1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_kdb.h" 43 #include "opt_device_polling.h" 44 #include "opt_hwpmc_hooks.h" 45 #include "opt_ntp.h" 46 #include "opt_watchdog.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/callout.h> 51 #include <sys/epoch.h> 52 #include <sys/eventhandler.h> 53 #include <sys/gtaskqueue.h> 54 #include <sys/kdb.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/ktr.h> 58 #include <sys/lock.h> 59 #include <sys/mutex.h> 60 #include <sys/proc.h> 61 #include <sys/resource.h> 62 #include <sys/resourcevar.h> 63 #include <sys/sched.h> 64 #include <sys/sdt.h> 65 #include <sys/signalvar.h> 66 #include <sys/sleepqueue.h> 67 #include <sys/smp.h> 68 #include <vm/vm.h> 69 #include <vm/pmap.h> 70 #include <vm/vm_map.h> 71 #include <sys/sysctl.h> 72 #include <sys/bus.h> 73 #include <sys/interrupt.h> 74 #include <sys/limits.h> 75 #include <sys/timetc.h> 76 77 #ifdef GPROF 78 #include <sys/gmon.h> 79 #endif 80 81 #ifdef HWPMC_HOOKS 82 #include <sys/pmckern.h> 83 PMC_SOFT_DEFINE( , , clock, hard); 84 PMC_SOFT_DEFINE( , , clock, stat); 85 PMC_SOFT_DEFINE_EX( , , clock, prof, \ 86 cpu_startprofclock, cpu_stopprofclock); 87 #endif 88 89 #ifdef DEVICE_POLLING 90 extern void hardclock_device_poll(void); 91 #endif /* DEVICE_POLLING */ 92 93 static void initclocks(void *dummy); 94 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 95 96 /* Spin-lock protecting profiling statistics. */ 97 static struct mtx time_lock; 98 99 SDT_PROVIDER_DECLARE(sched); 100 SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *"); 101 102 static int 103 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS) 104 { 105 int error; 106 long cp_time[CPUSTATES]; 107 #ifdef SCTL_MASK32 108 int i; 109 unsigned int cp_time32[CPUSTATES]; 110 #endif 111 112 read_cpu_time(cp_time); 113 #ifdef SCTL_MASK32 114 if (req->flags & SCTL_MASK32) { 115 if (!req->oldptr) 116 return SYSCTL_OUT(req, 0, sizeof(cp_time32)); 117 for (i = 0; i < CPUSTATES; i++) 118 cp_time32[i] = (unsigned int)cp_time[i]; 119 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 120 } else 121 #endif 122 { 123 if (!req->oldptr) 124 return SYSCTL_OUT(req, 0, sizeof(cp_time)); 125 error = SYSCTL_OUT(req, cp_time, sizeof(cp_time)); 126 } 127 return error; 128 } 129 130 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 131 0,0, sysctl_kern_cp_time, "LU", "CPU time statistics"); 132 133 static long empty[CPUSTATES]; 134 135 static int 136 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS) 137 { 138 struct pcpu *pcpu; 139 int error; 140 int c; 141 long *cp_time; 142 #ifdef SCTL_MASK32 143 unsigned int cp_time32[CPUSTATES]; 144 int i; 145 #endif 146 147 if (!req->oldptr) { 148 #ifdef SCTL_MASK32 149 if (req->flags & SCTL_MASK32) 150 return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1)); 151 else 152 #endif 153 return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1)); 154 } 155 for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) { 156 if (!CPU_ABSENT(c)) { 157 pcpu = pcpu_find(c); 158 cp_time = pcpu->pc_cp_time; 159 } else { 160 cp_time = empty; 161 } 162 #ifdef SCTL_MASK32 163 if (req->flags & SCTL_MASK32) { 164 for (i = 0; i < CPUSTATES; i++) 165 cp_time32[i] = (unsigned int)cp_time[i]; 166 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 167 } else 168 #endif 169 error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES); 170 } 171 return error; 172 } 173 174 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 175 0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics"); 176 177 #ifdef DEADLKRES 178 static