xref: /freebsd/sys/kern/kern_clocksource.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * Common routines to manage event timers hardware.
32  */
33 
34 #include "opt_device_polling.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51 
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56 
57 int			cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
58 int			cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
59 
60 static void		setuptimer(void);
61 static void		loadtimer(sbintime_t now, int first);
62 static int		doconfigtimer(void);
63 static void		configtimer(int start);
64 static int		round_freq(struct eventtimer *et, int freq);
65 
66 struct pcpu_state;
67 static sbintime_t	getnextcpuevent(struct pcpu_state *state, int idle);
68 static sbintime_t	getnextevent(struct pcpu_state *state);
69 static int		handleevents(sbintime_t now, int fake);
70 
71 static struct mtx	et_hw_mtx;
72 
73 #define	ET_HW_LOCK(state)						\
74 	{								\
75 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
76 			mtx_lock_spin(&(state)->et_hw_mtx);		\
77 		else							\
78 			mtx_lock_spin(&et_hw_mtx);			\
79 	}
80 
81 #define	ET_HW_UNLOCK(state)						\
82 	{								\
83 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
84 			mtx_unlock_spin(&(state)->et_hw_mtx);		\
85 		else							\
86 			mtx_unlock_spin(&et_hw_mtx);			\
87 	}
88 
89 static struct eventtimer *timer = NULL;
90 static sbintime_t	timerperiod;	/* Timer period for periodic mode. */
91 static sbintime_t	statperiod;	/* statclock() events period. */
92 static sbintime_t	profperiod;	/* profclock() events period. */
93 static sbintime_t	nexttick;	/* Next global timer tick time. */
94 static u_int		busy = 1;	/* Reconfiguration is in progress. */
95 static int		profiling;	/* Profiling events enabled. */
96 
97 static char		timername[32];	/* Wanted timer. */
98 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
99 
100 static int		singlemul;	/* Multiplier for periodic mode. */
101 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RWTUN, &singlemul,
102     0, "Multiplier for periodic mode");
103 
104 static u_int		idletick;	/* Run periodic events when idle. */
105 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RWTUN, &idletick,
106     0, "Run periodic events when idle");
107 
108 static int		periodic;	/* Periodic or one-shot mode. */
109 static int		want_periodic;	/* What mode to prefer. */
110 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
111 
112 struct pcpu_state {
113 	struct mtx	et_hw_mtx;	/* Per-CPU timer mutex. */
114 	u_int		action;		/* Reconfiguration requests. */
115 	u_int		handle;		/* Immediate handle resuests. */
116 	sbintime_t	now;		/* Last tick time. */
117 	sbintime_t	nextevent;	/* Next scheduled event on this CPU. */
118 	sbintime_t	nexttick;	/* Next timer tick time. */
119 	sbintime_t	nexthard;	/* Next hardclock() event. */
120 	sbintime_t	nextstat;	/* Next statclock() event. */
121 	sbintime_t	nextprof;	/* Next profclock() event. */
122 	sbintime_t	nextcall;	/* Next callout event. */
123 	sbintime_t	nextcallopt;	/* Next optional callout event. */
124 	int		ipi;		/* This CPU needs IPI. */
125 	int		idle;		/* This CPU is in idle mode. */
126 };
127 
128 DPCPU_DEFINE_STATIC(struct pcpu_state, timerstate);
129 DPCPU_DEFINE(sbintime_t, hardclocktime);
130 
131 /*
132  * Timer broadcast IPI handler.
