1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_kdb.h" 41 #include "opt_device_polling.h" 42 #include "opt_hwpmc_hooks.h" 43 #include "opt_ntp.h" 44 #include "opt_watchdog.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/callout.h> 49 #include <sys/kdb.h> 50 #include <sys/kernel.h> 51 #include <sys/kthread.h> 52 #include <sys/ktr.h> 53 #include <sys/lock.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/resource.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sched.h> 59 #include <sys/signalvar.h> 60 #include <sys/sleepqueue.h> 61 #include <sys/smp.h> 62 #include <vm/vm.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <sys/sysctl.h> 66 #include <sys/bus.h> 67 #include <sys/interrupt.h> 68 #include <sys/limits.h> 69 #include <sys/timetc.h> 70 71 #ifdef GPROF 72 #include <sys/gmon.h> 73 #endif 74 75 #ifdef HWPMC_HOOKS 76 #include <sys/pmckern.h> 77 #endif 78 79 #ifdef DEVICE_POLLING 80 extern void hardclock_device_poll(void); 81 #endif /* DEVICE_POLLING */ 82 83 static void initclocks(void *dummy); 84 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 85 86 /* Spin-lock protecting profiling statistics. */ 87 static struct mtx time_lock; 88 89 static int 90 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS) 91 { 92 int error; 93 long cp_time[CPUSTATES]; 94 #ifdef SCTL_MASK32 95 int i; 96 unsigned int cp_time32[CPUSTATES]; 97 #endif 98 99 read_cpu_time(cp_time); 100 #ifdef SCTL_MASK32 101 if (req->flags & SCTL_MASK32) { 102 if (!req->oldptr) 103 return SYSCTL_OUT(req, 0, sizeof(cp_time32)); 104 for (i = 0; i < CPUSTATES; i++) 105 cp_time32[i] = (unsigned int)cp_time[i]; 106 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 107 } else 108 #endif 109 { 110 if (!req->oldptr) 111 return SYSCTL_OUT(req, 0, sizeof(cp_time)); 112 error = SYSCTL_OUT(req, cp_time, sizeof(cp_time)); 113 } 114 return error; 115 } 116 117 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 118 0,0, sysctl_kern_cp_time, "LU", "CPU time statistics"); 119 120 static long empty[CPUSTATES]; 121 122 static int 123 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS) 124 { 125 struct pcpu *pcpu; 126 int error; 127 int c; 128 long *cp_time; 129 #ifdef SCTL_MASK32 130 unsigned int cp_time32[CPUSTATES]; 131 int i; 132 #endif 133 134 if (!req->oldptr) { 135 #ifdef SCTL_MASK32 136 if (req->flags & SCTL_MASK32) 137 return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1)); 138 else 139 #endif 140 return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1)); 141 } 142 for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) { 143 if (!CPU_ABSENT(c)) { 144 pcpu = pcpu_find(c); 145 cp_time = pcpu->pc_cp_time; 146 } else { 147 cp_time = empty; 148 } 149 #ifdef SCTL_MASK32 150 if (req->flags & SCTL_MASK32) { 151 for (i = 0; i < CPUSTATES; i++) 152 cp_time32[i] = (unsigned int)cp_time[i]; 153 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 154 } else 155 #endif 156 error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES); 157 } 158 return error; 159 } 160 161 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 162 0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics"); 163 164 #ifdef DEADLKRES 165 static const char *blessed[] = { 166 "getblk", 167 "so_snd_sx", 168 "so_rcv_sx", 169 NULL 170 }; 171 static int slptime_threshold = 1800; 172 static int blktime_threshold = 900; 173 static int sleepfreq = 3; 174 175 static void 176 deadlkres(void) 177 { 178 struct proc *p; 179 struct thread *td; 180 void *wchan; 181 int blkticks, i, slpticks, slptype, tryl, tticks; 182 183 tryl = 0; 184 for (;;) { 185 blkticks = blktime_threshold * hz; 186 slpticks = slptime_threshold * hz; 187 188 /* 189 * Avoid to sleep on the sx_lock in order to avoid a possible 190 * priority inversion problem leading to starvation. 