xref: /freebsd/sys/kern/kern_clocksource.c (revision 23090366f729c56cab62de74c7a51792357e98a9)
1 /*-
2  * Copyright (c) 2010-2012 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * Common routines to manage event timers hardware.
32  */
33 
34 #include "opt_device_polling.h"
35 #include "opt_kdtrace.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51 
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56 
57 #ifdef KDTRACE_HOOKS
58 #include <sys/dtrace_bsd.h>
59 cyclic_clock_func_t	cyclic_clock_func = NULL;
60 #endif
61 
62 int			cpu_can_deep_sleep = 0;	/* C3 state is available. */
63 int			cpu_disable_deep_sleep = 0; /* Timer dies in C3. */
64 
65 static void		setuptimer(void);
66 static void		loadtimer(struct bintime *now, int first);
67 static int		doconfigtimer(void);
68 static void		configtimer(int start);
69 static int		round_freq(struct eventtimer *et, int freq);
70 
71 static void		getnextcpuevent(struct bintime *event, int idle);
72 static void		getnextevent(struct bintime *event);
73 static int		handleevents(struct bintime *now, int fake);
74 #ifdef SMP
75 static void		cpu_new_callout(int cpu, int ticks);
76 #endif
77 
78 static struct mtx	et_hw_mtx;
79 
80 #define	ET_HW_LOCK(state)						\
81 	{								\
82 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
83 			mtx_lock_spin(&(state)->et_hw_mtx);		\
84 		else							\
85 			mtx_lock_spin(&et_hw_mtx);			\
86 	}
87 
88 #define	ET_HW_UNLOCK(state)						\
89 	{								\
90 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
91 			mtx_unlock_spin(&(state)->et_hw_mtx);		\
92 		else							\
93 			mtx_unlock_spin(&et_hw_mtx);			\
94 	}
95 
96 static struct eventtimer *timer = NULL;
97 static struct bintime	timerperiod;	/* Timer period for periodic mode. */
98 static struct bintime	hardperiod;	/* hardclock() events period. */
99 static struct bintime	statperiod;	/* statclock() events period. */
100 static struct bintime	profperiod;	/* profclock() events period. */
101 static struct bintime	nexttick;	/* Next global timer tick time. */
102 static struct bintime	nexthard;	/* Next global hardlock() event. */
103 static u_int		busy = 0;	/* Reconfiguration is in progress. */
104 static int		profiling = 0;	/* Profiling events enabled. */
105 
106 static char		timername[32];	/* Wanted timer. */
107 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
108 
109 static int		singlemul = 0;	/* Multiplier for periodic mode. */
110 TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
111 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
112     0, "Multiplier for periodic mode");
113 
114 static u_int		idletick = 0;	/* Run periodic events when idle. */
115 TUNABLE_INT("kern.eventtimer.idletick", &idletick);
116 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
117     0, "Run periodic events when idle");
118 
119 static u_int		activetick = 1;	/* Run all periodic events when active. */
120 TUNABLE_INT("kern.eventtimer.activetick", &activetick);
121 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, activetick, CTLFLAG_RW, &activetick,
122     0, "Run all periodic events when active");
123 
124 static int		periodic = 0;	/* Periodic or one-shot mode. */
125 static int		want_periodic = 0; /* What mode to prefer. */
126 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
127 
128 struct pcpu_state {
129 	struct mtx	et_hw_mtx;	/* Per-CPU timer mutex. */
130 	u_int		action;		/* Reconfiguration requests. */
131 	u_int		handle;		/* Immediate handle resuests. */
132 	struct bintime	now;		/* Last tick time. */
133 	struct bintime	nextevent;	/* Next scheduled event on this CPU. */
134 	struct bintime	nexttick;	/* Next timer tick time. */
135 	struct bintime	nexthard;	/* Next hardlock() event. */
136 	struct bintime	nextstat;	/* Next statclock() event. */
137 	struct bintime	nextprof;	/* Next profclock() event. */
138 #ifdef KDTRACE_HOOKS
139 	struct bintime	nextcyc;	/* Next OpenSolaris cyclics event. */
140 #endif
141 	int		ipi;		/* This CPU needs IPI. */
142 	int		idle;		/* This CPU is in idle mode. */
143 };
144 
145 static DPCPU_DEFINE(struct pcpu_state, timerstate);
146 
147 #define FREQ2BT(freq, bt)						\
148 {									\
149 	(bt)->sec = 0;							\
150 	(bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;	\
151 }
152 #define BT2FREQ(bt)							\
153 	(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /		\
154 	    ((bt)->frac >> 1))
155 
156 /*
157  * Timer broadcast IPI handler.