133  */
134 int
135 hardclockintr(void)
136 {
137 	sbintime_t now;
138 	struct pcpu_state *state;
139 	int done;
140 
141 	if (doconfigtimer() || busy)
142 		return (FILTER_HANDLED);
143 	state = DPCPU_PTR(timerstate);
144 	now = state->now;
145 	CTR2(KTR_SPARE2, "ipi:    now  %d.%08x",
146 	    (int)(now >> 32), (u_int)(now & 0xffffffff));
147 	done = handleevents(now, 0);
148 	return (done ? FILTER_HANDLED : FILTER_STRAY);
149 }
150 
151 /*
152  * Handle all events for specified time on this CPU
153  */
154 static int
155 handleevents(sbintime_t now, int fake)
156 {
157 	sbintime_t t, *hct;
158 	struct trapframe *frame;
159 	struct pcpu_state *state;
160 	int usermode;
161 	int done, runs;
162 
163 	CTR2(KTR_SPARE2, "handle:  now  %d.%08x",
164 	    (int)(now >> 32), (u_int)(now & 0xffffffff));
165 	done = 0;
166 	if (fake) {
167 		frame = NULL;
168 		usermode = 0;
169 	} else {
170 		frame = curthread->td_intr_frame;
171 		usermode = TRAPF_USERMODE(frame);
172 	}
173 
174 	state = DPCPU_PTR(timerstate);
175 
176 	runs = 0;
177 	while (now >= state->nexthard) {
178 		state->nexthard += tick_sbt;
179 		runs++;
180 	}
181 	if (runs) {
182 		hct = DPCPU_PTR(hardclocktime);
183 		*hct = state->nexthard - tick_sbt;
184 		if (fake < 2) {
185 			hardclock(runs, usermode);
186 			done = 1;
187 		}
188 	}
189 	runs = 0;
190 	while (now >= state->nextstat) {
191 		state->nextstat += statperiod;
192 		runs++;
193 	}
194 	if (runs && fake < 2) {
195 		statclock(runs, usermode);
196 		done = 1;
197 	}
198 	if (profiling) {
199 		runs = 0;
200 		while (now >= state->nextprof) {
201 			state->nextprof += profperiod;
202 			runs++;
203 		}
204 		if (runs && !fake) {
205 			profclock(runs, usermode, TRAPF_PC(frame));
206 			done = 1;
207 		}
208 	} else
209 		state->nextprof = state->nextstat;
210 	if (now >= state->nextcallopt || now >= state->nextcall) {
211 		state->nextcall = state->nextcallopt = SBT_MAX;
212 		callout_process(now);
213 	}
214 
215 	ET_HW_LOCK(state);
216 	t = getnextcpuevent(state, 0);
217 	if (!busy) {
218 		state->idle = 0;
219 		state->nextevent = t;
220 		loadtimer(now, (fake == 2) &&
221 		    (timer->et_flags & ET_FLAGS_PERCPU));
222 	}
223 	ET_HW_UNLOCK(state);
224 	return (done);
225 }
226 
227 /*
228  * Schedule binuptime of the next event on current CPU.
229  */
230 static sbintime_t
231 getnextcpuevent(struct pcpu_state *state, int idle)
232 {
233 	sbintime_t event;
234 	u_int hardfreq;
235 
236 	/* Handle hardclock() events, skipping some if CPU is idle. */
237 	event = state->nexthard;
238 	if (idle) {
239 		if (tc_min_ticktock_freq > 1
240 #ifdef SMP
241 		    && curcpu == CPU_FIRST()
242 #endif
243 		    )
244 			hardfreq = hz / tc_min_ticktock_freq;
245 		else
246 			hardfreq = hz;
247 		if (hardfreq > 1)
248 			event += tick_sbt * (hardfreq - 1);
249 	}
250 	/* Handle callout events. */
251 	if (event > state->nextcall)
252 		event = state->nextcall;
253 	if (!idle) { /* If CPU is active - handle other types of events. */
254 		if (event > state->nextstat)
255 			event = state->nextstat;
256 		if (profiling && event > state->nextprof)
257 			event = state->nextprof;
258 	}
259 	return (event);
260 }
261 
262 /*
263  * Schedule binuptime of the next event on all CPUs.
