1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ntp.h" 45 #include "opt_ddb.h" 46 #include "opt_watchdog.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/callout.h> 51 #include <sys/kernel.h> 52 #include <sys/lock.h> 53 #include <sys/ktr.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/resource.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sched.h> 59 #include <sys/signalvar.h> 60 #include <sys/smp.h> 61 #include <vm/vm.h> 62 #include <vm/pmap.h> 63 #include <vm/vm_map.h> 64 #include <sys/sysctl.h> 65 #include <sys/bus.h> 66 #include <sys/interrupt.h> 67 #include <sys/limits.h> 68 #include <sys/timetc.h> 69 70 #include <machine/cpu.h> 71 72 #ifdef GPROF 73 #include <sys/gmon.h> 74 #endif 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #ifdef DEVICE_POLLING 81 extern void hardclock_device_poll(void); 82 #endif /* DEVICE_POLLING */ 83 84 static void initclocks(void *dummy); 85 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 86 87 /* Some of these don't belong here, but it's easiest to concentrate them. */ 88 long cp_time[CPUSTATES]; 89 90 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time), 91 "LU", "CPU time statistics"); 92 93 #ifdef WATCHDOG 94 static int sysctl_watchdog_reset(SYSCTL_HANDLER_ARGS); 95 static void watchdog_fire(void); 96 97 static int watchdog_enabled; 98 static unsigned int watchdog_ticks; 99 static int watchdog_timeout = 20; 100 101 SYSCTL_NODE(_debug, OID_AUTO, watchdog, CTLFLAG_RW, 0, "System watchdog"); 102 SYSCTL_INT(_debug_watchdog, OID_AUTO, enabled, CTLFLAG_RW, &watchdog_enabled, 103 0, "Enable the watchdog"); 104 SYSCTL_INT(_debug_watchdog, OID_AUTO, timeout, CTLFLAG_RW, &watchdog_timeout, 105 0, "Timeout for watchdog checkins"); 106 107 #endif /* WATCHDOG */ 108 109 /* 110 * Clock handling routines. 111 * 112 * This code is written to operate with two timers that run independently of 113 * each other. 114 * 115 * The main timer, running hz times per second, is used to trigger interval 116 * timers, timeouts and rescheduling as needed. 117 * 118 * The second timer handles kernel and user profiling, 119 * and does resource use estimation. If the second timer is programmable, 120 * it is randomized to avoid aliasing between the two clocks. For example, 121 * the randomization prevents an adversary from always giving up the cpu 122 * just before its quantum expires. Otherwise, it would never accumulate 123 * cpu ticks. The mean frequency of the second timer is stathz. 124 * 125 * If no second timer exists, stathz will be zero; in this case we drive 126 * profiling and statistics off the main clock. This WILL NOT be accurate; 127 * do not do it unless absolutely necessary. 128 * 129 * The statistics clock may (or may not) be run at a higher rate while 130 * profiling. This profile clock runs at profhz. We require that profhz 131 * be an integral multiple of stathz. 132 * 133 * If the statistics clock is running fast, it must be divided by the ratio 134 * profhz/stathz for statistics. (For profiling, every tick counts.) 135 * 136 * Time-of-day is maintained using a "timecounter", which may or may 137 * not be related to the hardware generating the above mentioned 138 * interrupts. 139 */ 140 141 int stathz; 142 int profhz; 143 int profprocs; 144 int ticks; 145 int psratio; 146 147 /* 148 * Initialize clock frequencies and start both clocks running. 149 */ 150 /* ARGSUSED*/ 151 static void 152 initclocks(dummy) 153 void *dummy; 154 { 155 register int i; 156 157 /* 158 * Set divisors to 1 (normal case) and let the machine-specific 159 * code do its bit. 160 */ 161 cpu_initclocks(); 162 163 /* 164 * Compute profhz/stathz, and fix profhz if needed. 