const char *blessed[] = { 179 "getblk", 180 "so_snd_sx", 181 "so_rcv_sx", 182 NULL 183 }; 184 static int slptime_threshold = 1800; 185 static int blktime_threshold = 900; 186 static int sleepfreq = 3; 187 188 static void 189 deadlres_td_on_lock(struct proc *p, struct thread *td, int blkticks) 190 { 191 int tticks; 192 193 sx_assert(&allproc_lock, SX_LOCKED); 194 PROC_LOCK_ASSERT(p, MA_OWNED); 195 THREAD_LOCK_ASSERT(td, MA_OWNED); 196 /* 197 * The thread should be blocked on a turnstile, simply check 198 * if the turnstile channel is in good state. 199 */ 200 MPASS(td->td_blocked != NULL); 201 202 tticks = ticks - td->td_blktick; 203 if (tticks > blkticks) 204 /* 205 * Accordingly with provided thresholds, this thread is stuck 206 * for too long on a turnstile. 207 */ 208 panic("%s: possible deadlock detected for %p, " 209 "blocked for %d ticks\n", __func__, td, tticks); 210 } 211 212 static void 213 deadlres_td_sleep_q(struct proc *p, struct thread *td, int slpticks) 214 { 215 const void *wchan; 216 int i, slptype, tticks; 217 218 sx_assert(&allproc_lock, SX_LOCKED); 219 PROC_LOCK_ASSERT(p, MA_OWNED); 220 THREAD_LOCK_ASSERT(td, MA_OWNED); 221 /* 222 * Check if the thread is sleeping on a lock, otherwise skip the check. 223 * Drop the thread lock in order to avoid a LOR with the sleepqueue 224 * spinlock. 225 */ 226 wchan = td->td_wchan; 227 tticks = ticks - td->td_slptick; 228 slptype = sleepq_type(wchan); 229 if ((slptype == SLEEPQ_SX || slptype == SLEEPQ_LK) && 230 tticks > slpticks) { 231 232 /* 233 * Accordingly with provided thresholds, this thread is stuck 234 * for too long on a sleepqueue. 235 * However, being on a sleepqueue, we might still check for the 236 * blessed list. 237 */ 238 for (i = 0; blessed[i] != NULL; i++) 239 if (!strcmp(blessed[i], td->td_wmesg)) 240 return; 241 242 panic("%s: possible deadlock detected for %p, " 243 "blocked for %d ticks\n", __func__, td, tticks); 244 } 245 } 246 247 static void 248 deadlkres(void) 249 { 250 struct proc *p; 251 struct thread *td; 252 int blkticks, slpticks, tryl; 253 254 tryl = 0; 255 for (;;) { 256 blkticks = blktime_threshold * hz; 257 slpticks = slptime_threshold * hz; 258 259 /* 260 * Avoid to sleep on the sx_lock in order to avoid a 261 * possible priority inversion problem leading to 262 * starvation. 263 * If the lock can't be held after 100 tries, panic. 264 */ 265 if (!sx_try_slock(&allproc_lock)) { 266 if (tryl > 100) 267 panic("%s: possible deadlock detected " 268 "on allproc_lock\n", __func__); 269 tryl++; 270 pause("allproc", sleepfreq * hz); 271 continue; 272 } 273 tryl = 0; 274 FOREACH_PROC_IN_SYSTEM(p) { 275 PROC_LOCK(p); 276 if (p->p_state == PRS_NEW) { 277 PROC_UNLOCK(p); 278 continue; 279 } 280 FOREACH_THREAD_IN_PROC(p, td) { 281 thread_lock(td); 282 if (TD_ON_LOCK(td)) 283 deadlres_td_on_lock(p, td, 284 blkticks); 285 else if (TD_IS_SLEEPING(td)) 286 deadlres_td_sleep_q(p, td, 287 slpticks); 288 thread_unlock(td); 289 } 290 PROC_UNLOCK(p); 291 } 292 sx_sunlock(&allproc_lock); 293 294 /* Sleep for sleepfreq seconds. */ 295 pause("-", sleepfreq * hz); 296 } 297 } 298 299 static struct kthread_desc deadlkres_kd = { 300 "deadlkres", 301 deadlkres, 302 (struct thread **)NULL 303 }; 304 305 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd); 306 307 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0, 308 "Deadlock resolver"); 309 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW, 310 &slptime_threshold, 0, 311 "Number of seconds within is valid to sleep on a sleepqueue"); 312 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW, 