264  */
265 static sbintime_t
266 getnextevent(struct pcpu_state *state)
267 {
268 	sbintime_t event;
269 #ifdef SMP
270 	int	cpu;
271 #endif
272 #ifdef KTR
273 	int	c;
274 
275 	c = -1;
276 #endif
277 	event = state->nextevent;
278 #ifdef SMP
279 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
280 		CPU_FOREACH(cpu) {
281 			state = DPCPU_ID_PTR(cpu, timerstate);
282 			if (event > state->nextevent) {
283 				event = state->nextevent;
284 #ifdef KTR
285 				c = cpu;
286 #endif
287 			}
288 		}
289 	}
290 #endif
291 	CTR3(KTR_SPARE2, "next:    next %d.%08x by %d",
292 	    (int)(event >> 32), (u_int)(event & 0xffffffff), c);
293 	return (event);
294 }
295 
296 /* Hardware timer callback function. */
297 static void
298 timercb(struct eventtimer *et, void *arg)
299 {
300 	sbintime_t now;
301 	sbintime_t *next;
302 	struct pcpu_state *state;
303 #ifdef SMP
304 	int cpu, bcast;
305 #endif
306 
307 	/* Do not touch anything if somebody reconfiguring timers. */
308 	if (busy)
309 		return;
310 	/* Update present and next tick times. */
311 	state = DPCPU_PTR(timerstate);
312 	if (et->et_flags & ET_FLAGS_PERCPU) {
313 		next = &state->nexttick;
314 	} else
315 		next = &nexttick;
316 	now = sbinuptime();
317 	if (periodic)
318 		*next = now + timerperiod;
319 	else
320 		*next = -1;	/* Next tick is not scheduled yet. */
321 	state->now = now;
322 	CTR2(KTR_SPARE2, "intr:    now  %d.%08x",
323 	    (int)(now >> 32), (u_int)(now & 0xffffffff));
324 
325 #ifdef SMP
326 #ifdef EARLY_AP_STARTUP
327 	MPASS(mp_ncpus == 1 || smp_started);
328 #endif
329 	/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
330 	bcast = 0;
331 #ifdef EARLY_AP_STARTUP
332 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0) {
333 #else
334 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
335 #endif
336 		CPU_FOREACH(cpu) {
337 			state = DPCPU_ID_PTR(cpu, timerstate);
338 			ET_HW_LOCK(state);
339 			state->now = now;
340 			if (now >= state->nextevent) {
341 				state->nextevent += SBT_1S;
342 				if (curcpu != cpu) {
343 					state->ipi = 1;
344 					bcast = 1;
345 				}
346 			}
347 			ET_HW_UNLOCK(state);
348 		}
349 	}
350 #endif
351 
352 	/* Handle events for this time on this CPU. */
353 	handleevents(now, 0);
354 
355 #ifdef SMP
356 	/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
357 	if (bcast) {
358 		CPU_FOREACH(cpu) {
359 			if (curcpu == cpu)
360 				continue;
361 			state = DPCPU_ID_PTR(cpu, timerstate);
362 			if (state->ipi) {
363 				state->ipi = 0;
364 				ipi_cpu(cpu, IPI_HARDCLOCK);
365 			}
366 		}
367 	}
368 #endif
369 }
370 
371 /*
372  * Load new value into hardware timer.
373  */
374 static void
375 loadtimer(sbintime_t now, int start)
376 {
377 	struct pcpu_state *state;
378 	sbintime_t new;
379 	sbintime_t *next;
380 	uint64_t tmp;
381 	int eq;
382 
383 	state = DPCPU_PTR(timerstate);
384 	if (timer->et_flags & ET_FLAGS_PERCPU)
385 		next = &state->nexttick;
386 	else
387 		next = &nexttick;
388 	if (periodic) {
389 		if (start) {
390 			/*
391 			 * Try to start all periodic timers aligned
392 			 * to period to make events synchronous.
393 			 */
394 			tmp = now % timerperiod;
395 			new = timerperiod - tmp;
396 			if (new < tmp)		/* Left less then passed. */
397 				new += timerperiod;
398 			CTR4(KTR_SPARE2, "load p:   now %d.%08x first in %d.%08x",
399 			    (int)(now >> 32), (u_int)(now & 0xffffffff),
400 			    (int)(new >> 32), (u_int)(new & 0xffffffff));
401 			*next = new + now;
402 			et_start(timer, new, timerperiod);
403 		}
404 	} else {
405 		new = getnextevent(state);
406 		eq = (new == *next);
407 		CTR3(KTR_SPARE2, "load:    next %d.%08x eq %d",
408 		    (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
409 		if (!eq) {
410 			*next = new;
411 			et_start(timer, new - now, 0);
412 		}
413 	}
414 }
415 
416 /*
417  * Prepare event timer parameters after configuration changes.