158  */
159 int
160 hardclockintr(void)
161 {
162 	struct bintime now;
163 	struct pcpu_state *state;
164 	int done;
165 
166 	if (doconfigtimer() || busy)
167 		return (FILTER_HANDLED);
168 	state = DPCPU_PTR(timerstate);
169 	now = state->now;
170 	CTR4(KTR_SPARE2, "ipi  at %d:    now  %d.%08x%08x",
171 	    curcpu, now.sec, (u_int)(now.frac >> 32),
172 			     (u_int)(now.frac & 0xffffffff));
173 	done = handleevents(&now, 0);
174 	return (done ? FILTER_HANDLED : FILTER_STRAY);
175 }
176 
177 /*
178  * Handle all events for specified time on this CPU
179  */
180 static int
181 handleevents(struct bintime *now, int fake)
182 {
183 	struct bintime t;
184 	struct trapframe *frame;
185 	struct pcpu_state *state;
186 	uintfptr_t pc;
187 	int usermode;
188 	int done, runs;
189 
190 	CTR4(KTR_SPARE2, "handle at %d:  now  %d.%08x%08x",
191 	    curcpu, now->sec, (u_int)(now->frac >> 32),
192 		     (u_int)(now->frac & 0xffffffff));
193 	done = 0;
194 	if (fake) {
195 		frame = NULL;
196 		usermode = 0;
197 		pc = 0;
198 	} else {
199 		frame = curthread->td_intr_frame;
200 		usermode = TRAPF_USERMODE(frame);
201 		pc = TRAPF_PC(frame);
202 	}
203 
204 	state = DPCPU_PTR(timerstate);
205 
206 	runs = 0;
207 	while (bintime_cmp(now, &state->nexthard, >=)) {
208 		bintime_addx(&state->nexthard, hardperiod.frac);
209 		runs++;
210 	}
211 	if (runs) {
212 		if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 &&
213 		    bintime_cmp(&state->nexthard, &nexthard, >))
214 			nexthard = state->nexthard;
215 		if (fake < 2) {
216 			hardclock_cnt(runs, usermode);
217 			done = 1;
218 		}
219 	}
220 	runs = 0;
221 	while (bintime_cmp(now, &state->nextstat, >=)) {
222 		bintime_addx(&state->nextstat, statperiod.frac);
223 		runs++;
224 	}
225 	if (runs && fake < 2) {
226 		statclock_cnt(runs, usermode);
227 		done = 1;
228 	}
229 	if (profiling) {
230 		runs = 0;
231 		while (bintime_cmp(now, &state->nextprof, >=)) {
232 			bintime_addx(&state->nextprof, profperiod.frac);
233 			runs++;
234 		}
235 		if (runs && !fake) {
236 			profclock_cnt(runs, usermode, pc);
237 			done = 1;
238 		}
239 	} else
240 		state->nextprof = state->nextstat;
241 
242 #ifdef KDTRACE_HOOKS
243 	if (fake == 0 && cyclic_clock_func != NULL &&
244 	    state->nextcyc.sec != -1 &&
245 	    bintime_cmp(now, &state->nextcyc, >=)) {
246 		state->nextcyc.sec = -1;
247 		(*cyclic_clock_func)(frame);
248 	}
249 #endif
250 
251 	getnextcpuevent(&t, 0);
252 	if (fake == 2) {
253 		state->nextevent = t;
254 		return (done);
255 	}
256 	ET_HW_LOCK(state);
257 	if (!busy) {
258 		state->idle = 0;
259 		state->nextevent = t;
260 		loadtimer(now, 0);
261 	}
262 	ET_HW_UNLOCK(state);
263 	return (done);
264 }
265 
266 /*
267  * Schedule binuptime of the next event on current CPU.