313 &blktime_threshold, 0, 314 "Number of seconds within is valid to block on a turnstile"); 315 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0, 316 "Number of seconds between any deadlock resolver thread run"); 317 #endif /* DEADLKRES */ 318 319 void 320 read_cpu_time(long *cp_time) 321 { 322 struct pcpu *pc; 323 int i, j; 324 325 /* Sum up global cp_time[]. */ 326 bzero(cp_time, sizeof(long) * CPUSTATES); 327 CPU_FOREACH(i) { 328 pc = pcpu_find(i); 329 for (j = 0; j < CPUSTATES; j++) 330 cp_time[j] += pc->pc_cp_time[j]; 331 } 332 } 333 334 #include <sys/watchdog.h> 335 336 static int watchdog_ticks; 337 static int watchdog_enabled; 338 static void watchdog_fire(void); 339 static void watchdog_config(void *, u_int, int *); 340 341 static void 342 watchdog_attach(void) 343 { 344 EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0); 345 } 346 347 /* 348 * Clock handling routines. 349 * 350 * This code is written to operate with two timers that run independently of 351 * each other. 352 * 353 * The main timer, running hz times per second, is used to trigger interval 354 * timers, timeouts and rescheduling as needed. 355 * 356 * The second timer handles kernel and user profiling, 357 * and does resource use estimation. If the second timer is programmable, 358 * it is randomized to avoid aliasing between the two clocks. For example, 359 * the randomization prevents an adversary from always giving up the cpu 360 * just before its quantum expires. Otherwise, it would never accumulate 361 * cpu ticks. The mean frequency of the second timer is stathz. 362 * 363 * If no second timer exists, stathz will be zero; in this case we drive 364 * profiling and statistics off the main clock. This WILL NOT be accurate; 365 * do not do it unless absolutely necessary. 366 * 367 * The statistics clock may (or may not) be run at a higher rate while 368 * profiling. This profile clock runs at profhz. We require that profhz 369 * be an integral multiple of stathz. 370 * 371 * If the statistics clock is running fast, it must be divided by the ratio 372 * profhz/stathz for statistics. (For profiling, every tick counts.) 373 * 374 * Time-of-day is maintained using a "timecounter", which may or may 375 * not be related to the hardware generating the above mentioned 376 * interrupts. 377 */ 378 379 int stathz; 380 int profhz; 381 int profprocs; 382 volatile int ticks; 383 int psratio; 384 385 DPCPU_DEFINE_STATIC(int, pcputicks); /* Per-CPU version of ticks. */ 386 #ifdef DEVICE_POLLING 387 static int devpoll_run = 0; 388 #endif 389 390 /* 391 * Initialize clock frequencies and start both clocks running. 392 */ 393 /* ARGSUSED*/ 394 static void 395 initclocks(void *dummy) 396 { 397 int i; 398 399 /* 400 * Set divisors to 1 (normal case) and let the machine-specific 401 * code do its bit. 402 */ 403 mtx_init(&time_lock, "time lock", NULL, MTX_DEF); 404 cpu_initclocks(); 405 406 /* 407 * Compute profhz/stathz, and fix profhz if needed. 408 */ 409 i = stathz ? stathz : hz; 410 if (profhz == 0) 411 profhz = i; 412 psratio = profhz / i; 413 414 #ifdef SW_WATCHDOG 415 /* Enable hardclock watchdog now, even if a hardware watchdog exists. */ 416 watchdog_attach(); 417 #else 418 /* Volunteer to run a software watchdog. */ 419 if (wdog_software_attach == NULL) 420 wdog_software_attach = watchdog_attach; 421 #endif 422 } 423 424 static __noinline void 425 hardclock_itimer(struct thread *td, struct pstats *pstats, int cnt, int usermode) 426 { 427 struct proc *p; 428 int flags; 429 430 flags = 0; 431 p = td->td_proc; 432 