xref: /freebsd/sys/kern/kern_clocksource.c (revision 11c5cac53f6cc9a2d94cb6f58728b2655e92d3a5)
1 /*-
2  * Copyright (c) 2010-2012 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * Common routines to manage event timers hardware.
32  */
33 
34 #include "opt_device_polling.h"
35 #include "opt_kdtrace.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51 
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56 
57 #ifdef KDTRACE_HOOKS
58 #include <sys/dtrace_bsd.h>
59 cyclic_clock_func_t	cyclic_clock_func = NULL;
60 #endif
61 
62 int			cpu_can_deep_sleep = 0;	/* C3 state is available. */
63 int			cpu_disable_deep_sleep = 0; /* Timer dies in C3. */
64 
65 static void		setuptimer(void);
66 static void		loadtimer(struct bintime *now, int first);
67 static int		doconfigtimer(void);
68 static void		configtimer(int start);
69 static int		round_freq(struct eventtimer *et, int freq);
70 
71 static void		getnextcpuevent(struct bintime *event, int idle);
72 static void		getnextevent(struct bintime *event);
73 static int		handleevents(struct bintime *now, int fake);
74 #ifdef SMP
75 static void		cpu_new_callout(int cpu, int ticks);
76 #endif
77 
78 static struct mtx	et_hw_mtx;
79 
80 #define	ET_HW_LOCK(state)						\
81 	{								\
82 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
83 			mtx_lock_spin(&(state)->et_hw_mtx);		\
84 		else							\
85 			mtx_lock_spin(&et_hw_mtx);			\
86 	}
87 
88 #define	ET_HW_UNLOCK(state)						\
89 	{								\
90 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
91 			mtx_unlock_spin(&(state)->et_hw_mtx);		\
92 		else							\
93 			mtx_unlock_spin(&et_hw_mtx);			\
94 	}
95 
96 static struct eventtimer *timer = NULL;
97 static struct bintime	timerperiod;	/* Timer period for periodic mode. */
98 static struct bintime	hardperiod;	/* hardclock() events period. */
99 static struct bintime	statperiod;	/* statclock() events period. */
100 static struct bintime	profperiod;	/* profclock() events period. */
101 static struct bintime	nexttick;	/* Next global timer tick time. */
102 static struct bintime	nexthard;	/* Next global hardlock() event. */
103 static u_int		busy = 0;	/* Reconfiguration is in progress. */
104 static int		profiling = 0;	/* Profiling events enabled. */
105 
106 static char		timername[32];	/* Wanted timer. */
107 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
108 
109 static int		singlemul = 0;	/* Multiplier for periodic mode. */
110 TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
111 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
112     0, "Multiplier for periodic mode");
113 
114 static u_int		idletick = 0;	/* Run periodic events when idle. */
115 TUNABLE_INT("kern.eventtimer.idletick", &idletick);
116 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
117     0, "Run periodic events when idle");
118 
119 static u_int		activetick = 1;	/* Run all periodic events when active. */
120 TUNABLE_INT("kern.eventtimer.activetick", &activetick);
121 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, activetick, CTLFLAG_RW, &activetick,
122     0, "Run all periodic events when active");
123 
124 static int		periodic = 0;	/* Periodic or one-shot mode. */
125 static int		want_periodic = 0; /* What mode to prefer. */
126 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
127 
128 struct pcpu_state {
129 	struct mtx	et_hw_mtx;	/* Per-CPU timer mutex. */
130 	u_int		action;		/* Reconfiguration requests. */
131 	u_int		handle;		/* Immediate handle resuests. */
132 	struct bintime	now;		/* Last tick time. */
133 	struct bintime	nextevent;	/* Next scheduled event on this CPU. */
134 	struct bintime	nexttick;	/* Next timer tick time. */
135 	struct bintime	nexthard;	/* Next hardlock() event. */
136 	struct bintime	nextstat;	/* Next statclock() event. */
137 	struct bintime	nextprof;	/* Next profclock() event. */
138 #ifdef KDTRACE_HOOKS
139 	struct bintime	nextcyc;	/* Next OpenSolaris cyclics event. */
140 #endif
141 	int		ipi;		/* This CPU needs IPI. */
142 	int		idle;		/* This CPU is in idle mode. */
143 };
144 
145 static DPCPU_DEFINE(struct pcpu_state, timerstate);
146 
147 #define FREQ2BT(freq, bt)						\
148 {									\
149 	(bt)->sec = 0;							\
150 	(bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;	\
151 }
152 #define BT2FREQ(bt)							\
153 	(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /		\
154 	    ((bt)->frac >> 1))
155 
156 /*
157  * Timer broadcast IPI handler.
