1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_kdb.h" 41 #include "opt_device_polling.h" 42 #include "opt_hwpmc_hooks.h" 43 #include "opt_ntp.h" 44 #include "opt_watchdog.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/callout.h> 49 #include <sys/kdb.h> 50 #include <sys/kernel.h> 51 #include <sys/kthread.h> 52 #include <sys/ktr.h> 53 #include <sys/lock.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/resource.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sched.h> 59 #include <sys/signalvar.h> 60 #include <sys/sleepqueue.h> 61 #include <sys/smp.h> 62 #include <vm/vm.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <sys/sysctl.h> 66 #include <sys/bus.h> 67 #include <sys/interrupt.h> 68 #include <sys/limits.h> 69 #include <sys/timetc.h> 70 71 #ifdef GPROF 72 #include <sys/gmon.h> 73 #endif 74 75 #ifdef HWPMC_HOOKS 76 #include <sys/pmckern.h> 77 #endif 78 79 #ifdef DEVICE_POLLING 80 extern void hardclock_device_poll(void); 81 #endif /* DEVICE_POLLING */ 82 83 static void initclocks(void *dummy); 84 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 85 86 /* Spin-lock protecting profiling statistics. */ 87 static struct mtx time_lock; 88 89 static int 90 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS) 91 { 92 int error; 93 long cp_time[CPUSTATES]; 94 #ifdef SCTL_MASK32 95 int i; 96 unsigned int cp_time32[CPUSTATES]; 97 #endif 98 99 read_cpu_time(cp_time); 100 #ifdef SCTL_MASK32 101 if (req->flags & SCTL_MASK32) { 102 if (!req->oldptr) 103 return SYSCTL_OUT(req, 0, sizeof(cp_time32)); 104 for (i = 0; i < CPUSTATES; i++) 105 cp_time32[i] = (unsigned int)cp_time[i]; 106 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 107 } else 108 #endif 109 { 110 if (!req->oldptr) 111 return SYSCTL_OUT(req, 0, sizeof(cp_time)); 112 error = SYSCTL_OUT(req, cp_time, sizeof(cp_time)); 113 } 114 return error; 115 } 116 117 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 118 0,0, sysctl_kern_cp_time, "LU", "CPU time statistics"); 119 120 static long empty[CPUSTATES]; 121 122 static int 123 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS) 124 { 125 struct pcpu *pcpu; 126 int error; 127 int c; 128 long *cp_time; 129 #ifdef SCTL_MASK32 130 unsigned int cp_time32[CPUSTATES]; 131 int i; 132 #endif 133 134 if (!req->oldptr) { 135 #ifdef SCTL_MASK32 136 if (req->flags & SCTL_MASK32) 137 return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1)); 138 else 139 #endif 140 return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1)); 141 } 142 for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) { 143 if (!CPU_ABSENT(c)) { 144 pcpu = pcpu_find(c); 145 cp_time = pcpu->pc_cp_time; 146 } else { 147 cp_time = empty; 148 } 149 #ifdef SCTL_MASK32 150 if (req->flags & SCTL_MASK32) { 151 for (i = 0; i < CPUSTATES; i++) 152 cp_time32[i] = (unsigned int)cp_time[i]; 153 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 154 } else 155 #endif 156 error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES); 157 } 158 return error; 159 } 160 161 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 162 0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics"); 163 164 #ifdef DEADLKRES 165 static const char *blessed[] = { 166 "getblk", 167 "so_snd_sx", 168 "so_rcv_sx", 169 NULL 170 }; 171 static int slptime_threshold = 1800; 172 static int blktime_threshold = 900; 173 static int sleepfreq = 3; 174 175 static void 176 deadlkres(void) 177 { 178 struct proc *p; 179 struct thread *td; 180 void *wchan; 181 int blkticks, i, slpticks, slptype, tryl, tticks; 182 183 tryl = 0; 184 for (;;) { 185 blkticks = blktime_threshold * hz; 186 slpticks = slptime_threshold * hz; 187 188 /* 189 * Avoid to sleep on the sx_lock in order to avoid a possible 190 * priority inversion problem leading to starvation. 