xref: /freebsd/sys/kern/kern_clock.c (revision aa1a8ff2d6dbc51ef058f46f3db5a8bb77967145)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 #include "opt_kdb.h"
39 #include "opt_device_polling.h"
40 #include "opt_hwpmc_hooks.h"
41 #include "opt_ntp.h"
42 #include "opt_watchdog.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/epoch.h>
48 #include <sys/eventhandler.h>
49 #include <sys/gtaskqueue.h>
50 #include <sys/kdb.h>
51 #include <sys/kernel.h>
52 #include <sys/kthread.h>
53 #include <sys/ktr.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/proc.h>
57 #include <sys/resource.h>
58 #include <sys/resourcevar.h>
59 #include <sys/sched.h>
60 #include <sys/sdt.h>
61 #include <sys/signalvar.h>
62 #include <sys/sleepqueue.h>
63 #include <sys/smp.h>
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_map.h>
67 #include <sys/sysctl.h>
68 #include <sys/bus.h>
69 #include <sys/interrupt.h>
70 #include <sys/limits.h>
71 #include <sys/timetc.h>
72 
73 #ifdef HWPMC_HOOKS
74 #include <sys/pmckern.h>
75 PMC_SOFT_DEFINE( , , clock, hard);
76 PMC_SOFT_DEFINE( , , clock, stat);
77 PMC_SOFT_DEFINE_EX( , , clock, prof, \
78     cpu_startprofclock, cpu_stopprofclock);
79 #endif
80 
81 #ifdef DEVICE_POLLING
82 extern void hardclock_device_poll(void);
83 #endif /* DEVICE_POLLING */
84 
85 /* Spin-lock protecting profiling statistics. */
86 static struct mtx time_lock;
87 
88 SDT_PROVIDER_DECLARE(sched);
89 SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *");
90 
91 static int
92 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
93 {
94 	int error;
95 	long cp_time[CPUSTATES];
96 #ifdef SCTL_MASK32
97 	int i;
98 	unsigned int cp_time32[CPUSTATES];
99 #endif
100 
101 	read_cpu_time(cp_time);
102 #ifdef SCTL_MASK32
103 	if (req->flags & SCTL_MASK32) {
104 		if (!req->oldptr)
105 			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
106 		for (i = 0; i < CPUSTATES; i++)
107 			cp_time32[i] = (unsigned int)cp_time[i];
108 		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
109 	} else
110 #endif
111 	{
112 		if (!req->oldptr)
113 			return SYSCTL_OUT(req, 0, sizeof(cp_time));
114 		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
115 	}
116 	return error;
117 }
118 
119 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
120     0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
121 
122 static long empty[CPUSTATES];
123 
124 static int
125 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
126 {
127 	struct pcpu *pcpu;
128 	int error;
129 	int c;
130 	long *cp_time;
131 #ifdef SCTL_MASK32
132 	unsigned int cp_time32[CPUSTATES];
133 	int i;
134 #endif
135 
136 	if (!req->oldptr) {
137 #ifdef SCTL_MASK32
138 		if (req->flags & SCTL_MASK32)
139 			return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
140 		else
141 #endif
142 			return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
143 	}
144 	for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
145 		if (!CPU_ABSENT(c)) {
146 			pcpu = pcpu_find(c);
147 			cp_time = pcpu->pc_cp_time;
148 		} else {
149 			cp_time = empty;
150 		}
151 #ifdef SCTL_MASK32
152 		if (req->flags & SCTL_MASK32) {
153 			for (i = 0; i < CPUSTATES; i++)
154 				cp_time32[i] = (unsigned int)cp_time[i];
155 			error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
156 		} else
157 #endif
158 			error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
159 	}
160 	return error;
161 }
162 
163 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
164     0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
165 
166 #ifdef DEADLKRES
167 static const char *blessed[] = {
168 	"getblk",
169 	"so_snd_sx",
170 	"so_rcv_sx",
171 	NULL
172 };
173 static int slptime_threshold = 1800;
174 static int blktime_threshold = 900;
175 static int sleepfreq = 3;
176 
177 static void
178 deadlres_td_on_lock(struct proc *p, struct thread *td, int blkticks)
179 {
180 	int tticks;
181 
182 	sx_assert(&allproc_lock, SX_LOCKED);
183 	PROC_LOCK_ASSERT(p, MA_OWNED);
184 	THREAD_LOCK_ASSERT(td, MA_OWNED);
185 	/*
186 	 * The thread should be blocked on a turnstile, simply check
187 	 * if the turnstile channel is in good state.