158  */
159 int
160 hardclockintr(void)
161 {
162 	struct bintime now;
163 	struct pcpu_state *state;
164 	int done;
165 
166 	if (doconfigtimer() || busy)
167 		return (FILTER_HANDLED);
168 	state = DPCPU_PTR(timerstate);
169 	now = state->now;
170 	CTR4(KTR_SPARE2, "ipi  at %d:    now  %d.%08x%08x",
171 	    curcpu, now.sec, (u_int)(now.frac >> 32),
172 			     (u_int)(now.frac & 0xffffffff));
173 	done = handleevents(&now, 0);
174 	return (done ? FILTER_HANDLED : FILTER_STRAY);
175 }
176 
177 /*
178  * Handle all events for specified time on this CPU
179  */
180 static int
181 handleevents(struct bintime *now, int fake)
182 {
183 	struct bintime t;
184 	struct trapframe *frame;
185 	struct pcpu_state *state;
186 	uintfptr_t pc;
187 	int usermode;
188 	int done, runs;
189 
190 	CTR4(KTR_SPARE2, "handle at %d:  now  %d.%08x%08x",
191 	    curcpu, now->sec, (u_int)(now->frac >> 32),
192 		     (u_int)(now->frac & 0xffffffff));
193 	done = 0;
194 	if (fake) {
195 		frame = NULL;
196 		usermode = 0;
197 		pc = 0;
198 	} else {
199 		frame = curthread->td_intr_frame;
200 		usermode = TRAPF_USERMODE(frame);
201 		pc = TRAPF_PC(frame);
202 	}
203 
204 	state = DPCPU_PTR(timerstate);
205 
206 	runs = 0;
207 	while (bintime_cmp(now, &state->nexthard, >=)) {
208 		bintime_addx(&state->nexthard, hardperiod.frac);
209 		runs++;
210 	}
211 	if (runs) {
212 		if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 &&
213 		    bintime_cmp(&state->nexthard, &nexthard, >))
214 			nexthard = state->nexthard;
215 		if (fake < 2) {
216 			hardclock_cnt(runs, usermode);
217 			done = 1;
218 		}
219 	}
220 	runs = 0;
221 	while (bintime_cmp(now, &state->nextstat, >=)) {
222 		bintime_addx(&state->nextstat, statperiod.frac);
223 		runs++;
224 	}
225 	if (runs && fake < 2) {
226 		statclock_cnt(runs, usermode);
227 		done = 1;
228 	}
229 	if (profiling) {
230 		runs = 0;
231 		while (bintime_cmp(now, &state->nextprof, >=)) {
232 			bintime_addx(&state->nextprof, profperiod.frac);
233 			runs++;
234 		}
235 		if (runs && !fake) {
236 			profclock_cnt(runs, usermode, pc);
237 			done = 1;
238 		}
239 	} else
240 		state->nextprof = state->nextstat;
241 
242 #ifdef KDTRACE_HOOKS
243 	if (fake == 0 && cyclic_clock_func != NULL &&
244 	    state->nextcyc.sec != -1 &&
245 	    bintime_cmp(now, &state->nextcyc, >=)) {
246 		state->nextcyc.sec = -1;
247 		(*cyclic_clock_func)(frame);
248 	}
249 #endif
250 
251 	getnextcpuevent(&t, 0);
252 	if (fake == 2) {
253 		state->nextevent = t;
254 		return (done);
255 	}
256 	ET_HW_LOCK(state);
257 	if (!busy) {
258 		state->idle = 0;
259 		state->nextevent = t;
260 		loadtimer(now, 0);
261 	}
262 	ET_HW_UNLOCK(state);
263 	return (done);
264 }
265 
266 /*
267  * Schedule binuptime of the next event on current CPU.