191 * If the lock can't be held after 100 tries, panic. 192 */ 193 if (!sx_try_slock(&allproc_lock)) { 194 if (tryl > 100) 195 panic("%s: possible deadlock detected on allproc_lock\n", 196 __func__); 197 tryl++; 198 pause("allproc_lock deadlkres", sleepfreq * hz); 199 continue; 200 } 201 tryl = 0; 202 FOREACH_PROC_IN_SYSTEM(p) { 203 PROC_LOCK(p); 204 FOREACH_THREAD_IN_PROC(p, td) { 205 206 /* 207 * Once a thread is found in "interesting" 208 * state a possible ticks wrap-up needs to be 209 * checked. 210 */ 211 thread_lock(td); 212 if (TD_ON_LOCK(td) && ticks < td->td_blktick) { 213 214 /* 215 * The thread should be blocked on a 216 * turnstile, simply check if the 217 * turnstile channel is in good state. 218 */ 219 MPASS(td->td_blocked != NULL); 220 221 tticks = ticks - td->td_blktick; 222 thread_unlock(td); 223 if (tticks > blkticks) { 224 225 /* 226 * Accordingly with provided 227 * thresholds, this thread is 228 * stuck for too long on a 229 * turnstile. 230 */ 231 PROC_UNLOCK(p); 232 sx_sunlock(&allproc_lock); 233 panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", 234 __func__, td, tticks); 235 } 236 } else if (TD_IS_SLEEPING(td) && 237 TD_ON_SLEEPQ(td) && 238 ticks < td->td_blktick) { 239 240 /* 241 * Check if the thread is sleeping on a 242 * lock, otherwise skip the check. 243 * Drop the thread lock in order to 244 * avoid a LOR with the sleepqueue 245 * spinlock. 246 */ 247 wchan = td->td_wchan; 248 tticks = ticks - td->td_slptick; 249 thread_unlock(td); 250 slptype = sleepq_type(wchan); 251 if ((slptype == SLEEPQ_SX || 252 slptype == SLEEPQ_LK) && 253 tticks > slpticks) { 254 255 /* 256 * Accordingly with provided 257 * thresholds, this thread is 258 * stuck for too long on a 259 * sleepqueue. 260 * However, being on a 261 * sleepqueue, we might still 262 * check for the blessed 263 * list. 264 */ 265 tryl = 0; 266 for (i = 0; blessed[i] != NULL; 267 i++) { 268 if (!strcmp(blessed[i], 269 td->td_wmesg)) { 270 tryl = 1; 271 break; 272 } 273 } 274 if (tryl != 0) { 275 tryl = 0; 276 continue; 277 } 278 PROC_UNLOCK(p); 279 sx_sunlock(&allproc_lock); 280 panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", 281 __func__, td, tticks); 282 } 283 } else 284 thread_unlock(td); 285 } 286 PROC_UNLOCK(p); 287 } 288 sx_sunlock(&allproc_lock); 289 290 /* Sleep for sleepfreq seconds. */ 291 pause("deadlkres", sleepfreq * hz); 292 } 293 } 294 295 static struct kthread_desc deadlkres_kd = { 296 "deadlkres", 297 deadlkres, 298 (struct thread **)NULL 299 }; 300 301 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd); 302 303 SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0, "Deadlock resolver"); 304 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW, 305 &slptime_threshold, 0, 306 "Number of seconds within is valid to sleep on a sleepqueue"); 307 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW, 308 &blktime_threshold, 0, 309 "Number