188 	 */
189 	MPASS(td->td_blocked != NULL);
190 
191 	tticks = ticks - td->td_blktick;
192 	if (tticks > blkticks)
193 		/*
194 		 * Accordingly with provided thresholds, this thread is stuck
195 		 * for too long on a turnstile.
196 		 */
197 		panic("%s: possible deadlock detected for %p (%s), "
198 		    "blocked for %d ticks\n", __func__,
199 		    td, sched_tdname(td), tticks);
200 }
201 
202 static void
203 deadlres_td_sleep_q(struct proc *p, struct thread *td, int slpticks)
204 {
205 	const void *wchan;
206 	int i, slptype, tticks;
207 
208 	sx_assert(&allproc_lock, SX_LOCKED);
209 	PROC_LOCK_ASSERT(p, MA_OWNED);
210 	THREAD_LOCK_ASSERT(td, MA_OWNED);
211 	/*
212 	 * Check if the thread is sleeping on a lock, otherwise skip the check.
213 	 * Drop the thread lock in order to avoid a LOR with the sleepqueue
214 	 * spinlock.
215 	 */
216 	wchan = td->td_wchan;
217 	tticks = ticks - td->td_slptick;
218 	slptype = sleepq_type(wchan);
219 	if ((slptype == SLEEPQ_SX || slptype == SLEEPQ_LK) &&
220 	    tticks > slpticks) {
221 		/*
222 		 * Accordingly with provided thresholds, this thread is stuck
223 		 * for too long on a sleepqueue.
224 		 * However, being on a sleepqueue, we might still check for the
225 		 * blessed list.
226 		 */
227 		for (i = 0; blessed[i] != NULL; i++)
228 			if (!strcmp(blessed[i], td->td_wmesg))
229 				return;
230 
231 		panic("%s: possible deadlock detected for %p (%s), "
232 		    "blocked for %d ticks\n", __func__,
233 		    td, sched_tdname(td), tticks);
234 	}
235 }
236 
237 static void
238 deadlkres(void)
239 {
240 	struct proc *p;
241 	struct thread *td;
242 	int blkticks, slpticks, tryl;
243 
244 	tryl = 0;
245 	for (;;) {
246 		blkticks = blktime_threshold * hz;
247 		slpticks = slptime_threshold * hz;
248 
249 		/*
250 		 * Avoid to sleep on the sx_lock in order to avoid a
251 		 * possible priority inversion problem leading to
252 		 * starvation.
253 		 * If the lock can't be held after 100 tries, panic.
254 		 */
255 		if (!sx_try_slock(&allproc_lock)) {
256 			if (tryl > 100)
257 				panic("%s: possible deadlock detected "
258 				    "on allproc_lock\n", __func__);
259 			tryl++;
260 			pause("allproc", sleepfreq * hz);
261 			continue;
262 		}
263 		tryl = 0;
264 		FOREACH_PROC_IN_SYSTEM(p) {
265 			PROC_LOCK(p);
266 			if (p->p_state == PRS_NEW) {
267 				PROC_UNLOCK(p);
268 				continue;
269 			}
270 			FOREACH_THREAD_IN_PROC(p, td) {
271 				thread_lock(td);
272 				if (TD_ON_LOCK(td))
273 					deadlres_td_on_lock(p, td,
274 					    blkticks);
275 				else if (TD_IS_SLEEPING(td))
276 					deadlres_td_sleep_q(p, td,
277 					    slpticks);
278 				thread_unlock(td);
279 			}
280 			PROC_UNLOCK(p);
281 		}
282 		sx_sunlock(&allproc_lock);
283 
284 		/* Sleep for sleepfreq seconds. */
285 		pause("-", sleepfreq * hz);
286 	}
287 }
288 
289 static struct kthread_desc deadlkres_kd = {
290 	"deadlkres",
291 	deadlkres,
292 	(struct thread **)NULL
293 };
294 
295 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
296 
297 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
298     "Deadlock resolver");
299 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RWTUN,
300     &slptime_threshold, 0,
301     "Number of seconds within is valid to sleep on a sleepqueue");
302 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RWTUN,
303     &blktime_threshold, 0,
304     "Number of seconds within is valid to block on a turnstile");
305 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RWTUN, &sleepfreq, 0,
306     "Number of seconds between any deadlock resolver thread run");
307 #endif	/* DEADLKRES */
308 
309 void
310 read_cpu_time(long *cp_time)
311 {
312 	struct pcpu *pc;
313 	int i, j;
314 
315 	/* Sum up global cp_time[]. */
316 	bzero(cp_time, sizeof(long) * CPUSTATES);
317 	CPU_FOREACH(i) {
318 		pc = pcpu_find(i);
319 		for (j = 0; j < CPUSTATES; j++)
320 			cp_time[j] += pc->pc_cp_time[j];
321 	}
322 }
323 
324 #include <sys/watchdog.h>
325 
326 static int watchdog_ticks;
327 static int watchdog_enabled;
328 static void watchdog_fire(void);
329 static void watchdog_config(void *, u_int, int *);
330 
331 static void
332 watchdog_attach(void)
333 {
334 	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
335 }
336 
337 /*
338  * Clock handling routines.