268  */
269 static void
270 getnextcpuevent(struct bintime *event, int idle)
271 {
272 	struct bintime tmp;
273 	struct pcpu_state *state;
274 	int skip;
275 
276 	state = DPCPU_PTR(timerstate);
277 	/* Handle hardclock() events. */
278 	*event = state->nexthard;
279 	if (idle || (!activetick && !profiling &&
280 	    (timer->et_flags & ET_FLAGS_PERCPU) == 0)) {
281 		skip = idle ? 4 : (stathz / 2);
282 		if (curcpu == CPU_FIRST() && tc_min_ticktock_freq > skip)
283 			skip = tc_min_ticktock_freq;
284 		skip = callout_tickstofirst(hz / skip) - 1;
285 		CTR2(KTR_SPARE2, "skip   at %d: %d", curcpu, skip);
286 		tmp = hardperiod;
287 		bintime_mul(&tmp, skip);
288 		bintime_add(event, &tmp);
289 	}
290 	if (!idle) { /* If CPU is active - handle other types of events. */
291 		if (bintime_cmp(event, &state->nextstat, >))
292 			*event = state->nextstat;
293 		if (profiling && bintime_cmp(event, &state->nextprof, >))
294 			*event = state->nextprof;
295 	}
296 #ifdef KDTRACE_HOOKS
297 	if (state->nextcyc.sec != -1 && bintime_cmp(event, &state->nextcyc, >))
298 		*event = state->nextcyc;
299 #endif
300 }
301 
302 /*
303  * Schedule binuptime of the next event on all CPUs.
304  */
305 static void
306 getnextevent(struct bintime *event)
307 {
308 	struct pcpu_state *state;
309 #ifdef SMP
310 	int	cpu;
311 #endif
312 	int	c, nonidle;
313 
314 	state = DPCPU_PTR(timerstate);
315 	*event = state->nextevent;
316 	c = curcpu;
317 	nonidle = !state->idle;
318 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
319 #ifdef SMP
320 		if (smp_started) {
321 			CPU_FOREACH(cpu) {
322 				if (curcpu == cpu)
323 					continue;
324 				state = DPCPU_ID_PTR(cpu, timerstate);
325 				nonidle += !state->idle;
326 				if (bintime_cmp(event, &state->nextevent, >)) {
327 					*event = state->nextevent;
328 					c = cpu;
329 				}
330 			}
331 		}
332 #endif
333 		if (nonidle != 0 && bintime_cmp(event, &nexthard, >))
334 			*event = nexthard;
335 	}
336 	CTR5(KTR_SPARE2, "next at %d:    next %d.%08x%08x by %d",
337 	    curcpu, event->sec, (u_int)(event->frac >> 32),
338 			     (u_int)(event->frac & 0xffffffff), c);
339 }
340 
341 /* Hardware timer callback function. */
342 static void
343 timercb(struct eventtimer *et, void *arg)
344 {
345 	struct bintime now;
346 	struct bintime *next;
347 	struct pcpu_state *state;
348 #ifdef SMP
349 	int cpu, bcast;
350 #endif
351 
352 	/* Do not touch anything if somebody reconfiguring timers. */
353 	if (busy)
354 		return;
355 	/* Update present and next tick times. */
356 	state = DPCPU_PTR(timerstate);
357 	if (et->et_flags & ET_FLAGS_PERCPU) {
358 		next = &state->nexttick;
359 	} else
360 		next = &nexttick;
361 	binuptime(&now);
362 	if (periodic) {
363 		*next = now;
364 		bintime_addx(next, timerperiod.frac); /* Next tick in 1 period. */