165 */ 166 i = stathz ? stathz : hz; 167 if (profhz == 0) 168 profhz = i; 169 psratio = profhz / i; 170 } 171 172 /* 173 * Each time the real-time timer fires, this function is called on all CPUs. 174 * Note that hardclock() calls hardclock_process() for the boot CPU, so only 175 * the other CPUs in the system need to call this function. 176 */ 177 void 178 hardclock_process(frame) 179 register struct clockframe *frame; 180 { 181 struct pstats *pstats; 182 struct thread *td = curthread; 183 struct proc *p = td->td_proc; 184 185 /* 186 * Run current process's virtual and profile time, as needed. 187 */ 188 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 189 if (p->p_flag & P_SA) { 190 /* XXXKSE What to do? */ 191 } else { 192 pstats = p->p_stats; 193 if (CLKF_USERMODE(frame) && 194 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 195 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) { 196 p->p_sflag |= PS_ALRMPEND; 197 td->td_flags |= TDF_ASTPENDING; 198 } 199 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 200 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) { 201 p->p_sflag |= PS_PROFPEND; 202 td->td_flags |= TDF_ASTPENDING; 203 } 204 } 205 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 206 } 207 208 /* 209 * The real-time timer, interrupting hz times per second. 210 */ 211 void 212 hardclock(frame) 213 register struct clockframe *frame; 214 { 215 int need_softclock = 0; 216 217 CTR0(KTR_CLK, "hardclock fired"); 218 hardclock_process(frame); 219 220 tc_ticktock(); 221 /* 222 * If no separate statistics clock is available, run it from here. 223 * 224 * XXX: this only works for UP 225 */ 226 if (stathz == 0) { 227 profclock(frame); 228 statclock(frame); 229 } 230 231 #ifdef DEVICE_POLLING 232 hardclock_device_poll(); /* this is very short and quick */ 233 #endif /* DEVICE_POLLING */ 234 235 /* 236 * Process callouts at a very low cpu priority, so we don't keep the 237 * relatively high clock interrupt priority any longer than necessary. 238 */ 239 mtx_lock_spin_flags(&callout_lock, MTX_QUIET); 240 ticks++; 241 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) { 242 need_softclock = 1; 243 } else if (softticks + 1 == ticks) 244 ++softticks; 245 mtx_unlock_spin_flags(&callout_lock, MTX_QUIET); 246 247 /* 248 * swi_sched acquires sched_lock, so we don't want to call it with 249 * callout_lock held; incorrect locking order. 250 */ 251 if (need_softclock) 252 swi_sched(softclock_ih, 0); 253 254 #ifdef WATCHDOG 255 if (watchdog_enabled > 0 && 256 (int)(ticks - watchdog_ticks) >= (hz * watchdog_timeout)) 257 watchdog_fire(); 258 #endif /* WATCHDOG */ 259 } 260 261 /* 262 * Compute number of ticks in the specified amount of time. 263 */ 264 int 265 tvtohz(tv) 266 struct timeval *tv; 267 { 268 register unsigned long ticks; 269 register long sec, usec; 270 271 /* 272 * If the number of usecs in the whole seconds part of the time 273 * difference fits in a long, then the total number of usecs will 274 * fit in an unsigned long. Compute the total and convert it to 275 * ticks, rounding up and adding 1 to allow for the current tick 276 * to expire. Rounding also depends on unsigned long arithmetic 277 * to avoid overflow. 278 * 279 * Otherwise, if the number of ticks in the whole seconds part of 280 * the time difference fits in a long, then convert the parts to 281 * ticks separately and add, using similar rounding methods and 282 * overflow avoidance. This method would work in the previous 283 * case but it is slightly slower and assumes that hz is integral. 