of seconds within is valid to block on a turnstile"); 310 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0, 311 "Number of seconds between any deadlock resolver thread run"); 312 #endif /* DEADLKRES */ 313 314 void 315 read_cpu_time(long *cp_time) 316 { 317 struct pcpu *pc; 318 int i, j; 319 320 /* Sum up global cp_time[]. */ 321 bzero(cp_time, sizeof(long) * CPUSTATES); 322 CPU_FOREACH(i) { 323 pc = pcpu_find(i); 324 for (j = 0; j < CPUSTATES; j++) 325 cp_time[j] += pc->pc_cp_time[j]; 326 } 327 } 328 329 #ifdef SW_WATCHDOG 330 #include <sys/watchdog.h> 331 332 static int watchdog_ticks; 333 static int watchdog_enabled; 334 static void watchdog_fire(void); 335 static void watchdog_config(void *, u_int, int *); 336 #endif /* SW_WATCHDOG */ 337 338 /* 339 * Clock handling routines. 340 * 341 * This code is written to operate with two timers that run independently of 342 * each other. 343 * 344 * The main timer, running hz times per second, is used to trigger interval 345 * timers, timeouts and rescheduling as needed. 346 * 347 * The second timer handles kernel and user profiling, 348 * and does resource use estimation. If the second timer is programmable, 349 * it is randomized to avoid aliasing between the two clocks. For example, 350 * the randomization prevents an adversary from always giving up the cpu 351 * just before its quantum expires. Otherwise, it would never accumulate 352 * cpu ticks. The mean frequency of the second timer is stathz. 353 * 354 * If no second timer exists, stathz will be zero; in this case we drive 355 * profiling and statistics off the main clock. This WILL NOT be accurate; 356 * do not do it unless absolutely necessary. 357 * 358 * The statistics clock may (or may not) be run at a higher rate while 359 * profiling. This profile clock runs at profhz. We require that profhz 360 * be an integral multiple of stathz. 361 * 362 * If the statistics clock is running fast, it must be divided by the ratio 363 * profhz/stathz for statistics. (For profiling, every tick counts.) 364 * 365 * Time-of-day is maintained using a "timecounter", which may or may 366 * not be related to the hardware generating the above mentioned 367 * interrupts. 368 */ 369 370 int stathz; 371 int profhz; 372 int profprocs; 373 int ticks; 374 int psratio; 375 376 int timer1hz; 377 int timer2hz; 378 static DPCPU_DEFINE(u_int, hard_cnt); 379 static DPCPU_DEFINE(u_int, stat_cnt); 380 static DPCPU_DEFINE(u_int, prof_cnt); 381 382 /* 383 * Initialize clock frequencies and start both clocks running. 384 */ 385 /* ARGSUSED*/ 386 static void 387 initclocks(dummy) 388 void *dummy; 389 { 390 register int i; 391 392 /* 393 * Set divisors to 1 (normal case) and let the machine-specific 394 * code do its bit. 395 */ 396 mtx_init(&time_lock, "time lock", NULL, MTX_DEF); 397 cpu_initclocks(); 398 399 /* 400 * Compute profhz/stathz, and fix profhz if needed. 