268  */
269 static void
270 getnextcpuevent(struct bintime *event, int idle)
271 {
272 	struct bintime tmp;
273 	struct pcpu_state *state;
274 	int skip;
275 
276 	state = DPCPU_PTR(timerstate);
277 	/* Handle hardclock() events. */
278 	*event = state->nexthard;
279 	if (idle || (!activetick && !profiling &&
280 	    (timer->et_flags & ET_FLAGS_PERCPU) == 0)) {
281 		skip = idle ? 4 : (stathz / 2);
282 		if (curcpu == CPU_FIRST() && tc_min_ticktock_freq > skip)
283 			skip = tc_min_ticktock_freq;
284 		skip = callout_tickstofirst(hz / skip) - 1;
285 		CTR2(KTR_SPARE2, "skip   at %d: %d", curcpu, skip);
286 		tmp = hardperiod;
287 		bintime_mul(&tmp, skip);
288 		bintime_add(event, &tmp);
289 	}
290 	if (!idle) { /* If CPU is active - handle other types of events. */
291 		if (bintime_cmp(event, &state->nextstat, >))
292 			*event = state->nextstat;
293 		if (profiling && bintime_cmp(event, &state->nextprof, >))
294 			*event = state->nextprof;
295 	}
296 #ifdef KDTRACE_HOOKS
297 	if (state->nextcyc.sec != -1 && bintime_cmp(event, &state->nextcyc, >))
298 		*event = state->nextcyc;
299 #endif
300 }
301 
302 /*
303  * Schedule binuptime of the next event on all CPUs.
304  */
305 static void
306 getnextevent(struct bintime *event)
307 {
308 	struct pcpu_state *state;
309 #ifdef SMP
310 	int	cpu;
311 #endif
312 	int	c, nonidle;
313 
314 	state = DPCPU_PTR(timerstate);
315 	*event = state->nextevent;
316 	c = curcpu;
317 	nonidle = !state->idle;
318 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
319 #ifdef SMP
320 		CPU_FOREACH(cpu) {
321 			if (curcpu == cpu)
322 				continue;
323 			state = DPCPU_ID_PTR(cpu, timerstate);
324 			nonidle += !state->idle;
325 			if (bintime_cmp(event, &state->nextevent, >)) {
326 				*event = state->nextevent;
327 				c = cpu;
328 			}
329 		}
330 #endif
331 		if (nonidle != 0 && bintime_cmp(event, &nexthard, >))
332 			*event = nexthard;
333 	}
334 	CTR5(KTR_SPARE2, "next at %d:    next %d.%08x%08x by %d",
335 	    curcpu, event->sec, (u_int)(event->frac >> 32),
336 			     (u_int)(event->frac & 0xffffffff), c);
337 }
338 
339 /* Hardware timer callback function. */
340 static void
341 timercb(struct eventtimer *et, void *arg)
342 {
343 	struct bintime now;
344 	struct bintime *next;
345 	struct pcpu_state *state;
346 #ifdef SMP
347 	int cpu, bcast;
348 #endif
349 
350 	/* Do not touch anything if somebody reconfiguring timers. */
351 	if (busy)
352 		return;
353 	/* Update present and next tick times. */
354 	state = DPCPU_PTR(timerstate);
355 	if (et->et_flags & ET_FLAGS_PERCPU) {
356 		next = &state->nexttick;
357 	} else
358 		next = &nexttick;
359 	binuptime(&now);
360 	if (periodic) {
361 		*next = now;
362 		bintime_addx(next, timerperiod.frac); /* Next tick in 1 period. */