339  *
340  * This code is written to operate with two timers that run independently of
341  * each other.
342  *
343  * The main timer, running hz times per second, is used to trigger interval
344  * timers, timeouts and rescheduling as needed.
345  *
346  * The second timer handles kernel and user profiling,
347  * and does resource use estimation.  If the second timer is programmable,
348  * it is randomized to avoid aliasing between the two clocks.  For example,
349  * the randomization prevents an adversary from always giving up the cpu
350  * just before its quantum expires.  Otherwise, it would never accumulate
351  * cpu ticks.  The mean frequency of the second timer is stathz.
352  *
353  * If no second timer exists, stathz will be zero; in this case we drive
354  * profiling and statistics off the main clock.  This WILL NOT be accurate;
355  * do not do it unless absolutely necessary.
356  *
357  * The statistics clock may (or may not) be run at a higher rate while
358  * profiling.  This profile clock runs at profhz.  We require that profhz
359  * be an integral multiple of stathz.
360  *
361  * If the statistics clock is running fast, it must be divided by the ratio
362  * profhz/stathz for statistics.  (For profiling, every tick counts.)
363  *
364  * Time-of-day is maintained using a "timecounter", which may or may
365  * not be related to the hardware generating the above mentioned
366  * interrupts.
367  */
368 
369 int	stathz;
370 int	profhz;
371 int	profprocs;
372 volatile int	ticks;
373 int	psratio;
374 
375 DPCPU_DEFINE_STATIC(int, pcputicks);	/* Per-CPU version of ticks. */
376 #ifdef DEVICE_POLLING
377 static int devpoll_run = 0;
378 #endif
379 
380 static void
381 ast_oweupc(struct thread *td, int tda __unused)
382 {
383 	if ((td->td_proc->p_flag & P_PROFIL) == 0)
384 		return;
385 	addupc_task(td, td->td_profil_addr, td->td_profil_ticks);
386 	td->td_profil_ticks = 0;
387 	td->td_pflags &= ~TDP_OWEUPC;
388 }
389 
390 static void
391 ast_alrm(struct thread *td, int tda __unused)
392 {
393 	struct proc *p;
394 
395 	p = td->td_proc;
396 	PROC_LOCK(p);
397 	kern_psignal(p, SIGVTALRM);
398 	PROC_UNLOCK(p);
399 }
400 
401 static void
402 ast_prof(struct thread *td, int tda __unused)
403 {
404 	struct proc *p;
405 
406 	p = td->td_proc;
407 	PROC_LOCK(p);
408 	kern_psignal(p, SIGPROF);
409 	PROC_UNLOCK(p);
410 }
411 
412 /*
413  * Initialize clock frequencies and start both clocks running.
414  */
415 static void
416 initclocks(void *dummy __unused)
417 {
418 	int i;
419 
420 	/*
421 	 * Set divisors to 1 (normal case) and let the machine-specific
422 	 * code do its bit.
423 	 */
424 	mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
425 	cpu_initclocks();
426 
427 	/*
428 	 * Compute profhz/stathz, and fix profhz if needed.