418  */
419 static void
420 setuptimer(void)
421 {
422 	int freq;
423 
424 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
425 		periodic = 0;
426 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
427 		periodic = 1;
428 	singlemul = MIN(MAX(singlemul, 1), 20);
429 	freq = hz * singlemul;
430 	while (freq < (profiling ? profhz : stathz))
431 		freq += hz;
432 	freq = round_freq(timer, freq);
433 	timerperiod = SBT_1S / freq;
434 }
435 
436 /*
437  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
438  */
439 static int
440 doconfigtimer(void)
441 {
442 	sbintime_t now;
443 	struct pcpu_state *state;
444 
445 	state = DPCPU_PTR(timerstate);
446 	switch (atomic_load_acq_int(&state->action)) {
447 	case 1:
448 		now = sbinuptime();
449 		ET_HW_LOCK(state);
450 		loadtimer(now, 1);
451 		ET_HW_UNLOCK(state);
452 		state->handle = 0;
453 		atomic_store_rel_int(&state->action, 0);
454 		return (1);
455 	case 2:
456 		ET_HW_LOCK(state);
457 		et_stop(timer);
458 		ET_HW_UNLOCK(state);
459 		state->handle = 0;
460 		atomic_store_rel_int(&state->action, 0);
461 		return (1);
462 	}
463 	if (atomic_readandclear_int(&state->handle) && !busy) {
464 		now = sbinuptime();
465 		handleevents(now, 0);
466 		return (1);
467 	}
468 	return (0);
469 }
470 
471 /*
472  * Reconfigure specified timer.
473  * For per-CPU timers use IPI to make other CPUs to reconfigure.
474  */
475 static void
476 configtimer(int start)
477 {
478 	sbintime_t now, next;
479 	struct pcpu_state *state;
480 	int cpu;
481 
482 	if (start) {
483 		setuptimer();
484 		now = sbinuptime();
485 	} else
486 		now = 0;
487 	critical_enter();
488 	ET_HW_LOCK(DPCPU_PTR(timerstate));
489 	if (start) {
490 		/* Initialize time machine parameters. */
491 		next = now + timerperiod;
492 		if (periodic)
493 			nexttick = next;
494 		else
495 			nexttick = -1;
496 #ifdef EARLY_AP_STARTUP
497 		MPASS(mp_ncpus == 1 || smp_started);
498 #endif
499 		CPU_FOREACH(cpu) {
500 			state = DPCPU_ID_PTR(cpu, timerstate);
501 			state->now = now;
502 #ifndef EARLY_AP_STARTUP
503 			if (!smp_started && cpu != CPU_FIRST())
504 				state->nextevent = SBT_MAX;
505 			else
506 #endif
507 				state->nextevent = next;
508 			if (periodic)
509 				state->nexttick = next;
510 			else
511 				state->nexttick = -1;
512 			state->nexthard = next;
513 			state->nextstat = next;
514 			state->nextprof = next;
515 			state->nextcall = next;
516 			state->nextcallopt = next;
517 			hardclock_sync(cpu);
518 		}
519 		busy = 0;
520 		/* Start global timer or per-CPU timer of this CPU. */
521 		loadtimer(now, 1);
522 	} else {
523 		busy = 1;
524 		/* Stop global timer or per-CPU timer of this CPU. */
525 		et_stop(timer);
526 	}
527 	ET_HW_UNLOCK(DPCPU_PTR(timerstate));
528 #ifdef SMP
529 #ifdef EARLY_AP_STARTUP
530 	/* If timer is global we are done. */
531 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
532 #else
533 	/* If timer is global or there is no other CPUs yet - we are done. */
534 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
535 #endif
536 		critical_exit();
537 		return;
538 	}
539 	/* Set reconfigure flags for other CPUs. */
540 	CPU_FOREACH(cpu) {
541 		state = DPCPU_ID_PTR(cpu, timerstate);
542 		atomic_store_rel_int(&state->action,
543 		    (cpu == curcpu) ? 0 : ( start ? 1 : 2));
544 	}
545 	/* Broadcast reconfigure IPI. */
546 	ipi_all_but_self(IPI_HARDCLOCK);
547 	/* Wait for reconfiguration completed. */
548 restart:
549 	cpu_spinwait();
550 	CPU_FOREACH(cpu) {
551 		if (cpu == curcpu)
552 			continue;
553 		state = DPCPU_ID_PTR(cpu, timerstate);
554 		if (atomic_load_acq_int(&state->action))
555 			goto restart;
556 	}
557 #endif
558 	critical_exit();
559 }
560 
561 /*
562  * Calculate nearest frequency supported by hardware timer.
563  */
564 static int
565 round_freq(struct eventtimer *et, int freq)
566 {
567 	uint64_t div;
568 
569 	if (et->et_frequency != 0) {
570 		div = lmax((et->et_frequency + freq / 2) / freq, 1);
571 		if (et->et_flags & ET_FLAGS_POW2DIV)
572 			div = 1 << (flsl(div + div / 2) - 1);
573 		freq = (et->et_frequency + div / 2) / div;
574 	}
575 	if (et->et_min_period > SBT_1S)
576 		panic("Event timer \"%s\" doesn't support sub-second periods!",
577 		    et->et_name);
578 	else if (et->et_min_period != 0)
579 		freq = min(freq, SBT2FREQ(et->et_min_period));
580 	if (et->et_max_period < SBT_1S && et->et_max_period != 0)
581 		freq = max(freq, SBT2FREQ(et->et_max_period));
582 	return (freq);
583 }
584 
585 /*
586  * Configure and start event timers (BSP part).