191 * If the lock can't be held after 100 tries, panic. 192 */ 193 if (!sx_try_slock(&allproc_lock)) { 194 if (tryl > 100) 195 panic("%s: possible deadlock detected on allproc_lock\n", 196 __func__); 197 tryl++; 198 pause("allproc_lock deadlkres", sleepfreq * hz); 199 continue; 200 } 201 tryl = 0; 202 FOREACH_PROC_IN_SYSTEM(p) { 203 PROC_LOCK(p); 204 FOREACH_THREAD_IN_PROC(p, td) { 205 thread_lock(td); 206 if (TD_ON_LOCK(td)) { 207 208 /* 209 * The thread should be blocked on a 210 * turnstile, simply check if the 211 * turnstile channel is in good state. 212 */ 213 MPASS(td->td_blocked != NULL); 214 215 /* Handle ticks wrap-up. */ 216 if (ticks < td->td_blktick) 217 continue; 218 tticks = ticks - td->td_blktick; 219 thread_unlock(td); 220 if (tticks > blkticks) { 221 222 /* 223 * Accordingly with provided 224 * thresholds, this thread is 225 * stuck for too long on a 226 * turnstile. 227 */ 228 PROC_UNLOCK(p); 229 sx_sunlock(&allproc_lock); 230 panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", 231 __func__, td, tticks); 232 } 233 } else if (TD_IS_SLEEPING(td)) { 234 235 /* Handle ticks wrap-up. */ 236 if (ticks < td->td_blktick) 237 continue; 238 239 /* 240 * Check if the thread is sleeping on a 241 * lock, otherwise skip the check. 242 * Drop the thread lock in order to 243 * avoid a LOR with the sleepqueue 244 * spinlock. 245 */ 246 wchan = td->td_wchan; 247 tticks = ticks - td->td_slptick; 248 thread_unlock(td); 249 slptype = sleepq_type(wchan); 250 if ((slptype == SLEEPQ_SX || 251 slptype == SLEEPQ_LK) && 252 tticks > slpticks) { 253 254 /* 255 * Accordingly with provided 256 * thresholds, this thread is 257 * stuck for too long on a 258 * sleepqueue. 259 * However, being on a 260 * sleepqueue, we might still 261 * check for the blessed 262 * list. 263 */ 264 tryl = 0; 265 for (i = 0; blessed[i] != NULL; 266 i++) { 267 if (!strcmp(blessed[i], 268 td->td_wmesg)) { 269 tryl = 1; 270 break; 271 } 272 } 273 if (tryl != 0) { 274 tryl = 0; 275 continue; 276 } 277 PROC_UNLOCK(p); 278 sx_sunlock(&allproc_lock); 279 panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", 280 __func__, td, tticks); 281 } 282 } else 283 thread_unlock(td); 284 } 285 PROC_UNLOCK(p); 286 } 287 sx_sunlock(&allproc_lock); 288 289 /* Sleep for sleepfreq seconds. */ 290 pause("deadlkres", sleepfreq * hz); 291 } 292 } 293 294 static struct kthread_desc deadlkres_kd = { 295 "deadlkres", 296 deadlkres, 297 (struct thread **)NULL 298 }; 299 300 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd); 301 302 SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0, "Deadlock resolver"); 303 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW, 304 &slptime_threshold, 0, 305 "Number of seconds within is valid to sleep on a sleepqueue"); 306 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW, 307 &blktime_threshold, 0, 308 "Number of seconds within is valid to block on a turnstile"); 