429 	 */
430 	i = stathz ? stathz : hz;
431 	if (profhz == 0)
432 		profhz = i;
433 	psratio = profhz / i;
434 
435 	ast_register(TDA_OWEUPC, ASTR_ASTF_REQUIRED, 0, ast_oweupc);
436 	ast_register(TDA_ALRM, ASTR_ASTF_REQUIRED, 0, ast_alrm);
437 	ast_register(TDA_PROF, ASTR_ASTF_REQUIRED, 0, ast_prof);
438 
439 #ifdef SW_WATCHDOG
440 	/* Enable hardclock watchdog now, even if a hardware watchdog exists. */
441 	watchdog_attach();
442 #else
443 	/* Volunteer to run a software watchdog. */
444 	if (wdog_software_attach == NULL)
445 		wdog_software_attach = watchdog_attach;
446 #endif
447 }
448 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
449 
450 static __noinline void
451 hardclock_itimer(struct thread *td, struct pstats *pstats, int cnt, int usermode)
452 {
453 	struct proc *p;
454 	int ast;
455 
456 	ast = 0;
457 	p = td->td_proc;
458 	if (usermode &&
459 	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
460 		PROC_ITIMLOCK(p);
461 		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
462 		    tick * cnt) == 0)
463 			ast |= TDAI(TDA_ALRM);
464 		PROC_ITIMUNLOCK(p);
465 	}
466 	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
467 		PROC_ITIMLOCK(p);
468 		if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
469 		    tick * cnt) == 0)
470 			ast |= TDAI(TDA_PROF);
471 		PROC_ITIMUNLOCK(p);
472 	}
473 	if (ast != 0)
474 		ast_sched_mask(td, ast);
475 }
476 
477 void
478 hardclock(int cnt, int usermode)
479 {
480 	struct pstats *pstats;
481 	struct thread *td = curthread;
482 	struct proc *p = td->td_proc;
483 	int *t = DPCPU_PTR(pcputicks);
484 	int global, i, newticks;
485 
486 	/*
487 	 * Update per-CPU and possibly global ticks values.
488 	 */
489 	*t += cnt;
490 	global = ticks;
491 	do {
492 		newticks = *t - global;
493 		if (newticks <= 0) {
494 			if (newticks < -1)
495 				*t = global - 1;
496 			newticks = 0;
497 			break;
498 		}
499 	} while (!atomic_fcmpset_int(&ticks, &global, *t));
500 
501 	/*
502 	 * Run current process's virtual and profile time, as needed.
503 	 */
504 	pstats = p->p_stats;
505 	if (__predict_false(
506 	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) ||
507 	    timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)))
508 		hardclock_itimer(td, pstats, cnt, usermode);
509 
510 #ifdef	HWPMC_HOOKS
511 	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
512 		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
513 	if (td->td_intr_frame != NULL)
514 		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
515 #endif
516 	/* We are in charge to handle this tick duty. */
517 	if (newticks > 0) {
518 		tc_ticktock(newticks);
519 #ifdef DEVICE_POLLING
520 		/* Dangerous and no need to call these things concurrently. */
521 		if (atomic_cmpset_acq_int(&devpoll_run, 0, 1)) {
522 			/* This is very short and quick. */
523 			hardclock_device_poll();
524 			atomic_store_rel_int(&devpoll_run, 0);
525 		}
526 #endif /* DEVICE_POLLING */
527 		if (watchdog_enabled > 0) {
528 			i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
529 			if (i > 0 && i <= newticks)
530 				watchdog_fire();
531 		}
532 		intr_event_handle(clk_intr_event, NULL);
533 	}
534 	if (curcpu == CPU_FIRST())
535 		cpu_tick_calibration();
536 	if (__predict_false(DPCPU_GET(epoch_cb_count)))
537 		GROUPTASK_ENQUEUE(DPCPU_PTR(epoch_cb_task));
538 }
539 
540 void
541 hardclock_sync(int cpu)
542 {
543 	int *t;
544 	KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu));
545 	t = DPCPU_ID_PTR(cpu, pcputicks);
546 
547 	*t = ticks;
548 }
549 
550 /*
551  * Regular integer scaling formula without losing precision:
552  */
553 #define	TIME_INT_SCALE(value, mul, div) \
554 	(((value) / (div)) * (mul) + (((value) % (div)) * (mul)) / (div))
555 
556 /*
557  * Macro for converting seconds and microseconds into actual ticks,
558  * based on the given hz value:
559  */
560 #define	TIME_TO_TICKS(sec, usec, hz) \
561 	((sec) * (hz) + TIME_INT_SCALE(usec, hz, 1 << 6) / (1000000 >> 6))
562 
563 #define	TIME_ASSERT_VALID_HZ(hz)	\
564 	_Static_assert(TIME_TO_TICKS(INT_MAX / (hz) - 1, 999999, hz) >= 0 && \
565 		       TIME_TO_TICKS(INT_MAX / (hz) - 1, 999999, hz) < INT_MAX,	\
566 		       "tvtohz() can overflow the regular integer type")
567 
568 /*
569  * Compile time assert the maximum and minimum values to fit into a
570  * regular integer when computing TIME_TO_TICKS():
571  */
572 TIME_ASSERT_VALID_HZ(HZ_MAXIMUM);
573 TIME_ASSERT_VALID_HZ(HZ_MINIMUM);
574 
575 /*
576  * The formula is mostly linear, but test some more common values just
577  * in case:
578  */
579 TIME_ASSERT_VALID_HZ(1024);
580 TIME_ASSERT_VALID_HZ(1000);
581 TIME_ASSERT_VALID_HZ(128);
582 TIME_ASSERT_VALID_HZ(100);
583 
584 /*
585  * Compute number of ticks representing the specified amount of time.