401 */ 402 i = stathz ? stathz : hz; 403 if (profhz == 0) 404 profhz = i; 405 psratio = profhz / i; 406 #ifdef SW_WATCHDOG 407 EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0); 408 #endif 409 } 410 411 void 412 timer1clock(int usermode, uintfptr_t pc) 413 { 414 u_int *cnt; 415 416 cnt = DPCPU_PTR(hard_cnt); 417 *cnt += hz; 418 if (*cnt >= timer1hz) { 419 *cnt -= timer1hz; 420 if (*cnt >= timer1hz) 421 *cnt = 0; 422 if (PCPU_GET(cpuid) == 0) 423 hardclock(usermode, pc); 424 else 425 hardclock_cpu(usermode); 426 } 427 if (timer2hz == 0) 428 timer2clock(usermode, pc); 429 } 430 431 void 432 timer2clock(int usermode, uintfptr_t pc) 433 { 434 u_int *cnt; 435 int t2hz = timer2hz ? timer2hz : timer1hz; 436 437 cnt = DPCPU_PTR(stat_cnt); 438 *cnt += stathz; 439 if (*cnt >= t2hz) { 440 *cnt -= t2hz; 441 if (*cnt >= t2hz) 442 *cnt = 0; 443 statclock(usermode); 444 } 445 if (profprocs == 0) 446 return; 447 cnt = DPCPU_PTR(prof_cnt); 448 *cnt += profhz; 449 if (*cnt >= t2hz) { 450 *cnt -= t2hz; 451 if (*cnt >= t2hz) 452 *cnt = 0; 453 profclock(usermode, pc); 454 } 455 } 456 457 /* 458 * Each time the real-time timer fires, this function is called on all CPUs. 459 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only 460 * the other CPUs in the system need to call this function. 461 */ 462 void 463 hardclock_cpu(int usermode) 464 { 465 struct pstats *pstats; 466 struct thread *td = curthread; 467 struct proc *p = td->td_proc; 468 int flags; 469 470 /* 471 * Run current process's virtual and profile time, as needed. 472 */ 473 pstats = p->p_stats; 474 flags = 0; 475 if (usermode && 476 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) { 477 PROC_SLOCK(p); 478 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 479 flags |= TDF_ALRMPEND | TDF_ASTPENDING; 480 PROC_SUNLOCK(p); 481 } 482 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) { 483 PROC_SLOCK(p); 484 if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 485 flags |= TDF_PROFPEND | TDF_ASTPENDING; 486 PROC_SUNLOCK(p); 487 } 488 thread_lock(td); 489 sched_tick(); 490 td->td_flags |= flags; 491 thread_unlock(td); 492 493 #ifdef HWPMC_HOOKS 494 if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid))) 495 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL); 496 #endif 497 callout_tick(); 498 } 499 500 /* 501 * The real-time timer, interrupting hz times per second. 502 */ 503 void 504 hardclock(int usermode, uintfptr_t pc) 505 { 506 507 atomic_add_int((volatile int *)&ticks, 1); 508 hardclock_cpu(usermode); 509 tc_ticktock(); 510 /* 511 * If no separate statistics clock is available, run it from here. 512 * 513 * XXX: this only works for UP 514 */ 515 if (stathz == 0) { 516 profclock(usermode, pc); 517 statclock(usermode); 518 } 519 #ifdef DEVICE_POLLING 520 hardclock_device_poll(); /* this is very short and quick */ 521 #endif /* DEVICE_POLLING */ 522 #ifdef SW_WATCHDOG 523 if (watchdog_enabled > 0 && --watchdog_ticks <= 0) 524 watchdog_fire(); 525 #endif /* SW_WATCHDOG */ 526 } 527 528 /* 529 * Compute number of ticks in the specified amount of time. 530 */ 531 int 532 tvtohz(tv) 533 struct timeval *tv; 534 { 535 register unsigned long ticks; 536 register long sec, usec; 537 538 /* 539 * If the number of usecs in the whole seconds part of the time 540 * difference fits in a long, then the total number of usecs will 541 * fit in an unsigned long. Compute the total and convert it to 542 * ticks, rounding up and adding 1 to allow for the current tick 543 * to expire. Rounding also depends on unsigned long arithmetic 544 * to avoid overflow. 545 * 546 * Otherwise, if the number of ticks in the whole seconds part of 547 * the time difference fits in a long, then convert the parts to 548 * ticks separately and add, using similar rounding methods and 549 * overflow avoidance. This method would work in the previous 550 * case but it is slightly slower and assumes that hz is integral. 