309 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0, 310 "Number of seconds between any deadlock resolver thread run"); 311 #endif /* DEADLKRES */ 312 313 void 314 read_cpu_time(long *cp_time) 315 { 316 struct pcpu *pc; 317 int i, j; 318 319 /* Sum up global cp_time[]. */ 320 bzero(cp_time, sizeof(long) * CPUSTATES); 321 for (i = 0; i <= mp_maxid; i++) { 322 if (CPU_ABSENT(i)) 323 continue; 324 pc = pcpu_find(i); 325 for (j = 0; j < CPUSTATES; j++) 326 cp_time[j] += pc->pc_cp_time[j]; 327 } 328 } 329 330 #ifdef SW_WATCHDOG 331 #include <sys/watchdog.h> 332 333 static int watchdog_ticks; 334 static int watchdog_enabled; 335 static void watchdog_fire(void); 336 static void watchdog_config(void *, u_int, int *); 337 #endif /* SW_WATCHDOG */ 338 339 /* 340 * Clock handling routines. 341 * 342 * This code is written to operate with two timers that run independently of 343 * each other. 344 * 345 * The main timer, running hz times per second, is used to trigger interval 346 * timers, timeouts and rescheduling as needed. 347 * 348 * The second timer handles kernel and user profiling, 349 * and does resource use estimation. If the second timer is programmable, 350 * it is randomized to avoid aliasing between the two clocks. For example, 351 * the randomization prevents an adversary from always giving up the cpu 352 * just before its quantum expires. Otherwise, it would never accumulate 353 * cpu ticks. The mean frequency of the second timer is stathz. 354 * 355 * If no second timer exists, stathz will be zero; in this case we drive 356 * profiling and statistics off the main clock. This WILL NOT be accurate; 357 * do not do it unless absolutely necessary. 358 * 359 * The statistics clock may (or may not) be run at a higher rate while 360 * profiling. This profile clock runs at profhz. We require that profhz 361 * be an integral multiple of stathz. 362 * 363 * If the statistics clock is running fast, it must be divided by the ratio 364 * profhz/stathz for statistics. (For profiling, every tick counts.) 365 * 366 * Time-of-day is maintained using a "timecounter", which may or may 367 * not be related to the hardware generating the above mentioned 368 * interrupts. 369 */ 370 371 int stathz; 372 int profhz; 373 int profprocs; 374 int ticks; 375 int psratio; 376 377 int timer1hz; 378 int timer2hz; 379 static DPCPU_DEFINE(u_int, hard_cnt); 380 static DPCPU_DEFINE(u_int, stat_cnt); 381 static DPCPU_DEFINE(u_int, prof_cnt); 382 383 /* 384 * Initialize clock frequencies and start both clocks running. 385 */ 386 /* ARGSUSED*/ 387 static void 388 initclocks(dummy) 389 void *dummy; 390 { 391 register int i; 392 393 /* 394 * Set divisors to 1 (normal case) and let the machine-specific 395 * code do its bit. 396 */ 397 mtx_init(&time_lock, "time lock", NULL, MTX_SPIN); 398 cpu_initclocks(); 399 400 /* 401 * Compute profhz/stathz, and fix profhz if needed. 