365 	} else
366 		next->sec = -1;	/* Next tick is not scheduled yet. */
367 	state->now = now;
368 	CTR4(KTR_SPARE2, "intr at %d:    now  %d.%08x%08x",
369 	    curcpu, (int)(now.sec), (u_int)(now.frac >> 32),
370 			     (u_int)(now.frac & 0xffffffff));
371 
372 #ifdef SMP
373 	/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
374 	bcast = 0;
375 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
376 		CPU_FOREACH(cpu) {
377 			state = DPCPU_ID_PTR(cpu, timerstate);
378 			ET_HW_LOCK(state);
379 			state->now = now;
380 			if (bintime_cmp(&now, &state->nextevent, >=)) {
381 				state->nextevent.sec++;
382 				if (curcpu != cpu) {
383 					state->ipi = 1;
384 					bcast = 1;
385 				}
386 			}
387 			ET_HW_UNLOCK(state);
388 		}
389 	}
390 #endif
391 
392 	/* Handle events for this time on this CPU. */
393 	handleevents(&now, 0);
394 
395 #ifdef SMP
396 	/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
397 	if (bcast) {
398 		CPU_FOREACH(cpu) {
399 			if (curcpu == cpu)
400 				continue;
401 			state = DPCPU_ID_PTR(cpu, timerstate);
402 			if (state->ipi) {
403 				state->ipi = 0;
404 				ipi_cpu(cpu, IPI_HARDCLOCK);
405 			}
406 		}
407 	}
408 #endif
409 }
410 
411 /*
412  * Load new value into hardware timer.
413  */
414 static void
415 loadtimer(struct bintime *now, int start)
416 {
417 	struct pcpu_state *state;
418 	struct bintime new;
419 	struct bintime *next;
420 	uint64_t tmp;
421 	int eq;
422 
423 	if (timer->et_flags & ET_FLAGS_PERCPU) {
424 		state = DPCPU_PTR(timerstate);
425 		next = &state->nexttick;
426 	} else
427 		next = &nexttick;
428 	if (periodic) {
429 		if (start) {
430 			/*
431 			 * Try to start all periodic timers aligned
432 			 * to period to make events synchronous.
433 			 */
434 			tmp = ((uint64_t)now->sec << 36) + (now->frac >> 28);
435 			tmp = (tmp % (timerperiod.frac >> 28)) << 28;
436 			new.sec = 0;
437 			new.frac = timerperiod.frac - tmp;
438 			if (new.frac < tmp)	/* Left less then passed. */
439 				bintime_addx(&new, timerperiod.frac);
440 			CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
441 			    curcpu, now->sec, (u_int)(now->frac >> 32),
442 			    new.sec, (u_int)(new.frac >> 32));
443 			*next = new;
444 			bintime_add(next, now);
445 			et_start(timer, &new, &timerperiod);
446 		}
447 	} else {
448 		getnextevent(&new);
449 		eq = bintime_cmp(&new, next, ==);
450 		CTR5(KTR_SPARE2, "load at %d:    next %d.%08x%08x eq %d",
451 		    curcpu, new.sec, (u_int)(new.frac >> 32),
452 			     (u_int)(new.frac & 0xffffffff),
453 			     eq);
454 		if (!eq) {
455 			*next = new;
456 			bintime_sub(&new, now);
457 			et_start(timer, &new, NULL);
458 		}
459 	}
460 }
461 
462 /*
463  * Prepare event timer parameters after configuration changes.