551 * 552 * Otherwise, round the time difference down to the maximum 553 * representable value. 554 * 555 * If ints have 32 bits, then the maximum value for any timeout in 556 * 10ms ticks is 248 days. 557 */ 558 sec = tv->tv_sec; 559 usec = tv->tv_usec; 560 if (usec < 0) { 561 sec--; 562 usec += 1000000; 563 } 564 if (sec < 0) { 565 #ifdef DIAGNOSTIC 566 if (usec > 0) { 567 sec++; 568 usec -= 1000000; 569 } 570 printf("tvotohz: negative time difference %ld sec %ld usec\n", 571 sec, usec); 572 #endif 573 ticks = 1; 574 } else if (sec <= LONG_MAX / 1000000) 575 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 576 / tick + 1; 577 else if (sec <= LONG_MAX / hz) 578 ticks = sec * hz 579 + ((unsigned long)usec + (tick - 1)) / tick + 1; 580 else 581 ticks = LONG_MAX; 582 if (ticks > INT_MAX) 583 ticks = INT_MAX; 584 return ((int)ticks); 585 } 586 587 /* 588 * Start profiling on a process. 589 * 590 * Kernel profiling passes proc0 which never exits and hence 591 * keeps the profile clock running constantly. 592 */ 593 void 594 startprofclock(p) 595 register struct proc *p; 596 { 597 598 PROC_LOCK_ASSERT(p, MA_OWNED); 599 if (p->p_flag & P_STOPPROF) 600 return; 601 if ((p->p_flag & P_PROFIL) == 0) { 602 p->p_flag |= P_PROFIL; 603 mtx_lock(&time_lock); 604 if (++profprocs == 1) 605 cpu_startprofclock(); 606 mtx_unlock(&time_lock); 607 } 608 } 609 610 /* 611 * Stop profiling on a process. 612 */ 613 void 614 stopprofclock(p) 615 register struct proc *p; 616 { 617 618 PROC_LOCK_ASSERT(p, MA_OWNED); 619 if (p->p_flag & P_PROFIL) { 620 if (p->p_profthreads != 0) { 621 p->p_flag |= P_STOPPROF; 622 while (p->p_profthreads != 0) 623 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE, 624 "stopprof", 0); 625 p->p_flag &= ~P_STOPPROF; 626 } 627 if ((p->p_flag & P_PROFIL) == 0) 628 return; 629 p->p_flag &= ~P_PROFIL; 630 mtx_lock(&time_lock); 631 if (--profprocs == 0) 632 cpu_stopprofclock(); 633 mtx_unlock(&time_lock); 634 } 635 } 636 637 /* 638 * Statistics clock. Updates rusage information and calls the scheduler 639 * to adjust priorities of the active thread. 640 * 641 * This should be called by all active processors. 642 */ 643 void 644 statclock(int usermode) 645 { 646 struct rusage *ru; 647 struct vmspace *vm; 648 struct thread *td; 649 struct proc *p; 650 long rss; 651 long *cp_time; 652 653 td = curthread; 654 p = td->td_proc; 655 656 cp_time = (long *)PCPU_PTR(cp_time); 657 if (usermode) { 658 /* 659 * Charge the time as appropriate. 660 */ 661 td->td_uticks++; 662 if (p->p_nice > NZERO) 663 cp_time[CP_NICE]++; 664 else 665 cp_time[CP_USER]++; 666 } else { 667 /* 668 * Came from kernel mode, so we were: 669 * - handling an interrupt, 670 * - doing syscall or trap work on behalf of the current 671 * user process, or 672 * - spinning in the idle loop. 673 * Whichever it is, charge the time as appropriate. 