363 	} else
364 		next->sec = -1;	/* Next tick is not scheduled yet. */
365 	state->now = now;
366 	CTR4(KTR_SPARE2, "intr at %d:    now  %d.%08x%08x",
367 	    curcpu, (int)(now.sec), (u_int)(now.frac >> 32),
368 			     (u_int)(now.frac & 0xffffffff));
369 
370 #ifdef SMP
371 	/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
372 	bcast = 0;
373 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
374 		CPU_FOREACH(cpu) {
375 			state = DPCPU_ID_PTR(cpu, timerstate);
376 			ET_HW_LOCK(state);
377 			state->now = now;
378 			if (bintime_cmp(&now, &state->nextevent, >=)) {
379 				state->nextevent.sec++;
380 				if (curcpu != cpu) {
381 					state->ipi = 1;
382 					bcast = 1;
383 				}
384 			}
385 			ET_HW_UNLOCK(state);
386 		}
387 	}
388 #endif
389 
390 	/* Handle events for this time on this CPU. */
391 	handleevents(&now, 0);
392 
393 #ifdef SMP
394 	/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
395 	if (bcast) {
396 		CPU_FOREACH(cpu) {
397 			if (curcpu == cpu)
398 				continue;
399 			state = DPCPU_ID_PTR(cpu, timerstate);
400 			if (state->ipi) {
401 				state->ipi = 0;
402 				ipi_cpu(cpu, IPI_HARDCLOCK);
403 			}
404 		}
405 	}
406 #endif
407 }
408 
409 /*
410  * Load new value into hardware timer.
411  */
412 static void
413 loadtimer(struct bintime *now, int start)
414 {
415 	struct pcpu_state *state;
416 	struct bintime new;
417 	struct bintime *next;
418 	uint64_t tmp;
419 	int eq;
420 
421 	if (timer->et_flags & ET_FLAGS_PERCPU) {
422 		state = DPCPU_PTR(timerstate);
423 		next = &state->nexttick;
424 	} else
425 		next = &nexttick;
426 	if (periodic) {
427 		if (start) {
428 			/*
429 			 * Try to start all periodic timers aligned
430 			 * to period to make events synchronous.
431 			 */
432 			tmp = ((uint64_t)now->sec << 36) + (now->frac >> 28);
433 			tmp = (tmp % (timerperiod.frac >> 28)) << 28;
434 			new.sec = 0;
435 			new.frac = timerperiod.frac - tmp;
436 			if (new.frac < tmp)	/* Left less then passed. */
437 				bintime_addx(&new, timerperiod.frac);
438 			CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
439 			    curcpu, now->sec, (u_int)(now->frac >> 32),
440 			    new.sec, (u_int)(new.frac >> 32));
441 			*next = new;
442 			bintime_add(next, now);
443 			et_start(timer, &new, &timerperiod);
444 		}
445 	} else {
446 		getnextevent(&new);
447 		eq = bintime_cmp(&new, next, ==);
448 		CTR5(KTR_SPARE2, "load at %d:    next %d.%08x%08x eq %d",
449 		    curcpu, new.sec, (u_int)(new.frac >> 32),
450 			     (u_int)(new.frac & 0xffffffff),
451 			     eq);
452 		if (!eq) {
453 			*next = new;
454 			bintime_sub(&new, now);
455 			et_start(timer, &new, NULL);
456 		}
457 	}
458 }
459 
460 /*
461  * Prepare event timer parameters after configuration changes.