464  */
465 static void
466 setuptimer(void)
467 {
468 	int freq;
469 
470 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
471 		periodic = 0;
472 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
473 		periodic = 1;
474 	singlemul = MIN(MAX(singlemul, 1), 20);
475 	freq = hz * singlemul;
476 	while (freq < (profiling ? profhz : stathz))
477 		freq += hz;
478 	freq = round_freq(timer, freq);
479 	FREQ2BT(freq, &timerperiod);
480 }
481 
482 /*
483  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
484  */
485 static int
486 doconfigtimer(void)
487 {
488 	struct bintime now;
489 	struct pcpu_state *state;
490 
491 	state = DPCPU_PTR(timerstate);
492 	switch (atomic_load_acq_int(&state->action)) {
493 	case 1:
494 		binuptime(&now);
495 		ET_HW_LOCK(state);
496 		loadtimer(&now, 1);
497 		ET_HW_UNLOCK(state);
498 		state->handle = 0;
499 		atomic_store_rel_int(&state->action, 0);
500 		return (1);
501 	case 2:
502 		ET_HW_LOCK(state);
503 		et_stop(timer);
504 		ET_HW_UNLOCK(state);
505 		state->handle = 0;
506 		atomic_store_rel_int(&state->action, 0);
507 		return (1);
508 	}
509 	if (atomic_readandclear_int(&state->handle) && !busy) {
510 		binuptime(&now);
511 		handleevents(&now, 0);
512 		return (1);
513 	}
514 	return (0);
515 }
516 
517 /*
518  * Reconfigure specified timer.
519  * For per-CPU timers use IPI to make other CPUs to reconfigure.
520  */
521 static void
522 configtimer(int start)
523 {
524 	struct bintime now, next;
525 	struct pcpu_state *state;
526 	int cpu;
527 
528 	if (start) {
529 		setuptimer();
530 		binuptime(&now);
531 	}
532 	critical_enter();
533 	ET_HW_LOCK(DPCPU_PTR(timerstate));
534 	if (start) {
535 		/* Initialize time machine parameters. */
536 		next = now;
537 		bintime_addx(&next, timerperiod.frac);
538 		if (periodic)
539 			nexttick = next;
540 		else
541 			nexttick.sec = -1;
542 		CPU_FOREACH(cpu) {
543 			state = DPCPU_ID_PTR(cpu, timerstate);
544 			state->now = now;
545 			state->nextevent = next;
546 			if (periodic)
547 				state->nexttick = next;
548 			else
549 				state->nexttick.sec = -1;
550 			state->nexthard = next;
551 			state->nextstat = next;
552 			state->nextprof = next;
553 			hardclock_sync(cpu);
554 		}
555 		busy = 0;
556 		/* Start global timer or per-CPU timer of this CPU. */
557 		loadtimer(&now, 1);
558 	} else {
559 		busy = 1;
560 		/* Stop global timer or per-CPU timer of this CPU. */
561 		et_stop(timer);
562 	}
563 	ET_HW_UNLOCK(DPCPU_PTR(timerstate));
564 #ifdef SMP
565 	/* If timer is global or there is no other CPUs yet - we are done. */
566 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
567 		critical_exit();
568 		return;
569 	}
570 	/* Set reconfigure flags for other CPUs. */
571 	CPU_FOREACH(cpu) {
572 		state = DPCPU_ID_PTR(cpu, timerstate);
573 		atomic_store_rel_int(&state->action,
574 		    (cpu == curcpu) ? 0 : ( start ? 1 : 2));
575 	}
576 	/* Broadcast reconfigure IPI. */
577 	ipi_all_but_self(IPI_HARDCLOCK);
578 	/* Wait for reconfiguration completed. */
579 restart:
580 	cpu_spinwait();
581 	CPU_FOREACH(cpu) {
582 		if (cpu == curcpu)
583 			continue;
584 		state = DPCPU_ID_PTR(cpu, timerstate);
585 		if (atomic_load_acq_int(&state->action))
586 			goto restart;
587 	}
588 #endif
589 	critical_exit();
590 }
591 
592 /*
593  * Calculate nearest frequency supported by hardware timer.