402 */ 403 i = stathz ? stathz : hz; 404 if (profhz == 0) 405 profhz = i; 406 psratio = profhz / i; 407 #ifdef SW_WATCHDOG 408 EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0); 409 #endif 410 } 411 412 void 413 timer1clock(int usermode, uintfptr_t pc) 414 { 415 u_int *cnt; 416 417 cnt = DPCPU_PTR(hard_cnt); 418 *cnt += hz; 419 if (*cnt >= timer1hz) { 420 *cnt -= timer1hz; 421 if (*cnt >= timer1hz) 422 *cnt = 0; 423 if (PCPU_GET(cpuid) == 0) 424 hardclock(usermode, pc); 425 else 426 hardclock_cpu(usermode); 427 } 428 if (timer2hz == 0) 429 timer2clock(usermode, pc); 430 } 431 432 void 433 timer2clock(int usermode, uintfptr_t pc) 434 { 435 u_int *cnt; 436 int t2hz = timer2hz ? timer2hz : timer1hz; 437 438 cnt = DPCPU_PTR(stat_cnt); 439 *cnt += stathz; 440 if (*cnt >= t2hz) { 441 *cnt -= t2hz; 442 if (*cnt >= t2hz) 443 *cnt = 0; 444 statclock(usermode); 445 } 446 if (profprocs == 0) 447 return; 448 cnt = DPCPU_PTR(prof_cnt); 449 *cnt += profhz; 450 if (*cnt >= t2hz) { 451 *cnt -= t2hz; 452 if (*cnt >= t2hz) 453 *cnt = 0; 454 profclock(usermode, pc); 455 } 456 } 457 458 /* 459 * Each time the real-time timer fires, this function is called on all CPUs. 460 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only 461 * the other CPUs in the system need to call this function. 462 */ 463 void 464 hardclock_cpu(int usermode) 465 { 466 struct pstats *pstats; 467 struct thread *td = curthread; 468 struct proc *p = td->td_proc; 469 int flags; 470 471 /* 472 * Run current process's virtual and profile time, as needed. 473 */ 474 pstats = p->p_stats; 475 flags = 0; 476 if (usermode && 477 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) { 478 PROC_SLOCK(p); 479 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 480 flags |= TDF_ALRMPEND | TDF_ASTPENDING; 481 PROC_SUNLOCK(p); 482 } 483 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) { 484 PROC_SLOCK(p); 485 if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 486 flags |= TDF_PROFPEND | TDF_ASTPENDING; 487 PROC_SUNLOCK(p); 488 } 489 thread_lock(td); 490 sched_tick(); 491 td->td_flags |= flags; 492 thread_unlock(td); 493 494 #ifdef HWPMC_HOOKS 495 if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid))) 496 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL); 497 #endif 498 callout_tick(); 499 } 500 501 /* 502 * The real-time timer, interrupting hz times per second. 503 */ 504 void 505 hardclock(int usermode, uintfptr_t pc) 506 { 507 508 atomic_add_int((volatile int *)&ticks, 1); 509 hardclock_cpu(usermode); 510 tc_ticktock(); 511 /* 512 * If no separate statistics clock is available, run it from here. 513 * 514 * XXX: this only works for UP 515 */ 516 if (stathz == 0) { 517 profclock(usermode, pc); 518 statclock(usermode); 519 } 520 #ifdef DEVICE_POLLING 521 hardclock_device_poll(); /* this is very short and quick */ 522 #endif /* DEVICE_POLLING */ 523 #ifdef SW_WATCHDOG 524 if (watchdog_enabled > 0 && --watchdog_ticks <= 0) 525 watchdog_fire(); 526 #endif /* SW_WATCHDOG */ 527 } 528 529 /* 530 * Compute number of ticks in the specified amount of time. 531 */ 532 int 533 tvtohz(tv) 534 struct timeval *tv; 535 { 536 register unsigned long ticks; 537 register long sec, usec; 538 539 /* 540 * If the number of usecs in the whole seconds part of the time 541 * difference fits in a long, then the total number of usecs will 542 * fit in an unsigned long. Compute the total and convert it to 543 * ticks, rounding up and adding 1 to allow for the current tick 544 * to expire. Rounding also depends on unsigned long arithmetic 545 * to avoid overflow. 546 * 547 * Otherwise, if the number of ticks in the whole seconds part of 548 * the time difference fits in a long, then convert the parts to 549 * ticks separately and add, using similar rounding methods and 550 * overflow avoidance. This method would work in the previous 551 * case but it is slightly slower and assumes that hz is integral. 