 	sbintime_t now, t;
742 	struct pcpu_state *state;
743 
744 	if (idletick || busy ||
745 	    (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
746 #ifdef DEVICE_POLLING
747 	    || curcpu == CPU_FIRST()
748 #endif
749 	    )
750 		return (-1);
751 	state = DPCPU_PTR(timerstate);
752 	if (periodic)
753 		now = state->now;
754 	else
755 		now = sbinuptime();
756 	CTR3(KTR_SPARE2, "idle at %d:    now  %d.%08x",
757 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
758 	t = getnextcpuevent(1);
759 	ET_HW_LOCK(state);
760 	state->idle = 1;
761 	state->nextevent = t;
762 	if (!periodic)
763 		loadtimer(now, 0);
764 	ET_HW_UNLOCK(state);
765 	return (MAX(t - now, 0));
766 }
767 
768 /*
769  * Switch to active mode (skip empty ticks).
770  */
771 void
772 cpu_activeclock(void)
773 {
774 	sbintime_t now;
775 	struct pcpu_state *state;
776 	struct thread *td;
777 
778 	state = DPCPU_PTR(timerstate);
779 	if (state->idle == 0 || busy)
780 		return;
781 	if (periodic)
782 		now = state->now;
783 	else
784 		now = sbinuptime();
785 	CTR3(KTR_SPARE2, "active at %d:  now  %d.%08x",
786 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
787 	spinlock_enter();
788 	td = curthread;
789 	td->td_intr_nesting_level++;
790 	handleevents(now, 1);
791 	td->td_intr_nesting_level--;
792 	spinlock_exit();
793 }
794 
795 /*
796  * Change the frequency of the given timer.  This changes et->et_frequency and
797  * if et is the active timer it reconfigures the timer on all CPUs.  This is
798  * intended to be a private interface for the use of et_change_frequency() only.
799  */
800 void
801 cpu_et_frequency(struct eventtimer *et, uint64_t newfreq)
802 {
803 
804 	ET_LOCK();
805 	if (et == timer) {
806 		configtimer(0);
807 		et->et_frequency = newfreq;
808 		configtimer(1);
809 	} else
810 		et->et_frequency = newfreq;
811 	ET_UNLOCK();
812 }
813 
814 void
815 cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
816 {
817 	struct pcpu_state *state;
818 
819 	/* Do not touch anything if somebody reconfiguring timers. */
820 	if (busy)
821 		return;
822 	CTR6(KTR_SPARE2, "new co at %d:    on %d at %d.%08x - %d.%08x",
823 	    curcpu, cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
824 	    (int)(bt >> 32), (u_int)(bt & 0xffffffff));
825 	state = DPCPU_ID_PTR(cpu, timerstate);
826 	ET_HW_LOCK(state);
827 
828 	/*
829 	 * If there is callout time already set earlier -- do nothing.
830 	 * This check may appear redundant because we check already in
831 	 * callout_process() but this double check guarantees we're safe
832 	 * with respect to race conditions between interrupts execution
833 	 * and scheduling.
834 	 */
835 	state->nextcallopt = bt_opt;
836 	if (bt >= state->nextcall)
837 		goto done;
838 	state->nextcall = bt;
839 	/* If there is some other event set earlier -- do nothing. */
840 	if (bt >= state->nextevent)
841 		goto done;
842 	state->nextevent = bt;
843 	/* If timer is periodic -- there is nothing to reprogram. */
844 	if (periodic)
845 		goto done;
846 	/* If timer is global or of the current CPU -- reprogram it. */
847 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
848 		loadtimer(sbinuptime(), 0);
849 done:
850 		ET_HW_UNLOCK(state);
851 		return;
852 	}
853 	/* Otherwise make other CPU to reprogram it. */
854 	state->handle = 1;
855 	ET_HW_UNLOCK(state);
856 #ifdef SMP
857 	ipi_cpu(cpu, IPI_HARDCLOCK);
858 #endif
859 }
860 
861 /*
862  * Report or change the active event timers hardware.
863  */
864 static int
865 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
866 {
867 	char buf[32];
868 	struct eventtimer *et;
869 	int error;
870 
871 	ET_LOCK();
872 	et = timer;
873 	snprintf(buf, sizeof(buf), "%s", et->et_name);
874 	ET_UNLOCK();
875 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
876 	ET_LOCK();
877 	et = timer;
878 	if (error != 0 || req->newptr == NULL ||
879 	    strcasecmp(buf, et->et_name) == 0) {
880 		ET_UNLOCK();
881 		return (error);
882 	}
883 	et = et_find(buf, 0, 0);
884 	if (et == NULL) {
885 		ET_UNLOCK();
886 		return (ENOENT);
887 	}
888 	configtimer(0);
889 	et_free(timer);
890 	if (et->et_flags & ET_FLAGS_C3STOP)
891 		cpu_disable_c3_sleep++;
892 	if (timer->et_flags & ET_FLAGS_C3STOP)
893 		cpu_disable_c3_sleep--;
894 	periodic = want_periodic;
895 	timer = et;
896 	et_init(timer, timercb, NULL, NULL);
897 	configtimer(1);
898 	ET_UNLOCK();
899 	return (error);
900 }
901 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
902     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
903     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
904 
905 /*
906  * Report or change the active event timer periodicity.
907  */
908 static int
909 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
910 {
911 	int error, val;
912 
913 	val = periodic;
914 	error = sysctl_handle_int(oidp, &val, 0, req);
915 	if (error != 0 || req->newptr == NULL)
916 		return (error);
917 	ET_LOCK();
918 	configtimer(0);
919 	periodic = want_periodic = val;
920 	configtimer(1);
921 	ET_UNLOCK();
922 	return (error);
923 }
924 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
925     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
926     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
927 
928 #include "opt_ddb.h"
929 
930 #ifdef DDB
931 #include <ddb/ddb.h>
932 
933 DB_SHOW_COMMAND(clocksource, db_show_clocksource)
934 {
935 	struct pcpu_state *st;
936 	int c;
937 
938 	CPU_FOREACH(c) {
939 		st = DPCPU_ID_PTR(c, timerstate);
940 		db_printf(
941 		    "CPU %2d: action %d handle %d  ipi %d idle %d\n"
942 		    "        now %#jx nevent %#jx (%jd)\n"
943 		    "        ntick %#jx (%jd) nhard %#jx (%jd)\n"
944 		    "        nstat %#jx (%jd) nprof %#jx (%jd)\n"
945 		    "        ncall %#jx (%jd) ncallopt %#jx (%jd)\n",
946 		    c, st->action, st->handle, st->ipi, st->idle,
947 		    (uintmax_t)st->now,
948 		    (uintmax_t)st->nextevent,
949 		    (uintmax_t)(st->nextevent - st->now) / tick_sbt,
950 		    (uintmax_t)st->nexttick,
951 		    (uintmax_t)(st->nexttick - st->now) / tick_sbt,
952 		    (uintmax_t)st->nexthard,
953 		    (uintmax_t)(st->nexthard - st->now) / tick_sbt,
954 		    (uintmax_t)st->nextstat,
955 		    (uintmax_t)(st->nextstat - st->now) / tick_sbt,
956 		    (uintmax_t)st->nextprof,
957 		    (uintmax_t)(st->nextprof - st->now) / tick_sbt,
958 		    (uintmax_t)st->nextcall,
959 		    (uintmax_t)(st->nextcall - st->now) / tick_sbt,
960 		    (uintmax_t)st->nextcallopt,
961 		    (uintmax_t)(st->nextcallopt - st->now) / tick_sbt);
962 	}
963 }
964 
965 #endif
966