1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ntp.h" 41 #include "opt_ddb.h" 42 #include "opt_watchdog.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/callout.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/ktr.h> 50 #include <sys/mutex.h> 51 #include <sys/proc.h> 52 #include <sys/resource.h> 53 #include <sys/resourcevar.h> 54 #include <sys/sched.h> 55 #include <sys/signalvar.h> 56 #include <sys/smp.h> 57 #include <vm/vm.h> 58 #include <vm/pmap.h> 59 #include <vm/vm_map.h> 60 #include <sys/sysctl.h> 61 #include <sys/bus.h> 62 #include <sys/interrupt.h> 63 #include <sys/limits.h> 64 #include <sys/timetc.h> 65 66 #include <machine/cpu.h> 67 68 #ifdef GPROF 69 #include <sys/gmon.h> 70 #endif 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #ifdef DEVICE_POLLING 77 extern void hardclock_device_poll(void); 78 #endif /* DEVICE_POLLING */ 79 80 static void initclocks(void *dummy); 81 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 82 83 /* Some of these don't belong here, but it's easiest to concentrate them. */ 84 long cp_time[CPUSTATES]; 85 86 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time), 87 "LU", "CPU time statistics"); 88 89 #ifdef SW_WATCHDOG 90 #include <sys/watchdog.h> 91 92 static int watchdog_ticks; 93 static int watchdog_enabled; 94 static void watchdog_fire(void); 95 static void watchdog_config(void *, u_int, int *); 96 #endif /* SW_WATCHDOG */ 97 98 /* 99 * Clock handling routines. 100 * 101 * This code is written to operate with two timers that run independently of 102 * each other. 103 * 104 * The main timer, running hz times per second, is used to trigger interval 105 * timers, timeouts and rescheduling as needed. 106 * 107 * The second timer handles kernel and user profiling, 108 * and does resource use estimation. If the second timer is programmable, 109 * it is randomized to avoid aliasing between the two clocks. For example, 110 * the randomization prevents an adversary from always giving up the cpu 111 * just before its quantum expires. Otherwise, it would never accumulate 112 * cpu ticks. The mean frequency of the second timer is stathz. 113 * 114 * If no second timer exists, stathz will be zero; in this case we drive 115 * profiling and statistics off the main clock. This WILL NOT be accurate; 116 * do not do it unless absolutely necessary. 117 * 118 * The statistics clock may (or may not) be run at a higher rate while 119 * profiling. This profile clock runs at profhz. We require that profhz 120 * be an integral multiple of stathz. 121 * 122 * If the statistics clock is running fast, it must be divided by the ratio 123 * profhz/stathz for statistics. (For profiling, every tick counts.) 124 * 125 * Time-of-day is maintained using a "timecounter", which may or may 126 * not be related to the hardware generating the above mentioned 127 * interrupts. 128 */ 129 130 int stathz; 131 int profhz; 132 int profprocs; 133 int ticks; 134 int psratio; 135 136 /* 137 * Initialize clock frequencies and start both clocks running. 138 */ 139 /* ARGSUSED*/ 140 static void 141 initclocks(dummy) 142 void *dummy; 143 { 144 register int i; 145 146 /* 147 * Set divisors to 1 (normal case) and let the machine-specific 148 * code do its bit. 149 */ 150 cpu_initclocks(); 151 152 /* 153 * Compute profhz/stathz, and fix profhz if needed. 