552 * 553 * Otherwise, round the time difference down to the maximum 554 * representable value. 555 * 556 * If ints have 32 bits, then the maximum value for any timeout in 557 * 10ms ticks is 248 days. 558 */ 559 sec = tv->tv_sec; 560 usec = tv->tv_usec; 561 if (usec < 0) { 562 sec--; 563 usec += 1000000; 564 } 565 if (sec < 0) { 566 #ifdef DIAGNOSTIC 567 if (usec > 0) { 568 sec++; 569 usec -= 1000000; 570 } 571 printf("tvotohz: negative time difference %ld sec %ld usec\n", 572 sec, usec); 573 #endif 574 ticks = 1; 575 } else if (sec <= LONG_MAX / 1000000) 576 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 577 / tick + 1; 578 else if (sec <= LONG_MAX / hz) 579 ticks = sec * hz 580 + ((unsigned long)usec + (tick - 1)) / tick + 1; 581 else 582 ticks = LONG_MAX; 583 if (ticks > INT_MAX) 584 ticks = INT_MAX; 585 return ((int)ticks); 586 } 587 588 /* 589 * Start profiling on a process. 590 * 591 * Kernel profiling passes proc0 which never exits and hence 592 * keeps the profile clock running constantly. 593 */ 594 void 595 startprofclock(p) 596 register struct proc *p; 597 { 598 599 PROC_LOCK_ASSERT(p, MA_OWNED); 600 if (p->p_flag & P_STOPPROF) 601 return; 602 if ((p->p_flag & P_PROFIL) == 0) { 603 p->p_flag |= P_PROFIL; 604 mtx_lock_spin(&time_lock); 605 if (++profprocs == 1) 606 cpu_startprofclock(); 607 mtx_unlock_spin(&time_lock); 608 } 609 } 610 611 /* 612 * Stop profiling on a process. 613 */ 614 void 615 stopprofclock(p) 616 register struct proc *p; 617 { 618 619 PROC_LOCK_ASSERT(p, MA_OWNED); 620 if (p->p_flag & P_PROFIL) { 621 if (p->p_profthreads != 0) { 622 p->p_flag |= P_STOPPROF; 623 while (p->p_profthreads != 0) 624 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE, 625 "stopprof", 0); 626 p->p_flag &= ~P_STOPPROF; 627 } 628 if ((p->p_flag & P_PROFIL) == 0) 629 return; 630 p->p_flag &= ~P_PROFIL; 631 mtx_lock_spin(&time_lock); 632 if (--profprocs == 0) 633 cpu_stopprofclock(); 634 mtx_unlock_spin(&time_lock); 635 } 636 } 637 638 /* 639 * Statistics clock. Updates rusage information and calls the scheduler 640 * to adjust priorities of the active thread. 641 * 642 * This should be called by all active processors. 643 */ 644 void 645 statclock(int usermode) 646 { 647 struct rusage *ru; 648 struct vmspace *vm; 649 struct thread *td; 650 struct proc *p; 651 long rss; 652 long *cp_time; 653 654 td = curthread; 655 p = td->td_proc; 656 657 cp_time = (long *)PCPU_PTR(cp_time); 658 if (usermode) { 659 /* 660 * Charge the time as appropriate. 661 */ 662 td->td_uticks++; 663 if (p->p_nice > NZERO) 664 cp_time[CP_NICE]++; 665 else 666 cp_time[CP_USER]++; 667 } else { 668 /* 669 * Came from kernel mode, so we were: 670 * - handling an interrupt, 671 * - doing syscall or trap work on behalf of the current 672 * user process, or 673 * - spinning in the idle loop. 674 * Whichever it is, charge the time as appropriate. 