284 * 285 * Otherwise, round the time difference down to the maximum 286 * representable value. 287 * 288 * If ints have 32 bits, then the maximum value for any timeout in 289 * 10ms ticks is 248 days. 290 */ 291 sec = tv->tv_sec; 292 usec = tv->tv_usec; 293 if (usec < 0) { 294 sec--; 295 usec += 1000000; 296 } 297 if (sec < 0) { 298 #ifdef DIAGNOSTIC 299 if (usec > 0) { 300 sec++; 301 usec -= 1000000; 302 } 303 printf("tvotohz: negative time difference %ld sec %ld usec\n", 304 sec, usec); 305 #endif 306 ticks = 1; 307 } else if (sec <= LONG_MAX / 1000000) 308 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 309 / tick + 1; 310 else if (sec <= LONG_MAX / hz) 311 ticks = sec * hz 312 + ((unsigned long)usec + (tick - 1)) / tick + 1; 313 else 314 ticks = LONG_MAX; 315 if (ticks > INT_MAX) 316 ticks = INT_MAX; 317 return ((int)ticks); 318 } 319 320 /* 321 * Start profiling on a process. 322 * 323 * Kernel profiling passes proc0 which never exits and hence 324 * keeps the profile clock running constantly. 325 */ 326 void 327 startprofclock(p) 328 register struct proc *p; 329 { 330 331 /* 332 * XXX; Right now sched_lock protects statclock(), but perhaps 333 * it should be protected later on by a time_lock, which would 334 * cover psdiv, etc. as well. 335 */ 336 PROC_LOCK_ASSERT(p, MA_OWNED); 337 if (p->p_flag & P_STOPPROF) 338 return; 339 if ((p->p_flag & P_PROFIL) == 0) { 340 mtx_lock_spin(&sched_lock); 341 p->p_flag |= P_PROFIL; 342 if (++profprocs == 1) 343 cpu_startprofclock(); 344 mtx_unlock_spin(&sched_lock); 345 } 346 } 347 348 /* 349 * Stop profiling on a process. 350 */ 351 void 352 stopprofclock(p) 353 register struct proc *p; 354 { 355 356 PROC_LOCK_ASSERT(p, MA_OWNED); 357 if (p->p_flag & P_PROFIL) { 358 if (p->p_profthreads != 0) { 359 p->p_flag |= P_STOPPROF; 360 while (p->p_profthreads != 0) 361 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE, 362 "stopprof", 0); 363 p->p_flag &= ~P_STOPPROF; 364 } 365 mtx_lock_spin(&sched_lock); 366 p->p_flag &= ~P_PROFIL; 367 if (--profprocs == 0) 368 cpu_stopprofclock(); 369 mtx_unlock_spin(&sched_lock); 370 } 371 } 372 373 /* 374 * Statistics clock. Grab profile sample, and if divider reaches 0, 375 * do process and kernel statistics. Most of the statistics are only 376 * used by user-level statistics programs. The main exceptions are 377 * ke->ke_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu. 378 * This should be called by all active processors. 379 */ 380 void 381 statclock(frame) 382 register struct clockframe *frame; 383 { 384 struct pstats *pstats; 385 struct rusage *ru; 386 struct vmspace *vm; 387 struct thread *td; 388 struct proc *p; 389 long rss; 390 391 td = curthread; 392 p = td->td_proc; 393 394 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 395 if (CLKF_USERMODE(frame)) { 396 /* 397 * Charge the time as appropriate. 398 */ 399 if (p->p_flag & P_SA) 400 thread_statclock(1); 401 p->p_uticks++; 402 if (td->td_ksegrp->kg_nice > NZERO) 403 cp_time[CP_NICE]++; 404 else 405 cp_time[CP_USER]++; 406 } else { 407 /* 408 * Came from kernel mode, so we were: 409 * - handling an interrupt, 410 * - doing syscall or trap work on behalf of the current 411 * user process, or 412 * - spinning in the idle loop. 413 * Whichever it is, charge the time as appropriate. 