if (usermode && 433 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) { 434 PROC_ITIMLOCK(p); 435 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], 436 tick * cnt) == 0) 437 flags |= TDF_ALRMPEND | TDF_ASTPENDING; 438 PROC_ITIMUNLOCK(p); 439 } 440 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) { 441 PROC_ITIMLOCK(p); 442 if (itimerdecr(&pstats->p_timer[ITIMER_PROF], 443 tick * cnt) == 0) 444 flags |= TDF_PROFPEND | TDF_ASTPENDING; 445 PROC_ITIMUNLOCK(p); 446 } 447 if (flags != 0) { 448 thread_lock(td); 449 td->td_flags |= flags; 450 thread_unlock(td); 451 } 452 } 453 454 void 455 hardclock(int cnt, int usermode) 456 { 457 struct pstats *pstats; 458 struct thread *td = curthread; 459 struct proc *p = td->td_proc; 460 int *t = DPCPU_PTR(pcputicks); 461 int global, i, newticks; 462 463 /* 464 * Update per-CPU and possibly global ticks values. 465 */ 466 *t += cnt; 467 global = ticks; 468 do { 469 newticks = *t - global; 470 if (newticks <= 0) { 471 if (newticks < -1) 472 *t = global - 1; 473 newticks = 0; 474 break; 475 } 476 } while (!atomic_fcmpset_int(&ticks, &global, *t)); 477 478 /* 479 * Run current process's virtual and profile time, as needed. 480 */ 481 pstats = p->p_stats; 482 if (__predict_false( 483 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) || 484 timevalisset(&pstats->p_timer[ITIMER_PROF].it_value))) 485 hardclock_itimer(td, pstats, cnt, usermode); 486 487 #ifdef HWPMC_HOOKS 488 if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid))) 489 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL); 490 if (td->td_intr_frame != NULL) 491 PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame); 492 #endif 493 /* We are in charge to handle this tick duty. */ 494 if (newticks > 0) { 495 tc_ticktock(newticks); 496 #ifdef DEVICE_POLLING 497 /* Dangerous and no need to call these things concurrently. */ 498 if (atomic_cmpset_acq_int(&devpoll_run, 0, 1)) { 499 /* This is very short and quick. */ 500 hardclock_device_poll(); 501 atomic_store_rel_int(&devpoll_run, 0); 502 } 503 #endif /* DEVICE_POLLING */ 504 if (watchdog_enabled > 0) { 505 i = atomic_fetchadd_int(&watchdog_ticks, -newticks); 506 if (i > 0 && i <= newticks) 507 watchdog_fire(); 508 } 509 } 510 if (curcpu == CPU_FIRST()) 511 cpu_tick_calibration(); 512 if (__predict_false(DPCPU_GET(epoch_cb_count))) 513 GROUPTASK_ENQUEUE(DPCPU_PTR(epoch_cb_task)); 514 } 515 516 void 517 hardclock_sync(int cpu) 518 { 519 int *t; 520 KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu)); 521 t = DPCPU_ID_PTR(cpu, pcputicks); 522 523 *t = ticks; 524 } 525 526 /* 527 * Compute number of ticks in the specified amount of time. 528 */ 529 int 530 tvtohz(struct timeval *tv) 531 { 532 unsigned long ticks; 533 long sec, usec; 534 535 /* 536 * If the number of usecs in the whole seconds part of the time 537 * difference fits in a long, then the total number of usecs will 538 * fit in an unsigned long. Compute the total and convert it to 539 * ticks, rounding up and adding 1 to allow for the current tick 540 * to expire. Rounding also depends on unsigned long arithmetic 541 * to avoid overflow. 542 * 543 * Otherwise, if the number of ticks in the whole seconds part of 544 * the time difference fits in a long, then convert the parts to 545 * ticks separately and add, using similar rounding methods and 546 * overflow avoidance. This method would work in the previous 547 * case but it is slightly slower and assumes that hz is integral. 548 * 549 * Otherwise, round the time difference down to the maximum 550 * representable value. 