587  */
588 void
589 cpu_initclocks_bsp(void)
590 {
591 	struct pcpu_state *state;
592 	int base, div, cpu;
593 
594 	mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
595 	CPU_FOREACH(cpu) {
596 		state = DPCPU_ID_PTR(cpu, timerstate);
597 		mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
598 		state->nextcall = SBT_MAX;
599 		state->nextcallopt = SBT_MAX;
600 	}
601 	periodic = want_periodic;
602 	/* Grab requested timer or the best of present. */
603 	if (timername[0])
604 		timer = et_find(timername, 0, 0);
605 	if (timer == NULL && periodic) {
606 		timer = et_find(NULL,
607 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
608 	}
609 	if (timer == NULL) {
610 		timer = et_find(NULL,
611 		    ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
612 	}
613 	if (timer == NULL && !periodic) {
614 		timer = et_find(NULL,
615 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
616 	}
617 	if (timer == NULL)
618 		panic("No usable event timer found!");
619 	et_init(timer, timercb, NULL, NULL);
620 
621 	/* Adapt to timer capabilities. */
622 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
623 		periodic = 0;
624 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
625 		periodic = 1;
626 	if (timer->et_flags & ET_FLAGS_C3STOP)
627 		cpu_disable_c3_sleep++;
628 
629 	/*
630 	 * We honor the requested 'hz' value.
631 	 * We want to run stathz in the neighborhood of 128hz.
632 	 * We would like profhz to run as often as possible.
633 	 */
634 	if (singlemul <= 0 || singlemul > 20) {
635 		if (hz >= 1500 || (hz % 128) == 0)
636 			singlemul = 1;
637 		else if (hz >= 750)
638 			singlemul = 2;
639 		else
640 			singlemul = 4;
641 	}
642 	if (periodic) {
643 		base = round_freq(timer, hz * singlemul);
644 		singlemul = max((base + hz / 2) / hz, 1);
645 		hz = (base + singlemul / 2) / singlemul;
646 		if (base <= 128)
647 			stathz = base;
648 		else {
649 			div = base / 128;
650 			if (div >= singlemul && (div % singlemul) == 0)
651 				div++;
652 			stathz = base / div;
653 		}
654 		profhz = stathz;
655 		while ((profhz + stathz) <= 128 * 64)
656 			profhz += stathz;
657 		profhz = round_freq(timer, profhz);
658 	} else {
659 		hz = round_freq(timer, hz);
660 		stathz = round_freq(timer, 127);
661 		profhz = round_freq(timer, stathz * 64);
662 	}
663 	tick = 1000000 / hz;
664 	tick_sbt = SBT_1S / hz;
665 	tick_bt = sbttobt(tick_sbt);
666 	statperiod = SBT_1S / stathz;
667 	profperiod = SBT_1S / profhz;
668 	ET_LOCK();
669 	configtimer(1);
670 	ET_UNLOCK();
671 }
672 
673 /*
674  * Start per-CPU event timers on APs.
675  */
676 void
677 cpu_initclocks_ap(void)
678 {
679 	struct pcpu_state *state;
680 	struct thread *td;
681 
682 	state = DPCPU_PTR(timerstate);
683 	ET_HW_LOCK(state);
684 	state->now = sbinuptime();
685 	hardclock_sync(curcpu);
686 	spinlock_enter();
687 	ET_HW_UNLOCK(state);
688 	td = curthread;
689 	td->td_intr_nesting_level++;
690 	handleevents(state->now, 2);
691 	td->td_intr_nesting_level--;
692 	spinlock_exit();
693 }
694 
695 void
696 suspendclock(void)
697 {
698 	ET_LOCK();
699 	configtimer(0);
700 	ET_UNLOCK();
701 }
702 
703 void
704 resumeclock(void)
705 {
706 	ET_LOCK();
707 	configtimer(1);
708 	ET_UNLOCK();
709 }
710 
711 /*
712  * Switch to profiling clock rates.