462  */
463 static void
464 setuptimer(void)
465 {
466 	int freq;
467 
468 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
469 		periodic = 0;
470 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
471 		periodic = 1;
472 	singlemul = MIN(MAX(singlemul, 1), 20);
473 	freq = hz * singlemul;
474 	while (freq < (profiling ? profhz : stathz))
475 		freq += hz;
476 	freq = round_freq(timer, freq);
477 	FREQ2BT(freq, &timerperiod);
478 }
479 
480 /*
481  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
482  */
483 static int
484 doconfigtimer(void)
485 {
486 	struct bintime now;
487 	struct pcpu_state *state;
488 
489 	state = DPCPU_PTR(timerstate);
490 	switch (atomic_load_acq_int(&state->action)) {
491 	case 1:
492 		binuptime(&now);
493 		ET_HW_LOCK(state);
494 		loadtimer(&now, 1);
495 		ET_HW_UNLOCK(state);
496 		state->handle = 0;
497 		atomic_store_rel_int(&state->action, 0);
498 		return (1);
499 	case 2:
500 		ET_HW_LOCK(state);
501 		et_stop(timer);
502 		ET_HW_UNLOCK(state);
503 		state->handle = 0;
504 		atomic_store_rel_int(&state->action, 0);
505 		return (1);
506 	}
507 	if (atomic_readandclear_int(&state->handle) && !busy) {
508 		binuptime(&now);
509 		handleevents(&now, 0);
510 		return (1);
511 	}
512 	return (0);
513 }
514 
515 /*
516  * Reconfigure specified timer.
517  * For per-CPU timers use IPI to make other CPUs to reconfigure.
518  */
519 static void
520 configtimer(int start)
521 {
522 	struct bintime now, next;
523 	struct pcpu_state *state;
524 	int cpu;
525 
526 	if (start) {
527 		setuptimer();
528 		binuptime(&now);
529 	}
530 	critical_enter();
531 	ET_HW_LOCK(DPCPU_PTR(timerstate));
532 	if (start) {
533 		/* Initialize time machine parameters. */
534 		next = now;
535 		bintime_addx(&next, timerperiod.frac);
536 		if (periodic)
537 			nexttick = next;
538 		else
539 			nexttick.sec = -1;
540 		CPU_FOREACH(cpu) {
541 			state = DPCPU_ID_PTR(cpu, timerstate);
542 			state->now = now;
543 			state->nextevent = next;
544 			if (periodic)
545 				state->nexttick = next;
546 			else
547 				state->nexttick.sec = -1;
548 			state->nexthard = next;
549 			state->nextstat = next;
550 			state->nextprof = next;
551 			hardclock_sync(cpu);
552 		}
553 		busy = 0;
554 		/* Start global timer or per-CPU timer of this CPU. */
555 		loadtimer(&now, 1);
556 	} else {
557 		busy = 1;
558 		/* Stop global timer or per-CPU timer of this CPU. */
559 		et_stop(timer);
560 	}
561 	ET_HW_UNLOCK(DPCPU_PTR(timerstate));
562 #ifdef SMP
563 	/* If timer is global or there is no other CPUs yet - we are done. */
564 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
565 		critical_exit();
566 		return;
567 	}
568 	/* Set reconfigure flags for other CPUs. */
569 	CPU_FOREACH(cpu) {
570 		state = DPCPU_ID_PTR(cpu, timerstate);
571 		atomic_store_rel_int(&state->action,
572 		    (cpu == curcpu) ? 0 : ( start ? 1 : 2));
573 	}
574 	/* Broadcast reconfigure IPI. */
575 	ipi_all_but_self(IPI_HARDCLOCK);
576 	/* Wait for reconfiguration completed. */
577 restart:
578 	cpu_spinwait();
579 	CPU_FOREACH(cpu) {
580 		if (cpu == curcpu)
581 			continue;
582 		state = DPCPU_ID_PTR(cpu, timerstate);
583 		if (atomic_load_acq_int(&state->action))
584 			goto restart;
585 	}
586 #endif
587 	critical_exit();
588 }
589 
590 /*
591  * Calculate nearest frequency supported by hardware timer.