551 * 552 * If ints have 32 bits, then the maximum value for any timeout in 553 * 10ms ticks is 248 days. 554 */ 555 sec = tv->tv_sec; 556 usec = tv->tv_usec; 557 if (usec < 0) { 558 sec--; 559 usec += 1000000; 560 } 561 if (sec < 0) { 562 #ifdef DIAGNOSTIC 563 if (usec > 0) { 564 sec++; 565 usec -= 1000000; 566 } 567 printf("tvotohz: negative time difference %ld sec %ld usec\n", 568 sec, usec); 569 #endif 570 ticks = 1; 571 } else if (sec <= LONG_MAX / 1000000) 572 ticks = howmany(sec * 1000000 + (unsigned long)usec, tick) + 1; 573 else if (sec <= LONG_MAX / hz) 574 ticks = sec * hz 575 + howmany((unsigned long)usec, tick) + 1; 576 else 577 ticks = LONG_MAX; 578 if (ticks > INT_MAX) 579 ticks = INT_MAX; 580 return ((int)ticks); 581 } 582 583 /* 584 * Start profiling on a process. 585 * 586 * Kernel profiling passes proc0 which never exits and hence 587 * keeps the profile clock running constantly. 588 */ 589 void 590 startprofclock(struct proc *p) 591 { 592 593 PROC_LOCK_ASSERT(p, MA_OWNED); 594 if (p->p_flag & P_STOPPROF) 595 return; 596 if ((p->p_flag & P_PROFIL) == 0) { 597 p->p_flag |= P_PROFIL; 598 mtx_lock(&time_lock); 599 if (++profprocs == 1) 600 cpu_startprofclock(); 601 mtx_unlock(&time_lock); 602 } 603 } 604 605 /* 606 * Stop profiling on a process. 607 */ 608 void 609 stopprofclock(struct proc *p) 610 { 611 612 PROC_LOCK_ASSERT(p, MA_OWNED); 613 if (p->p_flag & P_PROFIL) { 614 if (p->p_profthreads != 0) { 615 while (p->p_profthreads != 0) { 616 p->p_flag |= P_STOPPROF; 617 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE, 618 "stopprof", 0); 619 } 620 } 621 if ((p->p_flag & P_PROFIL) == 0) 622 return; 623 p->p_flag &= ~P_PROFIL; 624 mtx_lock(&time_lock); 625 if (--profprocs == 0) 626 cpu_stopprofclock(); 627 mtx_unlock(&time_lock); 628 } 629 } 630 631 /* 632 * Statistics clock. Updates rusage information and calls the scheduler 633 * to adjust priorities of the active thread. 634 * 635 * This should be called by all active processors. 636 */ 637 void 638 statclock(int cnt, int usermode) 639 { 640 struct rusage *ru; 641 struct vmspace *vm; 642 struct thread *td; 643 struct proc *p; 644 long rss; 645 long *cp_time; 646 uint64_t runtime, new_switchtime; 647 648 td = curthread; 649 p = td->td_proc; 650 651 cp_time = (long *)PCPU_PTR(cp_time); 652 if (usermode) { 653 /* 654 * Charge the time as appropriate. 655 */ 656 td->td_uticks += cnt; 657 if (p->p_nice > NZERO) 658 cp_time[CP_NICE] += cnt; 659 else 660 cp_time[CP_USER] += cnt; 661 } else { 662 /* 663 * Came from kernel mode, so we were: 664 * - handling an interrupt, 665 * - doing syscall or trap work on behalf of the current 666 * user process, or 667 * - spinning in the idle loop. 668 * Whichever it is, charge the time as appropriate. 669 * Note that we charge interrupts to the current process, 670 * regardless of whether they are ``for'' that process, 671 * so that we know how much of its real time was spent 672 * in ``non-process'' (i.e., interrupt) work. 673 */ 674 if ((td->td_pflags & TDP_ITHREAD) || 675 td->td_intr_nesting_level >= 2) { 676 td->td_iticks += cnt; 677 cp_time[CP_INTR] += cnt; 678 } else { 679 td->td_pticks += cnt; 680 td->td_sticks += cnt; 681 if (!TD_IS_IDLETHREAD(td)) 682 cp_time[CP_SYS] += cnt; 683 else 684 cp_time[CP_IDLE] += cnt; 685 } 686 } 687 688 /* Update resource usage integrals and maximums. */ 689 MPASS(p->p_vmspace != NULL); 690 vm = p->p_vmspace; 691 ru = &td->td_ru; 692 ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt; 693 ru->ru_idrss += pgtok(vm->vm_dsize) * cnt; 694 ru->ru_isrss += pgtok(vm->vm_ssize) * cnt; 695 rss = pgtok(vmspace_resident_count(vm)); 696 if (ru->ru_maxrss < rss) 697 ru->ru_maxrss = rss; 698 KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock", 699 "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz); 700 SDT_PROBE2(sched, , , tick, td, td->td_proc); 701 thread_lock_flags(td, MTX_QUIET); 702 703 /* 704 * Compute the amount of time during which the current 705 * thread was running, and add that to its total so far. 706 */ 707 new_switchtime = cpu_ticks(); 708 runtime = new_switchtime - PCPU_GET(switchtime); 709 td->td_runtime += runtime; 710 td->td_incruntime += runtime; 711 PCPU_SET(switchtime, new_switchtime); 712 713 sched_clock(td, cnt); 714 thread_unlock(td); 715 #ifdef HWPMC_HOOKS 716 if (td->td_intr_frame != NULL) 717 PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame); 718 #endif 719 } 720 721 void 722 profclock(int cnt, int usermode, uintfptr_t pc) 723 { 724 struct thread *td; 725 #ifdef GPROF 726 struct gmonparam *g; 727 uintfptr_t i; 728 #endif 729 730 td = curthread; 731 if (usermode) { 732 /* 733 * Came from user mode; CPU was in user state. 734 * If this process is being profiled, record the tick. 735 * if there is no related user location yet, don't 736 * bother trying to count it. 737 */ 738 if (td->td_proc->p_flag & P_PROFIL) 739 addupc_intr(td, pc, cnt); 740 } 741 #ifdef GPROF 742 else { 743 /* 744 * Kernel statistics are just like addupc_intr, only easier. 745 */ 746 g = &_gmonparam; 747 if (g->state == GMON_PROF_ON && pc >= g->lowpc) { 748 i = PC_TO_I(g, pc); 749 if (i < g->textsize) { 750 KCOUNT(g, i) += cnt; 751 } 752 } 753 } 754 #endif 755 #ifdef HWPMC_HOOKS 756 if (td->td_intr_frame != NULL) 757 PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame); 758 #endif 759 } 760 761 /* 762 * Return information about system clocks. 763 */ 764 static int 765 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 766 { 767 struct clockinfo clkinfo; 768 /* 769 * Construct clockinfo structure. 770 */ 771 bzero(&clkinfo, sizeof(clkinfo)); 772 clkinfo.hz = hz; 773 clkinfo.tick = tick; 774 clkinfo.profhz = profhz; 775 clkinfo.stathz = stathz ? stathz : hz; 776 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 777 } 778 779 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, 780 CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE, 781 0, 0, sysctl_kern_clockrate, "S,clockinfo", 782 "Rate and period of various kernel clocks"); 783 784 static void 785 watchdog_config(void *unused __unused, u_int cmd, int *error) 786 { 787 u_int u; 788 789 u = cmd & WD_INTERVAL; 790 if (u >= WD_TO_1SEC) { 791 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz; 792 watchdog_enabled = 1; 793 *error = 0; 794 } else { 795 watchdog_enabled = 0; 796 } 797 } 798 799 /* 800 * Handle a watchdog timeout by dumping interrupt information and 801 * then either dropping to DDB or panicking. 802 */ 803 static void 804 watchdog_fire(void) 805 { 806 int nintr; 807 uint64_t inttotal; 808 u_long *curintr; 809 char *curname; 810 811 curintr = intrcnt; 812 curname = intrnames; 813 inttotal = 0; 814 nintr = sintrcnt / sizeof(u_long); 815 816 printf("interrupt total\n"); 817 while (--nintr >= 0) { 818 if (*curintr) 819 printf("%-12s %20lu\n", curname, *curintr); 820 curname += strlen(curname) + 1; 821 inttotal += *curintr++; 822 } 823 printf("Total %20ju\n", (uintmax_t)inttotal); 824 825 #if defined(KDB) && !defined(KDB_UNATTENDED) 826 kdb_backtrace(); 827 kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout"); 828 #else 829 panic("watchdog timeout"); 830 #endif 831 } 832