154 */ 155 i = stathz ? stathz : hz; 156 if (profhz == 0) 157 profhz = i; 158 psratio = profhz / i; 159 #ifdef SW_WATCHDOG 160 EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0); 161 #endif 162 } 163 164 /* 165 * Each time the real-time timer fires, this function is called on all CPUs. 166 * Note that hardclock() calls hardclock_process() for the boot CPU, so only 167 * the other CPUs in the system need to call this function. 168 */ 169 void 170 hardclock_process(frame) 171 register struct clockframe *frame; 172 { 173 struct pstats *pstats; 174 struct thread *td = curthread; 175 struct proc *p = td->td_proc; 176 177 /* 178 * Run current process's virtual and profile time, as needed. 179 */ 180 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 181 if (p->p_flag & P_SA) { 182 /* XXXKSE What to do? */ 183 } else { 184 pstats = p->p_stats; 185 if (CLKF_USERMODE(frame) && 186 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 187 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) { 188 p->p_sflag |= PS_ALRMPEND; 189 td->td_flags |= TDF_ASTPENDING; 190 } 191 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 192 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) { 193 p->p_sflag |= PS_PROFPEND; 194 td->td_flags |= TDF_ASTPENDING; 195 } 196 } 197 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 198 } 199 200 /* 201 * The real-time timer, interrupting hz times per second. 202 */ 203 void 204 hardclock(frame) 205 register struct clockframe *frame; 206 { 207 int need_softclock = 0; 208 209 CTR0(KTR_CLK, "hardclock fired"); 210 hardclock_process(frame); 211 212 tc_ticktock(); 213 /* 214 * If no separate statistics clock is available, run it from here. 215 * 216 * XXX: this only works for UP 217 */ 218 if (stathz == 0) { 219 profclock(frame); 220 statclock(frame); 221 } 222 223 #ifdef DEVICE_POLLING 224 hardclock_device_poll(); /* this is very short and quick */ 225 #endif /* DEVICE_POLLING */ 226 227 /* 228 * Process callouts at a very low cpu priority, so we don't keep the 229 * relatively high clock interrupt priority any longer than necessary. 230 */ 231 mtx_lock_spin_flags(&callout_lock, MTX_QUIET); 232 ticks++; 233 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) { 234 need_softclock = 1; 235 } else if (softticks + 1 == ticks) 236 ++softticks; 237 mtx_unlock_spin_flags(&callout_lock, MTX_QUIET); 238 239 /* 240 * swi_sched acquires sched_lock, so we don't want to call it with 241 * callout_lock held; incorrect locking order. 242 */ 243 if (need_softclock) 244 swi_sched(softclock_ih, 0); 245 246 #ifdef SW_WATCHDOG 247 if (watchdog_enabled > 0 && --watchdog_ticks <= 0) 248 watchdog_fire(); 249 #endif /* SW_WATCHDOG */ 250 } 251 252 /* 253 * Compute number of ticks in the specified amount of time. 254 */ 255 int 256 tvtohz(tv) 257 struct timeval *tv; 258 { 259 register unsigned long ticks; 260 register long sec, usec; 261 262 /* 263 * If the number of usecs in the whole seconds part of the time 264 * difference fits in a long, then the total number of usecs will 265 * fit in an unsigned long. Compute the total and convert it to 266 * ticks, rounding up and adding 1 to allow for the current tick 267 * to expire. Rounding also depends on unsigned long arithmetic 268 * to avoid overflow. 269 * 270 * Otherwise, if the number of ticks in the whole seconds part of 271 * the time difference fits in a long, then convert the parts to 272 * ticks separately and add, using similar rounding methods and 273 * overflow avoidance. This method would work in the previous 274 * case but it is slightly slower and assumes that hz is integral. 