592  */
593 static int
594 round_freq(struct eventtimer *et, int freq)
595 {
596 	uint64_t div;
597 
598 	if (et->et_frequency != 0) {
599 		div = lmax((et->et_frequency + freq / 2) / freq, 1);
600 		if (et->et_flags & ET_FLAGS_POW2DIV)
601 			div = 1 << (flsl(div + div / 2) - 1);
602 		freq = (et->et_frequency + div / 2) / div;
603 	}
604 	if (et->et_min_period.sec > 0)
605 		panic("Event timer \"%s\" doesn't support sub-second periods!",
606 		    et->et_name);
607 	else if (et->et_min_period.frac != 0)
608 		freq = min(freq, BT2FREQ(&et->et_min_period));
609 	if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
610 		freq = max(freq, BT2FREQ(&et->et_max_period));
611 	return (freq);
612 }
613 
614 /*
615  * Configure and start event timers (BSP part).
616  */
617 void
618 cpu_initclocks_bsp(void)
619 {
620 	struct pcpu_state *state;
621 	int base, div, cpu;
622 
623 	mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
624 	CPU_FOREACH(cpu) {
625 		state = DPCPU_ID_PTR(cpu, timerstate);
626 		mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
627 #ifdef KDTRACE_HOOKS
628 		state->nextcyc.sec = -1;
629 #endif
630 	}
631 #ifdef SMP
632 	callout_new_inserted = cpu_new_callout;
633 #endif
634 	periodic = want_periodic;
635 	/* Grab requested timer or the best of present. */
636 	if (timername[0])
637 		timer = et_find(timername, 0, 0);
638 	if (timer == NULL && periodic) {
639 		timer = et_find(NULL,
640 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
641 	}
642 	if (timer == NULL) {
643 		timer = et_find(NULL,
644 		    ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
645 	}
646 	if (timer == NULL && !periodic) {
647 		timer = et_find(NULL,
648 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
649 	}
650 	if (timer == NULL)
651 		panic("No usable event timer found!");
652 	et_init(timer, timercb, NULL, NULL);
653 
654 	/* Adapt to timer capabilities. */
655 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
656 		periodic = 0;
657 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
658 		periodic = 1;
659 	if (timer->et_flags & ET_FLAGS_C3STOP)
660 		cpu_disable_deep_sleep++;
661 
662 	/*
663 	 * We honor the requested 'hz' value.
664 	 * We want to run stathz in the neighborhood of 128hz.
665 	 * We would like profhz to run as often as possible.
666 	 */
667 	if (singlemul <= 0 || singlemul > 20) {
668 		if (hz >= 1500 || (hz % 128) == 0)
669 			singlemul = 1;
670 		else if (hz >= 750)
671 			singlemul = 2;
672 		else
673 			singlemul = 4;
674 	}
675 	if (periodic) {
676 		base = round_freq(timer, hz * singlemul);
677 		singlemul = max((base + hz / 2) / hz, 1);
678 		hz = (base + singlemul / 2) / singlemul;
679 		if (base <= 128)
680 			stathz = base;
681 		else {
682 			div = base / 128;
683 			if (div >= singlemul && (div % singlemul) == 0)
684 				div++;
685 			stathz = base / div;
686 		}
687 		profhz = stathz;
688 		while ((profhz + stathz) <= 128 * 64)
689 			profhz += stathz;
690 		profhz = round_freq(timer, profhz);
691 	} else {
692 		hz = round_freq(timer, hz);
693 		stathz = round_freq(timer, 127);
694 		profhz = round_freq(timer, stathz * 64);
695 	}
696 	tick = 1000000 / hz;
697 	FREQ2BT(hz, &hardperiod);
698 	FREQ2BT(stathz, &statperiod);
699 	FREQ2BT(profhz, &profperiod);
700 	ET_LOCK();
701 	configtimer(1);
702 	ET_UNLOCK();
703 }
704 
705 /*
706  * Start per-CPU event timers on APs.
707  */
708 void
709 cpu_initclocks_ap(void)
710 {
711 	struct bintime now;
712 	struct pcpu_state *state;
713 
714 	state = DPCPU_PTR(timerstate);
715 	binuptime(&now);
716 	ET_HW_LOCK(state);
717 	state->now = now;
718 	hardclock_sync(curcpu);
719 	handleevents(&state->now, 2);
720 	if (timer->et_flags & ET_FLAGS_PERCPU)
721 		loadtimer(&now, 1);
722 	ET_HW_UNLOCK(state);
723 }
724 
725 /*
726  * Switch to profiling clock rates.