594  */
595 static int
596 round_freq(struct eventtimer *et, int freq)
597 {
598 	uint64_t div;
599 
600 	if (et->et_frequency != 0) {
601 		div = lmax((et->et_frequency + freq / 2) / freq, 1);
602 		if (et->et_flags & ET_FLAGS_POW2DIV)
603 			div = 1 << (flsl(div + div / 2) - 1);
604 		freq = (et->et_frequency + div / 2) / div;
605 	}
606 	if (et->et_min_period.sec > 0)
607 		panic("Event timer \"%s\" doesn't support sub-second periods!",
608 		    et->et_name);
609 	else if (et->et_min_period.frac != 0)
610 		freq = min(freq, BT2FREQ(&et->et_min_period));
611 	if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
612 		freq = max(freq, BT2FREQ(&et->et_max_period));
613 	return (freq);
614 }
615 
616 /*
617  * Configure and start event timers (BSP part).
618  */
619 void
620 cpu_initclocks_bsp(void)
621 {
622 	struct pcpu_state *state;
623 	int base, div, cpu;
624 
625 	mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
626 	CPU_FOREACH(cpu) {
627 		state = DPCPU_ID_PTR(cpu, timerstate);
628 		mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
629 #ifdef KDTRACE_HOOKS
630 		state->nextcyc.sec = -1;
631 #endif
632 	}
633 #ifdef SMP
634 	callout_new_inserted = cpu_new_callout;
635 #endif
636 	periodic = want_periodic;
637 	/* Grab requested timer or the best of present. */
638 	if (timername[0])
639 		timer = et_find(timername, 0, 0);
640 	if (timer == NULL && periodic) {
641 		timer = et_find(NULL,
642 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
643 	}
644 	if (timer == NULL) {
645 		timer = et_find(NULL,
646 		    ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
647 	}
648 	if (timer == NULL && !periodic) {
649 		timer = et_find(NULL,
650 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
651 	}
652 	if (timer == NULL)
653 		panic("No usable event timer found!");
654 	et_init(timer, timercb, NULL, NULL);
655 
656 	/* Adapt to timer capabilities. */
657 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
658 		periodic = 0;
659 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
660 		periodic = 1;
661 	if (timer->et_flags & ET_FLAGS_C3STOP)
662 		cpu_disable_deep_sleep++;
663 
664 	/*
665 	 * We honor the requested 'hz' value.
666 	 * We want to run stathz in the neighborhood of 128hz.
667 	 * We would like profhz to run as often as possible.
668 	 */
669 	if (singlemul <= 0 || singlemul > 20) {
670 		if (hz >= 1500 || (hz % 128) == 0)
671 			singlemul = 1;
672 		else if (hz >= 750)
673 			singlemul = 2;
674 		else
675 			singlemul = 4;
676 	}
677 	if (periodic) {
678 		base = round_freq(timer, hz * singlemul);
679 		singlemul = max((base + hz / 2) / hz, 1);
680 		hz = (base + singlemul / 2) / singlemul;
681 		if (base <= 128)
682 			stathz = base;
683 		else {
684 			div = base / 128;
685 			if (div >= singlemul && (div % singlemul) == 0)
686 				div++;
687 			stathz = base / div;
688 		}
689 		profhz = stathz;
690 		while ((profhz + stathz) <= 128 * 64)
691 			profhz += stathz;
692 		profhz = round_freq(timer, profhz);
693 	} else {
694 		hz = round_freq(timer, hz);
695 		stathz = round_freq(timer, 127);
696 		profhz = round_freq(timer, stathz * 64);
697 	}
698 	tick = 1000000 / hz;
699 	FREQ2BT(hz, &hardperiod);
700 	FREQ2BT(stathz, &statperiod);
701 	FREQ2BT(profhz, &profperiod);
702 	ET_LOCK();
703 	configtimer(1);
704 	ET_UNLOCK();
705 }
706 
707 /*
708  * Start per-CPU event timers on APs.
709  */
710 void
711 cpu_initclocks_ap(void)
712 {
713 	struct bintime now;
714 	struct pcpu_state *state;
715 
716 	state = DPCPU_PTR(timerstate);
717 	binuptime(&now);
718 	ET_HW_LOCK(state);
719 	state->now = now;
720 	hardclock_sync(curcpu);
721 	handleevents(&state->now, 2);
722 	if (timer->et_flags & ET_FLAGS_PERCPU)
723 		loadtimer(&now, 1);
724 	ET_HW_UNLOCK(state);
725 }
726 
727 /*
728  * Switch to profiling clock rates.