713  */
714 void
715 cpu_startprofclock(void)
716 {
717 
718 	ET_LOCK();
719 	if (profiling == 0) {
720 		if (periodic) {
721 			configtimer(0);
722 			profiling = 1;
723 			configtimer(1);
724 		} else
725 			profiling = 1;
726 	} else
727 		profiling++;
728 	ET_UNLOCK();
729 }
730 
731 /*
732  * Switch to regular clock rates.
733  */
734 void
735 cpu_stopprofclock(void)
736 {
737 
738 	ET_LOCK();
739 	if (profiling == 1) {
740 		if (periodic) {
741 			configtimer(0);
742 			profiling = 0;
743 			configtimer(1);
744 		} else
745 		profiling = 0;
746 	} else
747 		profiling--;
748 	ET_UNLOCK();
749 }
750 
751 /*
752  * Switch to idle mode (all ticks handled).
753  */
754 sbintime_t
755 cpu_idleclock(void)
756 {
757 	sbintime_t now, t;
758 	struct pcpu_state *state;
759 
760 	if (idletick || busy ||
761 	    (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
762 #ifdef DEVICE_POLLING
763 	    || curcpu == CPU_FIRST()
764 #endif
765 	    )
766 		return (-1);
767 	state = DPCPU_PTR(timerstate);
768 	ET_HW_LOCK(state);
769 	if (periodic)
770 		now = state->now;
771 	else
772 		now = sbinuptime();
773 	CTR2(KTR_SPARE2, "idle:    now  %d.%08x",
774 	    (int)(now >> 32), (u_int)(now & 0xffffffff));
775 	t = getnextcpuevent(state, 1);
776 	state->idle = 1;
777 	state->nextevent = t;
778 	if (!periodic)
779 		loadtimer(now, 0);
780 	ET_HW_UNLOCK(state);
781 	return (MAX(t - now, 0));
782 }
783 
784 /*
785  * Switch to active mode (skip empty ticks).
786  */
787 void
788 cpu_activeclock(void)
789 {
790 	sbintime_t now;
791 	struct pcpu_state *state;
792 	struct thread *td;
793 
794 	state = DPCPU_PTR(timerstate);
795 	if (atomic_load_int(&state->idle) == 0 || busy)
796 		return;
797 	spinlock_enter();
798 	if (periodic)
799 		now = state->now;
800 	else
801 		now = sbinuptime();
802 	CTR2(KTR_SPARE2, "active:  now  %d.%08x",
803 	    (int)(now >> 32), (u_int)(now & 0xffffffff));
804 	td = curthread;
805 	td->td_intr_nesting_level++;
806 	handleevents(now, 1);
807 	td->td_intr_nesting_level--;
808 	spinlock_exit();
809 }
810 
811 /*
812  * Change the frequency of the given timer.  This changes et->et_frequency and
813  * if et is the active timer it reconfigures the timer on all CPUs.  This is
814  * intended to be a private interface for the use of et_change_frequency() only.
815  */
816 void
817 cpu_et_frequency(struct eventtimer *et, uint64_t newfreq)
818 {
819 
820 	ET_LOCK();
821 	if (et == timer) {
822 		configtimer(0);
823 		et->et_frequency = newfreq;
824 		configtimer(1);
825 	} else
826 		et->et_frequency = newfreq;
827 	ET_UNLOCK();
828 }
829 
830 void
831 cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
832 {
833 	struct pcpu_state *state;
834 
835 	/* Do not touch anything if somebody reconfiguring timers. */
836 	if (busy)
837 		return;
838 
839 	CTR5(KTR_SPARE2, "new co:  on %d at %d.%08x - %d.%08x",
840 	    cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
841 	    (int)(bt >> 32), (u_int)(bt & 0xffffffff));
842 
843 	KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu));
844 	state = DPCPU_ID_PTR(cpu, timerstate);
845 	ET_HW_LOCK(state);
846 
847 	/*
848 	 * If there is callout time already set earlier -- do nothing.
849 	 * This check may appear redundant because we check already in
850 	 * callout_process() but this double check guarantees we're safe
851 	 * with respect to race conditions between interrupts execution
852 	 * and scheduling.