414 * Note that we charge interrupts to the current process, 415 * regardless of whether they are ``for'' that process, 416 * so that we know how much of its real time was spent 417 * in ``non-process'' (i.e., interrupt) work. 418 */ 419 if ((td->td_ithd != NULL) || td->td_intr_nesting_level >= 2) { 420 p->p_iticks++; 421 cp_time[CP_INTR]++; 422 } else { 423 if (p->p_flag & P_SA) 424 thread_statclock(0); 425 td->td_sticks++; 426 p->p_sticks++; 427 if (p != PCPU_GET(idlethread)->td_proc) 428 cp_time[CP_SYS]++; 429 else 430 cp_time[CP_IDLE]++; 431 } 432 } 433 434 sched_clock(td); 435 436 /* Update resource usage integrals and maximums. */ 437 if ((pstats = p->p_stats) != NULL && 438 (ru = &pstats->p_ru) != NULL && 439 (vm = p->p_vmspace) != NULL) { 440 ru->ru_ixrss += pgtok(vm->vm_tsize); 441 ru->ru_idrss += pgtok(vm->vm_dsize); 442 ru->ru_isrss += pgtok(vm->vm_ssize); 443 rss = pgtok(vmspace_resident_count(vm)); 444 if (ru->ru_maxrss < rss) 445 ru->ru_maxrss = rss; 446 } 447 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 448 } 449 450 void 451 profclock(frame) 452 register struct clockframe *frame; 453 { 454 struct thread *td; 455 #ifdef GPROF 456 struct gmonparam *g; 457 int i; 458 #endif 459 460 td = curthread; 461 if (CLKF_USERMODE(frame)) { 462 /* 463 * Came from user mode; CPU was in user state. 464 * If this process is being profiled, record the tick. 465 * if there is no related user location yet, don't 466 * bother trying to count it. 467 */ 468 td = curthread; 469 if (td->td_proc->p_flag & P_PROFIL) 470 addupc_intr(td, CLKF_PC(frame), 1); 471 } 472 #ifdef GPROF 473 else { 474 /* 475 * Kernel statistics are just like addupc_intr, only easier. 476 */ 477 g = &_gmonparam; 478 if (g->state == GMON_PROF_ON) { 479 i = CLKF_PC(frame) - g->lowpc; 480 if (i < g->textsize) { 481 i /= HISTFRACTION * sizeof(*g->kcount); 482 g->kcount[i]++; 483 } 484 } 485 } 486 #endif 487 } 488 489 /* 490 * Return information about system clocks. 491 */ 492 static int 493 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 494 { 495 struct clockinfo clkinfo; 496 /* 497 * Construct clockinfo structure. 498 */ 499 bzero(&clkinfo, sizeof(clkinfo)); 500 clkinfo.hz = hz; 501 clkinfo.tick = tick; 502 clkinfo.profhz = profhz; 503 clkinfo.stathz = stathz ? stathz : hz; 504 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 505 } 506 507 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 508 0, 0, sysctl_kern_clockrate, "S,clockinfo", 509 "Rate and period of various kernel clocks"); 510 511 #ifdef WATCHDOG 512 /* 513 * Reset the watchdog timer to ticks, thus preventing the watchdog 514 * from firing for another watchdog timeout period. 515 */ 516 static int 517 sysctl_watchdog_reset(SYSCTL_HANDLER_ARGS) 518 { 519 int ret; 520 521 ret = 0; 522 watchdog_ticks = ticks; 523 return sysctl_handle_int(oidp, &ret, 0, req); 524 } 525 526 SYSCTL_PROC(_debug_watchdog, OID_AUTO, reset, CTLFLAG_RW, 0, 0, 527 sysctl_watchdog_reset, "I", "Reset the watchdog"); 528 529 /* 530 * Handle a watchdog timeout by dumping interrupt information and 531 * then either dropping to DDB or panicing. 532 */ 533 static void 534 watchdog_fire(void) 535 { 536 int nintr; 537 u_int64_t inttotal; 538 u_long *curintr; 539 char *curname; 540 541 curintr = intrcnt; 542 curname = intrnames; 543 inttotal = 0; 544 nintr = eintrcnt - intrcnt; 545 546 printf("interrupt total\n"); 547 while (--nintr >= 0) { 548 if (*curintr) 549 printf("%-12s %20lu\n", curname, *curintr); 550 curname += strlen(curname) + 1; 551 inttotal += *curintr++; 552 } 553 printf("Total %20ju\n", (uintmax_t)inttotal); 554 555 #ifdef DDB 556 db_print_backtrace(); 557 Debugger("watchdog timeout"); 558 #else /* !DDB */ 559 panic("watchdog timeout"); 560 #endif /* DDB */ 561 } 562 563 #endif /* WATCHDOG */ 564