729  */
730 void
731 cpu_startprofclock(void)
732 {
733 
734 	ET_LOCK();
735 	if (periodic) {
736 		configtimer(0);
737 		profiling = 1;
738 		configtimer(1);
739 	} else
740 		profiling = 1;
741 	ET_UNLOCK();
742 }
743 
744 /*
745  * Switch to regular clock rates.
746  */
747 void
748 cpu_stopprofclock(void)
749 {
750 
751 	ET_LOCK();
752 	if (periodic) {
753 		configtimer(0);
754 		profiling = 0;
755 		configtimer(1);
756 	} else
757 		profiling = 0;
758 	ET_UNLOCK();
759 }
760 
761 /*
762  * Switch to idle mode (all ticks handled).
763  */
764 void
765 cpu_idleclock(void)
766 {
767 	struct bintime now, t;
768 	struct pcpu_state *state;
769 
770 	if (idletick || busy ||
771 	    (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
772 #ifdef DEVICE_POLLING
773 	    || curcpu == CPU_FIRST()
774 #endif
775 	    )
776 		return;
777 	state = DPCPU_PTR(timerstate);
778 	if (periodic)
779 		now = state->now;
780 	else
781 		binuptime(&now);
782 	CTR4(KTR_SPARE2, "idle at %d:    now  %d.%08x%08x",
783 	    curcpu, now.sec, (u_int)(now.frac >> 32),
784 			     (u_int)(now.frac & 0xffffffff));
785 	getnextcpuevent(&t, 1);
786 	ET_HW_LOCK(state);
787 	state->idle = 1;
788 	state->nextevent = t;
789 	if (!periodic)
790 		loadtimer(&now, 0);
791 	ET_HW_UNLOCK(state);
792 }
793 
794 /*
795  * Switch to active mode (skip empty ticks).
796  */
797 void
798 cpu_activeclock(void)
799 {
800 	struct bintime now;
801 	struct pcpu_state *state;
802 	struct thread *td;
803 
804 	state = DPCPU_PTR(timerstate);
805 	if (state->idle == 0 || busy)
806 		return;
807 	if (periodic)
808 		now = state->now;
809 	else
810 		binuptime(&now);
811 	CTR4(KTR_SPARE2, "active at %d:  now  %d.%08x%08x",
812 	    curcpu, now.sec, (u_int)(now.frac >> 32),
813 			     (u_int)(now.frac & 0xffffffff));
814 	spinlock_enter();
815 	td = curthread;
816 	td->td_intr_nesting_level++;
817 	handleevents(&now, 1);
818 	td->td_intr_nesting_level--;
819 	spinlock_exit();
820 }
821 
822 #ifdef KDTRACE_HOOKS
823 void
824 clocksource_cyc_set(const struct bintime *t)
825 {
826 	struct bintime now;
827 	struct pcpu_state *state;
828 
829 	state = DPCPU_PTR(timerstate);
830 	if (periodic)
831 		now = state->now;
832 	else
833 		binuptime(&now);
834 
835 	CTR4(KTR_SPARE2, "set_cyc at %d:  now  %d.%08x%08x",
836 	    curcpu, now.sec, (u_int)(now.frac >> 32),
837 			     (u_int)(now.frac & 0xffffffff));
838 	CTR4(KTR_SPARE2, "set_cyc at %d:  t  %d.%08x%08x",
839 	    curcpu, t->sec, (u_int)(t->frac >> 32),
840 			     (u_int)(t->frac & 0xffffffff));
841 
842 	ET_HW_LOCK(state);
843 	if (bintime_cmp(t, &state->nextcyc, ==)) {
844 		ET_HW_UNLOCK(state);
845 		return;
846 	}
847 	state->nextcyc = *t;
848 	if (bintime_cmp(&state->nextcyc, &state->nextevent, >=)) {
849 		ET_HW_UNLOCK(state);
850 		return;
851 	}
852 	state->nextevent = state->nextcyc;
853 	if (!periodic)
854 		loadtimer(&now, 0);
855 	ET_HW_UNLOCK(state);
856 }
857 #endif
858 
859 #ifdef SMP
860 static void
861 cpu_new_callout(int cpu, int ticks)
862 {
863 	struct bintime tmp;
864 	struct pcpu_state *state;
865 
866 	CTR3(KTR_SPARE2, "new co at %d:    on %d in %d",
867 	    curcpu, cpu, ticks);
868 	state = DPCPU_ID_PTR(cpu, timerstate);
869 	ET_HW_LOCK(state);
870 	if (state->idle == 0 || busy) {
871 		ET_HW_UNLOCK(state);
872 		return;
873 	}
874 	/*
875 	 * If timer is periodic - just update next event time for target CPU.