675 * Note that we charge interrupts to the current process, 676 * regardless of whether they are ``for'' that process, 677 * so that we know how much of its real time was spent 678 * in ``non-process'' (i.e., interrupt) work. 679 */ 680 if ((td->td_pflags & TDP_ITHREAD) || 681 td->td_intr_nesting_level >= 2) { 682 td->td_iticks++; 683 cp_time[CP_INTR]++; 684 } else { 685 td->td_pticks++; 686 td->td_sticks++; 687 if (!TD_IS_IDLETHREAD(td)) 688 cp_time[CP_SYS]++; 689 else 690 cp_time[CP_IDLE]++; 691 } 692 } 693 694 /* Update resource usage integrals and maximums. */ 695 MPASS(p->p_vmspace != NULL); 696 vm = p->p_vmspace; 697 ru = &td->td_ru; 698 ru->ru_ixrss += pgtok(vm->vm_tsize); 699 ru->ru_idrss += pgtok(vm->vm_dsize); 700 ru->ru_isrss += pgtok(vm->vm_ssize); 701 rss = pgtok(vmspace_resident_count(vm)); 702 if (ru->ru_maxrss < rss) 703 ru->ru_maxrss = rss; 704 KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock", 705 "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz); 706 thread_lock_flags(td, MTX_QUIET); 707 sched_clock(td); 708 thread_unlock(td); 709 } 710 711 void 712 profclock(int usermode, uintfptr_t pc) 713 { 714 struct thread *td; 715 #ifdef GPROF 716 struct gmonparam *g; 717 uintfptr_t i; 718 #endif 719 720 td = curthread; 721 if (usermode) { 722 /* 723 * Came from user mode; CPU was in user state. 724 * If this process is being profiled, record the tick. 725 * if there is no related user location yet, don't 726 * bother trying to count it. 727 */ 728 if (td->td_proc->p_flag & P_PROFIL) 729 addupc_intr(td, pc, 1); 730 } 731 #ifdef GPROF 732 else { 733 /* 734 * Kernel statistics are just like addupc_intr, only easier. 735 */ 736 g = &_gmonparam; 737 if (g->state == GMON_PROF_ON && pc >= g->lowpc) { 738 i = PC_TO_I(g, pc); 739 if (i < g->textsize) { 740 KCOUNT(g, i)++; 741 } 742 } 743 } 744 #endif 745 } 746 747 /* 748 * Return information about system clocks. 749 */ 750 static int 751 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 752 { 753 struct clockinfo clkinfo; 754 /* 755 * Construct clockinfo structure. 756 */ 757 bzero(&clkinfo, sizeof(clkinfo)); 758 clkinfo.hz = hz; 759 clkinfo.tick = tick; 760 clkinfo.profhz = profhz; 761 clkinfo.stathz = stathz ? stathz : hz; 762 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 763 } 764 765 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, 766 CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE, 767 0, 0, sysctl_kern_clockrate, "S,clockinfo", 768 "Rate and period of various kernel clocks"); 769 770 #ifdef SW_WATCHDOG 771 772 static void 773 watchdog_config(void *unused __unused, u_int cmd, int *error) 774 { 775 u_int u; 776 777 u = cmd & WD_INTERVAL; 778 if (u >= WD_TO_1SEC) { 779 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz; 780 watchdog_enabled = 1; 781 *error = 0; 782 } else { 783 watchdog_enabled = 0; 784 } 785 } 786 787 /* 788 * Handle a watchdog timeout by dumping interrupt information and 789 * then either dropping to DDB or panicking. 790 */ 791 static void 792 watchdog_fire(void) 793 { 794 int nintr; 795 u_int64_t inttotal; 796 u_long *curintr; 797 char *curname; 798 799 curintr = intrcnt; 800 curname = intrnames; 801 inttotal = 0; 802 nintr = eintrcnt - intrcnt; 803 804 printf("interrupt total\n"); 805 while (--nintr >= 0) { 806 if (*curintr) 807 printf("%-12s %20lu\n", curname, *curintr); 808 curname += strlen(curname) + 1; 809 inttotal += *curintr++; 810 } 811 printf("Total %20ju\n", (uintmax_t)inttotal); 812 813 #if defined(KDB) && !defined(KDB_UNATTENDED) 814 kdb_backtrace(); 815 kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout"); 816 #else 817 panic("watchdog timeout"); 818 #endif 819 } 820 821 #endif /* SW_WATCHDOG */ 822