674 * Note that we charge interrupts to the current process, 675 * regardless of whether they are ``for'' that process, 676 * so that we know how much of its real time was spent 677 * in ``non-process'' (i.e., interrupt) work. 678 */ 679 if ((td->td_pflags & TDP_ITHREAD) || 680 td->td_intr_nesting_level >= 2) { 681 td->td_iticks++; 682 cp_time[CP_INTR]++; 683 } else { 684 td->td_pticks++; 685 td->td_sticks++; 686 if (!TD_IS_IDLETHREAD(td)) 687 cp_time[CP_SYS]++; 688 else 689 cp_time[CP_IDLE]++; 690 } 691 } 692 693 /* Update resource usage integrals and maximums. */ 694 MPASS(p->p_vmspace != NULL); 695 vm = p->p_vmspace; 696 ru = &td->td_ru; 697 ru->ru_ixrss += pgtok(vm->vm_tsize); 698 ru->ru_idrss += pgtok(vm->vm_dsize); 699 ru->ru_isrss += pgtok(vm->vm_ssize); 700 rss = pgtok(vmspace_resident_count(vm)); 701 if (ru->ru_maxrss < rss) 702 ru->ru_maxrss = rss; 703 KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock", 704 "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz); 705 thread_lock_flags(td, MTX_QUIET); 706 sched_clock(td); 707 thread_unlock(td); 708 } 709 710 void 711 profclock(int usermode, uintfptr_t pc) 712 { 713 struct thread *td; 714 #ifdef GPROF 715 struct gmonparam *g; 716 uintfptr_t i; 717 #endif 718 719 td = curthread; 720 if (usermode) { 721 /* 722 * Came from user mode; CPU was in user state. 723 * If this process is being profiled, record the tick. 724 * if there is no related user location yet, don't 725 * bother trying to count it. 726 */ 727 if (td->td_proc->p_flag & P_PROFIL) 728 addupc_intr(td, pc, 1); 729 } 730 #ifdef GPROF 731 else { 732 /* 733 * Kernel statistics are just like addupc_intr, only easier. 734 */ 735 g = &_gmonparam; 736 if (g->state == GMON_PROF_ON && pc >= g->lowpc) { 737 i = PC_TO_I(g, pc); 738 if (i < g->textsize) { 739 KCOUNT(g, i)++; 740 } 741 } 742 } 743 #endif 744 } 745 746 /* 747 * Return information about system clocks. 748 */ 749 static int 750 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 751 { 752 struct clockinfo clkinfo; 753 /* 754 * Construct clockinfo structure. 755 */ 756 bzero(&clkinfo, sizeof(clkinfo)); 757 clkinfo.hz = hz; 758 clkinfo.tick = tick; 759 clkinfo.profhz = profhz; 760 clkinfo.stathz = stathz ? stathz : hz; 761 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 762 } 763 764 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, 765 CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE, 766 0, 0, sysctl_kern_clockrate, "S,clockinfo", 767 "Rate and period of various kernel clocks"); 768 769 #ifdef SW_WATCHDOG 770 771 static void 772 watchdog_config(void *unused __unused, u_int cmd, int *error) 773 { 774 u_int u; 775 776 u = cmd & WD_INTERVAL; 777 if (u >= WD_TO_1SEC) { 778 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz; 779 watchdog_enabled = 1; 780 *error = 0; 781 } else { 782 watchdog_enabled = 0; 783 } 784 } 785 786 /* 787 * Handle a watchdog timeout by dumping interrupt information and 788 * then either dropping to DDB or panicking. 789 */ 790 static void 791 watchdog_fire(void) 792 { 793 int nintr; 794 uint64_t inttotal; 795 u_long *curintr; 796 char *curname; 797 798 curintr = intrcnt; 799 curname = intrnames; 800 inttotal = 0; 801 nintr = eintrcnt - intrcnt; 802 803 printf("interrupt total\n"); 804 while (--nintr >= 0) { 805 if (*curintr) 806 printf("%-12s %20lu\n", curname, *curintr); 807 curname += strlen(curname) + 1; 808 inttotal += *curintr++; 809 } 810 printf("Total %20ju\n", (uintmax_t)inttotal); 811 812 #if defined(KDB) && !defined(KDB_UNATTENDED) 813 kdb_backtrace(); 814 kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout"); 815 #else 816 panic("watchdog timeout"); 817 #endif 818 } 819 820 #endif /* SW_WATCHDOG */ 821