876 	 * If timer is global - there is chance it is already programmed.
877 	 */
878 	if (periodic || (timer->et_flags & ET_FLAGS_PERCPU) == 0) {
879 		tmp = hardperiod;
880 		bintime_mul(&tmp, ticks - 1);
881 		bintime_add(&tmp, &state->nexthard);
882 		if (bintime_cmp(&tmp, &state->nextevent, <))
883 			state->nextevent = tmp;
884 		if (periodic ||
885 		    bintime_cmp(&state->nextevent, &nexttick, >=)) {
886 			ET_HW_UNLOCK(state);
887 			return;
888 		}
889 	}
890 	/*
891 	 * Otherwise we have to wake that CPU up, as we can't get present
892 	 * bintime to reprogram global timer from here. If timer is per-CPU,
893 	 * we by definition can't do it from here.
894 	 */
895 	ET_HW_UNLOCK(state);
896 	if (timer->et_flags & ET_FLAGS_PERCPU) {
897 		state->handle = 1;
898 		ipi_cpu(cpu, IPI_HARDCLOCK);
899 	} else {
900 		if (!cpu_idle_wakeup(cpu))
901 			ipi_cpu(cpu, IPI_AST);
902 	}
903 }
904 #endif
905 
906 /*
907  * Report or change the active event timers hardware.
908  */
909 static int
910 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
911 {
912 	char buf[32];
913 	struct eventtimer *et;
914 	int error;
915 
916 	ET_LOCK();
917 	et = timer;
918 	snprintf(buf, sizeof(buf), "%s", et->et_name);
919 	ET_UNLOCK();
920 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
921 	ET_LOCK();
922 	et = timer;
923 	if (error != 0 || req->newptr == NULL ||
924 	    strcasecmp(buf, et->et_name) == 0) {
925 		ET_UNLOCK();
926 		return (error);
927 	}
928 	et = et_find(buf, 0, 0);
929 	if (et == NULL) {
930 		ET_UNLOCK();
931 		return (ENOENT);
932 	}
933 	configtimer(0);
934 	et_free(timer);
935 	if (et->et_flags & ET_FLAGS_C3STOP)
936 		cpu_disable_deep_sleep++;
937 	if (timer->et_flags & ET_FLAGS_C3STOP)
938 		cpu_disable_deep_sleep--;
939 	periodic = want_periodic;
940 	timer = et;
941 	et_init(timer, timercb, NULL, NULL);
942 	configtimer(1);
943 	ET_UNLOCK();
944 	return (error);
945 }
946 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
947     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
948     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
949 
950 /*
951  * Report or change the active event timer periodicity.
952  */
953 static int
954 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
955 {
956 	int error, val;
957 
958 	val = periodic;
959 	error = sysctl_handle_int(oidp, &val, 0, req);
960 	if (error != 0 || req->newptr == NULL)
961 		return (error);
962 	ET_LOCK();
963 	configtimer(0);
964 	periodic = want_periodic = val;
965 	configtimer(1);
966 	ET_UNLOCK();
967 	return (error);
968 }
969 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
970     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
971     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
972