586  * If the specified time is negative, a value of 1 is returned. This
587  * function returns a value from 1 up to and including INT_MAX.
588  */
589 int
590 tvtohz(struct timeval *tv)
591 {
592 	int retval;
593 
594 	/*
595 	 * The values passed here may come from user-space and these
596 	 * checks ensure "tv_usec" is within its allowed range:
597 	 */
598 
599 	/* check for tv_usec underflow */
600 	if (__predict_false(tv->tv_usec < 0)) {
601 		tv->tv_sec += tv->tv_usec / 1000000;
602 		tv->tv_usec = tv->tv_usec % 1000000;
603 		/* convert tv_usec to a positive value */
604 		if (__predict_true(tv->tv_usec < 0)) {
605 			tv->tv_usec += 1000000;
606 			tv->tv_sec -= 1;
607 		}
608 	/* check for tv_usec overflow */
609 	} else if (__predict_false(tv->tv_usec >= 1000000)) {
610 		tv->tv_sec += tv->tv_usec / 1000000;
611 		tv->tv_usec = tv->tv_usec % 1000000;
612 	}
613 
614 	/* check for tv_sec underflow */
615 	if (__predict_false(tv->tv_sec < 0))
616 		return (1);
617 	/* check for tv_sec overflow (including room for the tv_usec part) */
618 	else if (__predict_false(tv->tv_sec >= tick_seconds_max))
619 		return (INT_MAX);
620 
621 	/* cast to "int" to avoid platform differences */
622 	retval = TIME_TO_TICKS((int)tv->tv_sec, (int)tv->tv_usec, hz);
623 
624 	/* add one additional tick */
625 	return (retval + 1);
626 }
627 
628 /*
629  * Start profiling on a process.
630  *
631  * Kernel profiling passes proc0 which never exits and hence
632  * keeps the profile clock running constantly.
633  */
634 void
635 startprofclock(struct proc *p)
636 {
637 
638 	PROC_LOCK_ASSERT(p, MA_OWNED);
639 	if (p->p_flag & P_STOPPROF)
640 		return;
641 	if ((p->p_flag & P_PROFIL) == 0) {
642 		p->p_flag |= P_PROFIL;
643 		mtx_lock(&time_lock);
644 		if (++profprocs == 1)
645 			cpu_startprofclock();
646 		mtx_unlock(&time_lock);
647 	}
648 }
649 
650 /*
651  * Stop profiling on a process.
652  */
653 void
654 stopprofclock(struct proc *p)
655 {
656 
657 	PROC_LOCK_ASSERT(p, MA_OWNED);
658 	if (p->p_flag & P_PROFIL) {
659 		if (p->p_profthreads != 0) {
660 			while (p->p_profthreads != 0) {
661 				p->p_flag |= P_STOPPROF;
662 				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
663 				    "stopprof", 0);
664 			}
665 		}
666 		if ((p->p_flag & P_PROFIL) == 0)
667 			return;
668 		p->p_flag &= ~P_PROFIL;
669 		mtx_lock(&time_lock);
670 		if (--profprocs == 0)
671 			cpu_stopprofclock();
672 		mtx_unlock(&time_lock);
673 	}
674 }
675 
676 /*
677  * Statistics clock.  Updates rusage information and calls the scheduler
678  * to adjust priorities of the active thread.
679  *
680  * This should be called by all active processors.
681  */
682 void
683 statclock(int cnt, int usermode)
684 {
685 	struct rusage *ru;
686 	struct vmspace *vm;
687 	struct thread *td;
688 	struct proc *p;
689 	long rss;
690 	long *cp_time;
691 	uint64_t runtime, new_switchtime;
692 
693 	td = curthread;
694 	p = td->td_proc;
695 
696 	cp_time = (long *)PCPU_PTR(cp_time);
697 	if (usermode) {
698 		/*
699 		 * Charge the time as appropriate.