727  */
728 void
729 cpu_startprofclock(void)
730 {
731 
732 	ET_LOCK();
733 	if (periodic) {
734 		configtimer(0);
735 		profiling = 1;
736 		configtimer(1);
737 	} else
738 		profiling = 1;
739 	ET_UNLOCK();
740 }
741 
742 /*
743  * Switch to regular clock rates.
744  */
745 void
746 cpu_stopprofclock(void)
747 {
748 
749 	ET_LOCK();
750 	if (periodic) {
751 		configtimer(0);
752 		profiling = 0;
753 		configtimer(1);
754 	} else
755 		profiling = 0;
756 	ET_UNLOCK();
757 }
758 
759 /*
760  * Switch to idle mode (all ticks handled).
761  */
762 void
763 cpu_idleclock(void)
764 {
765 	struct bintime now, t;
766 	struct pcpu_state *state;
767 
768 	if (idletick || busy ||
769 	    (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
770 #ifdef DEVICE_POLLING
771 	    || curcpu == CPU_FIRST()
772 #endif
773 	    )
774 		return;
775 	state = DPCPU_PTR(timerstate);
776 	if (periodic)
777 		now = state->now;
778 	else
779 		binuptime(&now);
780 	CTR4(KTR_SPARE2, "idle at %d:    now  %d.%08x%08x",
781 	    curcpu, now.sec, (u_int)(now.frac >> 32),
782 			     (u_int)(now.frac & 0xffffffff));
783 	getnextcpuevent(&t, 1);
784 	ET_HW_LOCK(state);
785 	state->idle = 1;
786 	state->nextevent = t;
787 	if (!periodic)
788 		loadtimer(&now, 0);
789 	ET_HW_UNLOCK(state);
790 }
791 
792 /*
793  * Switch to active mode (skip empty ticks).
794  */
795 void
796 cpu_activeclock(void)
797 {
798 	struct bintime now;
799 	struct pcpu_state *state;
800 	struct thread *td;
801 
802 	state = DPCPU_PTR(timerstate);
803 	if (state->idle == 0 || busy)
804 		return;
805 	if (periodic)
806 		now = state->now;
807 	else
808 		binuptime(&now);
809 	CTR4(KTR_SPARE2, "active at %d:  now  %d.%08x%08x",
810 	    curcpu, now.sec, (u_int)(now.frac >> 32),
811 			     (u_int)(now.frac & 0xffffffff));
812 	spinlock_enter();
813 	td = curthread;
814 	td->td_intr_nesting_level++;
815 	handleevents(&now, 1);
816 	td->td_intr_nesting_level--;
817 	spinlock_exit();
818 }
819 
820 #ifdef KDTRACE_HOOKS
821 void
822 clocksource_cyc_set(const struct bintime *t)
823 {
824 	struct bintime now;
825 	struct pcpu_state *state;
826 
827 	state = DPCPU_PTR(timerstate);
828 	if (periodic)
829 		now = state->now;
830 	else
831 		binuptime(&now);
832 
833 	CTR4(KTR_SPARE2, "set_cyc at %d:  now  %d.%08x%08x",
834 	    curcpu, now.sec, (u_int)(now.frac >> 32),
835 			     (u_int)(now.frac & 0xffffffff));
836 	CTR4(KTR_SPARE2, "set_cyc at %d:  t  %d.%08x%08x",
837 	    curcpu, t->sec, (u_int)(t->frac >> 32),
838 			     (u_int)(t->frac & 0xffffffff));
839 
840 	ET_HW_LOCK(state);
841 	if (bintime_cmp(t, &state->nextcyc, ==)) {
842 		ET_HW_UNLOCK(state);
843 		return;
844 	}
845 	state->nextcyc = *t;
846 	if (bintime_cmp(&state->nextcyc, &state->nextevent, >=)) {
847 		ET_HW_UNLOCK(state);
848 		return;
849 	}
850 	state->nextevent = state->nextcyc;
851 	if (!periodic)
852 		loadtimer(&now, 0);
853 	ET_HW_UNLOCK(state);
854 }
855 #endif
856 
857 #ifdef SMP
858 static void
859 cpu_new_callout(int cpu, int ticks)
860 {
861 	struct bintime tmp;
862 	struct pcpu_state *state;
863 
864 	CTR3(KTR_SPARE2, "new co at %d:    on %d in %d",
865 	    curcpu, cpu, ticks);
866 	state = DPCPU_ID_PTR(cpu, timerstate);
867 	ET_HW_LOCK(state);
868 	if (state->idle == 0 || busy) {
869 		ET_HW_UNLOCK(state);
870 		return;
871 	}
872 	/*
873 	 * If timer is periodic - just update next event time for target CPU.