275 * 276 * Otherwise, round the time difference down to the maximum 277 * representable value. 278 * 279 * If ints have 32 bits, then the maximum value for any timeout in 280 * 10ms ticks is 248 days. 281 */ 282 sec = tv->tv_sec; 283 usec = tv->tv_usec; 284 if (usec < 0) { 285 sec--; 286 usec += 1000000; 287 } 288 if (sec < 0) { 289 #ifdef DIAGNOSTIC 290 if (usec > 0) { 291 sec++; 292 usec -= 1000000; 293 } 294 printf("tvotohz: negative time difference %ld sec %ld usec\n", 295 sec, usec); 296 #endif 297 ticks = 1; 298 } else if (sec <= LONG_MAX / 1000000) 299 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 300 / tick + 1; 301 else if (sec <= LONG_MAX / hz) 302 ticks = sec * hz 303 + ((unsigned long)usec + (tick - 1)) / tick + 1; 304 else 305 ticks = LONG_MAX; 306 if (ticks > INT_MAX) 307 ticks = INT_MAX; 308 return ((int)ticks); 309 } 310 311 /* 312 * Start profiling on a process. 313 * 314 * Kernel profiling passes proc0 which never exits and hence 315 * keeps the profile clock running constantly. 316 */ 317 void 318 startprofclock(p) 319 register struct proc *p; 320 { 321 322 /* 323 * XXX; Right now sched_lock protects statclock(), but perhaps 324 * it should be protected later on by a time_lock, which would 325 * cover psdiv, etc. as well. 326 */ 327 PROC_LOCK_ASSERT(p, MA_OWNED); 328 if (p->p_flag & P_STOPPROF) 329 return; 330 if ((p->p_flag & P_PROFIL) == 0) { 331 mtx_lock_spin(&sched_lock); 332 p->p_flag |= P_PROFIL; 333 if (++profprocs == 1) 334 cpu_startprofclock(); 335 mtx_unlock_spin(&sched_lock); 336 } 337 } 338 339 /* 340 * Stop profiling on a process. 341 */ 342 void 343 stopprofclock(p) 344 register struct proc *p; 345 { 346 347 PROC_LOCK_ASSERT(p, MA_OWNED); 348 if (p->p_flag & P_PROFIL) { 349 if (p->p_profthreads != 0) { 350 p->p_flag |= P_STOPPROF; 351 while (p->p_profthreads != 0) 352 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE, 353 "stopprof", 0); 354 p->p_flag &= ~P_STOPPROF; 355 } 356 if ((p->p_flag & P_PROFIL) == 0) 357 return; 358 mtx_lock_spin(&sched_lock); 359 p->p_flag &= ~P_PROFIL; 360 if (--profprocs == 0) 361 cpu_stopprofclock(); 362 mtx_unlock_spin(&sched_lock); 363 } 364 } 365 366 /* 367 * Statistics clock. Grab profile sample, and if divider reaches 0, 368 * do process and kernel statistics. Most of the statistics are only 369 * used by user-level statistics programs. The main exceptions are 370 * ke->ke_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu. 371 * This should be called by all active processors. 372 */ 373 void 374 statclock(frame) 375 register struct clockframe *frame; 376 { 377 struct rusage *ru; 378 struct vmspace *vm; 379 struct thread *td; 380 struct proc *p; 381 long rss; 382 383 td = curthread; 384 p = td->td_proc; 385 386 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 387 if (CLKF_USERMODE(frame)) { 388 /* 389 * Charge the time as appropriate. 390 */ 391 if (p->p_flag & P_SA) 392 thread_statclock(1); 393 p->p_uticks++; 394 if (p->p_nice > NZERO) 395 cp_time[CP_NICE]++; 396 else 397 cp_time[CP_USER]++; 398 } else { 399 /* 400 * Came from kernel mode, so we were: 401 * - handling an interrupt, 402 * - doing syscall or trap work on behalf of the current 403 * user process, or 404 * - spinning in the idle loop. 405 * Whichever it is, charge the time as appropriate. 