700 		 */
701 		td->td_uticks += cnt;
702 		if (p->p_nice > NZERO)
703 			cp_time[CP_NICE] += cnt;
704 		else
705 			cp_time[CP_USER] += cnt;
706 	} else {
707 		/*
708 		 * Came from kernel mode, so we were:
709 		 * - handling an interrupt,
710 		 * - doing syscall or trap work on behalf of the current
711 		 *   user process, or
712 		 * - spinning in the idle loop.
713 		 * Whichever it is, charge the time as appropriate.
714 		 * Note that we charge interrupts to the current process,
715 		 * regardless of whether they are ``for'' that process,
716 		 * so that we know how much of its real time was spent
717 		 * in ``non-process'' (i.e., interrupt) work.
718 		 */
719 		if ((td->td_pflags & TDP_ITHREAD) ||
720 		    td->td_intr_nesting_level >= 2) {
721 			td->td_iticks += cnt;
722 			cp_time[CP_INTR] += cnt;
723 		} else {
724 			td->td_pticks += cnt;
725 			td->td_sticks += cnt;
726 			if (!TD_IS_IDLETHREAD(td))
727 				cp_time[CP_SYS] += cnt;
728 			else
729 				cp_time[CP_IDLE] += cnt;
730 		}
731 	}
732 
733 	/* Update resource usage integrals and maximums. */
734 	MPASS(p->p_vmspace != NULL);
735 	vm = p->p_vmspace;
736 	ru = &td->td_ru;
737 	ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
738 	ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
739 	ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
740 	rss = pgtok(vmspace_resident_count(vm));
741 	if (ru->ru_maxrss < rss)
742 		ru->ru_maxrss = rss;
743 	KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
744 	    "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
745 	SDT_PROBE2(sched, , , tick, td, td->td_proc);
746 	thread_lock_flags(td, MTX_QUIET);
747 
748 	/*
749 	 * Compute the amount of time during which the current
750 	 * thread was running, and add that to its total so far.
751 	 */
752 	new_switchtime = cpu_ticks();
753 	runtime = new_switchtime - PCPU_GET(switchtime);
754 	td->td_runtime += runtime;
755 	td->td_incruntime += runtime;
756 	PCPU_SET(switchtime, new_switchtime);
757 
758 	sched_clock(td, cnt);
759 	thread_unlock(td);
760 #ifdef HWPMC_HOOKS
761 	if (td->td_intr_frame != NULL)
762 		PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
763 #endif
764 }
765 
766 void
767 profclock(int cnt, int usermode, uintfptr_t pc)
768 {
769 	struct thread *td;
770 
771 	td = curthread;
772 	if (usermode) {
773 		/*
774 		 * Came from user mode; CPU was in user state.
775 		 * If this process is being profiled, record the tick.
776 		 * if there is no related user location yet, don't
777 		 * bother trying to count it.
778 		 */
779 		if (td->td_proc->p_flag & P_PROFIL)
780 			addupc_intr(td, pc, cnt);
781 	}
782 #ifdef HWPMC_HOOKS
783 	if (td->td_intr_frame != NULL)
784 		PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
785 #endif
786 }
787 
788 /*
789  * Return information about system clocks.
790  */
791 static int
792 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
793 {
794 	struct clockinfo clkinfo;
795 	/*
796 	 * Construct clockinfo structure.
797 	 */
798 	bzero(&clkinfo, sizeof(clkinfo));
799 	clkinfo.hz = hz;
800 	clkinfo.tick = tick;
801 	clkinfo.profhz = profhz;
802 	clkinfo.stathz = stathz ? stathz : hz;
803 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
804 }
805 
806 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
807 	CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
808 	0, 0, sysctl_kern_clockrate, "S,clockinfo",
809 	"Rate and period of various kernel clocks");
810 
811 static void
812 watchdog_config(void *unused __unused, u_int cmd, int *error)
813 {
814 	u_int u;
815 
816 	u = cmd & WD_INTERVAL;
817 	if (u >= WD_TO_1SEC) {
818 		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
819 		watchdog_enabled = 1;
820 		*error = 0;
821 	} else {
822 		watchdog_enabled = 0;
823 	}
824 }
825 
826 /*
827  * Handle a watchdog timeout by dropping to DDB or panicking.
828  */
829 static void
830 watchdog_fire(void)
831 {
832 
833 #if defined(KDB) && !defined(KDB_UNATTENDED)
834 	kdb_backtrace();
835 	kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
836 #else
837 	panic("watchdog timeout");
838 #endif
839 }
840