853 	 */
854 	state->nextcallopt = bt_opt;
855 	if (bt >= state->nextcall)
856 		goto done;
857 	state->nextcall = bt;
858 	/* If there is some other event set earlier -- do nothing. */
859 	if (bt >= state->nextevent)
860 		goto done;
861 	state->nextevent = bt;
862 	/* If timer is periodic -- there is nothing to reprogram. */
863 	if (periodic)
864 		goto done;
865 	/* If timer is global or of the current CPU -- reprogram it. */
866 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
867 		loadtimer(sbinuptime(), 0);
868 done:
869 		ET_HW_UNLOCK(state);
870 		return;
871 	}
872 	/* Otherwise make other CPU to reprogram it. */
873 	state->handle = 1;
874 	ET_HW_UNLOCK(state);
875 #ifdef SMP
876 	ipi_cpu(cpu, IPI_HARDCLOCK);
877 #endif
878 }
879 
880 /*
881  * Report or change the active event timers hardware.
882  */
883 static int
884 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
885 {
886 	char buf[32];
887 	struct eventtimer *et;
888 	int error;
889 
890 	ET_LOCK();
891 	et = timer;
892 	snprintf(buf, sizeof(buf), "%s", et->et_name);
893 	ET_UNLOCK();
894 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
895 	ET_LOCK();
896 	et = timer;
897 	if (error != 0 || req->newptr == NULL ||
898 	    strcasecmp(buf, et->et_name) == 0) {
899 		ET_UNLOCK();
900 		return (error);
901 	}
902 	et = et_find(buf, 0, 0);
903 	if (et == NULL) {
904 		ET_UNLOCK();
905 		return (ENOENT);
906 	}
907 	configtimer(0);
908 	et_free(timer);
909 	if (et->et_flags & ET_FLAGS_C3STOP)
910 		cpu_disable_c3_sleep++;
911 	if (timer->et_flags & ET_FLAGS_C3STOP)
912 		cpu_disable_c3_sleep--;
913 	periodic = want_periodic;
914 	timer = et;
915 	et_init(timer, timercb, NULL, NULL);
916 	configtimer(1);
917 	ET_UNLOCK();
918 	return (error);
919 }
920 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
921     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
922     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
923 
924 /*
925  * Report or change the active event timer periodicity.
926  */
927 static int
928 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
929 {
930 	int error, val;
931 
932 	val = periodic;
933 	error = sysctl_handle_int(oidp, &val, 0, req);
934 	if (error != 0 || req->newptr == NULL)
935 		return (error);
936 	ET_LOCK();
937 	configtimer(0);
938 	periodic = want_periodic = val;
939 	configtimer(1);
940 	ET_UNLOCK();
941 	return (error);
942 }
943 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
944     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
945     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
946 
947 #include "opt_ddb.h"
948 
949 #ifdef DDB
950 #include <ddb/ddb.h>
951 
952 DB_SHOW_COMMAND(clocksource, db_show_clocksource)
953 {
954 	struct pcpu_state *st;
955 	int c;
956 
957 	CPU_FOREACH(c) {
958 		st = DPCPU_ID_PTR(c, timerstate);
959 		db_printf(
960 		    "CPU %2d: action %d handle %d  ipi %d idle %d\n"
961 		    "        now %#jx nevent %#jx (%jd)\n"
962 		    "        ntick %#jx (%jd) nhard %#jx (%jd)\n"
963 		    "        nstat %#jx (%jd) nprof %#jx (%jd)\n"
964 		    "        ncall %#jx (%jd) ncallopt %#jx (%jd)\n",
965 		    c, st->action, st->handle, st->ipi, st->idle,
966 		    (uintmax_t)st->now,
967 		    (uintmax_t)st->nextevent,
968 		    (uintmax_t)(st->nextevent - st->now) / tick_sbt,
969 		    (uintmax_t)st->nexttick,
970 		    (uintmax_t)(st->nexttick - st->now) / tick_sbt,
971 		    (uintmax_t)st->nexthard,
972 		    (uintmax_t)(st->nexthard - st->now) / tick_sbt,
973 		    (uintmax_t)st->nextstat,
974 		    (uintmax_t)(st->nextstat - st->now) / tick_sbt,
975 		    (uintmax_t)st->nextprof,
976 		    (uintmax_t)(st->nextprof - st->now) / tick_sbt,
977 		    (uintmax_t)st->nextcall,
978 		    (uintmax_t)(st->nextcall - st->now) / tick_sbt,
979 		    (uintmax_t)st->nextcallopt,
980 		    (uintmax_t)(st->nextcallopt - st->now) / tick_sbt);
981 	}
982 }
983 
984 #endif
985