406 * Note that we charge interrupts to the current process, 407 * regardless of whether they are ``for'' that process, 408 * so that we know how much of its real time was spent 409 * in ``non-process'' (i.e., interrupt) work. 410 */ 411 if ((td->td_ithd != NULL) || td->td_intr_nesting_level >= 2) { 412 p->p_iticks++; 413 cp_time[CP_INTR]++; 414 } else { 415 if (p->p_flag & P_SA) 416 thread_statclock(0); 417 td->td_sticks++; 418 p->p_sticks++; 419 if (p != PCPU_GET(idlethread)->td_proc) 420 cp_time[CP_SYS]++; 421 else 422 cp_time[CP_IDLE]++; 423 } 424 } 425 426 sched_clock(td); 427 428 /* Update resource usage integrals and maximums. */ 429 MPASS(p->p_stats != NULL); 430 MPASS(p->p_vmspace != NULL); 431 vm = p->p_vmspace; 432 ru = &p->p_stats->p_ru; 433 ru->ru_ixrss += pgtok(vm->vm_tsize); 434 ru->ru_idrss += pgtok(vm->vm_dsize); 435 ru->ru_isrss += pgtok(vm->vm_ssize); 436 rss = pgtok(vmspace_resident_count(vm)); 437 if (ru->ru_maxrss < rss) 438 ru->ru_maxrss = rss; 439 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 440 } 441 442 void 443 profclock(frame) 444 register struct clockframe *frame; 445 { 446 struct thread *td; 447 #ifdef GPROF 448 struct gmonparam *g; 449 int i; 450 #endif 451 452 td = curthread; 453 if (CLKF_USERMODE(frame)) { 454 /* 455 * Came from user mode; CPU was in user state. 456 * If this process is being profiled, record the tick. 457 * if there is no related user location yet, don't 458 * bother trying to count it. 459 */ 460 if (td->td_proc->p_flag & P_PROFIL) 461 addupc_intr(td, CLKF_PC(frame), 1); 462 } 463 #ifdef GPROF 464 else { 465 /* 466 * Kernel statistics are just like addupc_intr, only easier. 467 */ 468 g = &_gmonparam; 469 if (g->state == GMON_PROF_ON) { 470 i = CLKF_PC(frame) - g->lowpc; 471 if (i < g->textsize) { 472 i /= HISTFRACTION * sizeof(*g->kcount); 473 g->kcount[i]++; 474 } 475 } 476 } 477 #endif 478 } 479 480 /* 481 * Return information about system clocks. 482 */ 483 static int 484 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 485 { 486 struct clockinfo clkinfo; 487 /* 488 * Construct clockinfo structure. 489 */ 490 bzero(&clkinfo, sizeof(clkinfo)); 491 clkinfo.hz = hz; 492 clkinfo.tick = tick; 493 clkinfo.profhz = profhz; 494 clkinfo.stathz = stathz ? stathz : hz; 495 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 496 } 497 498 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 499 0, 0, sysctl_kern_clockrate, "S,clockinfo", 500 "Rate and period of various kernel clocks"); 501 502 #ifdef SW_WATCHDOG 503 504 static void 505 watchdog_config(void *unused __unused, u_int cmd, int *err) 506 { 507 u_int u; 508 509 u = cmd & WD_INTERVAL; 510 if (cmd && u >= WD_TO_1SEC) { 511 u = cmd & WD_INTERVAL; 512 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz; 513 watchdog_enabled = 1; 514 *err = 0; 515 } else { 516 watchdog_enabled = 0; 517 } 518 } 519 520 /* 521 * Handle a watchdog timeout by dumping interrupt information and 522 * then either dropping to DDB or panicing. 523 */ 524 static void 525 watchdog_fire(void) 526 { 527 int nintr; 528 u_int64_t inttotal; 529 u_long *curintr; 530 char *curname; 531 532 curintr = intrcnt; 533 curname = intrnames; 534 inttotal = 0; 535 nintr = eintrcnt - intrcnt; 536 537 printf("interrupt total\n"); 538 while (--nintr >= 0) { 539 if (*curintr) 540 printf("%-12s %20lu\n", curname, *curintr); 541 curname += strlen(curname) + 1; 542 inttotal += *curintr++; 543 } 544 printf("Total %20ju\n", (uintmax_t)inttotal); 545 546 #ifdef DDB 547 db_print_backtrace(); 548 Debugger("watchdog timeout"); 549 #else /* !DDB */ 550 panic("watchdog timeout"); 551 #endif /* DDB */ 552 } 553 554 #endif /* SW_WATCHDOG */ 555