874 	 * If timer is global - there is chance it is already programmed.
875 	 */
876 	if (periodic || (timer->et_flags & ET_FLAGS_PERCPU) == 0) {
877 		tmp = hardperiod;
878 		bintime_mul(&tmp, ticks - 1);
879 		bintime_add(&tmp, &state->nexthard);
880 		if (bintime_cmp(&tmp, &state->nextevent, <))
881 			state->nextevent = tmp;
882 		if (periodic ||
883 		    bintime_cmp(&state->nextevent, &nexttick, >=)) {
884 			ET_HW_UNLOCK(state);
885 			return;
886 		}
887 	}
888 	/*
889 	 * Otherwise we have to wake that CPU up, as we can't get present
890 	 * bintime to reprogram global timer from here. If timer is per-CPU,
891 	 * we by definition can't do it from here.
892 	 */
893 	ET_HW_UNLOCK(state);
894 	if (timer->et_flags & ET_FLAGS_PERCPU) {
895 		state->handle = 1;
896 		ipi_cpu(cpu, IPI_HARDCLOCK);
897 	} else {
898 		if (!cpu_idle_wakeup(cpu))
899 			ipi_cpu(cpu, IPI_AST);
900 	}
901 }
902 #endif
903 
904 /*
905  * Report or change the active event timers hardware.
906  */
907 static int
908 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
909 {
910 	char buf[32];
911 	struct eventtimer *et;
912 	int error;
913 
914 	ET_LOCK();
915 	et = timer;
916 	snprintf(buf, sizeof(buf), "%s", et->et_name);
917 	ET_UNLOCK();
918 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
919 	ET_LOCK();
920 	et = timer;
921 	if (error != 0 || req->newptr == NULL ||
922 	    strcasecmp(buf, et->et_name) == 0) {
923 		ET_UNLOCK();
924 		return (error);
925 	}
926 	et = et_find(buf, 0, 0);
927 	if (et == NULL) {
928 		ET_UNLOCK();
929 		return (ENOENT);
930 	}
931 	configtimer(0);
932 	et_free(timer);
933 	if (et->et_flags & ET_FLAGS_C3STOP)
934 		cpu_disable_deep_sleep++;
935 	if (timer->et_flags & ET_FLAGS_C3STOP)
936 		cpu_disable_deep_sleep--;
937 	periodic = want_periodic;
938 	timer = et;
939 	et_init(timer, timercb, NULL, NULL);
940 	configtimer(1);
941 	ET_UNLOCK();
942 	return (error);
943 }
944 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
945     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
946     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
947 
948 /*
949  * Report or change the active event timer periodicity.
950  */
951 static int
952 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
953 {
954 	int error, val;
955 
956 	val = periodic;
957 	error = sysctl_handle_int(oidp, &val, 0, req);
958 	if (error != 0 || req->newptr == NULL)
959 		return (error);
960 	ET_LOCK();
961 	configtimer(0);
962 	periodic = want_periodic = val;
963 	configtimer(1);
964 	ET_UNLOCK();
965 	return (error);
966 }
967 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
968     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
969     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
970