1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39 * $FreeBSD$ 40 */ 41 42 #include "opt_ntp.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/dkstat.h> 47 #include <sys/callout.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/ktr.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/resourcevar.h> 54 #include <sys/signalvar.h> 55 #include <sys/smp.h> 56 #include <sys/timetc.h> 57 #include <sys/timepps.h> 58 #include <vm/vm.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_map.h> 61 #include <sys/sysctl.h> 62 #include <sys/bus.h> 63 #include <sys/interrupt.h> 64 65 #include <machine/cpu.h> 66 #include <machine/limits.h> 67 68 #ifdef GPROF 69 #include <sys/gmon.h> 70 #endif 71 72 73 static void initclocks __P((void *dummy)); 74 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 75 76 /* Some of these don't belong here, but it's easiest to concentrate them. */ 77 long cp_time[CPUSTATES]; 78 79 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time), 80 "LU", "CPU time statistics"); 81 82 long tk_cancc; 83 long tk_nin; 84 long tk_nout; 85 long tk_rawcc; 86 87 /* 88 * Clock handling routines. 89 * 90 * This code is written to operate with two timers that run independently of 91 * each other. 92 * 93 * The main timer, running hz times per second, is used to trigger interval 94 * timers, timeouts and rescheduling as needed. 95 * 96 * The second timer handles kernel and user profiling, 97 * and does resource use estimation. If the second timer is programmable, 98 * it is randomized to avoid aliasing between the two clocks. For example, 99 * the randomization prevents an adversary from always giving up the cpu 100 * just before its quantum expires. Otherwise, it would never accumulate 101 * cpu ticks. The mean frequency of the second timer is stathz. 102 * 103 * If no second timer exists, stathz will be zero; in this case we drive 104 * profiling and statistics off the main clock. This WILL NOT be accurate; 105 * do not do it unless absolutely necessary. 106 * 107 * The statistics clock may (or may not) be run at a higher rate while 108 * profiling. This profile clock runs at profhz. We require that profhz 109 * be an integral multiple of stathz. 110 * 111 * If the statistics clock is running fast, it must be divided by the ratio 112 * profhz/stathz for statistics. (For profiling, every tick counts.) 113 * 114 * Time-of-day is maintained using a "timecounter", which may or may 115 * not be related to the hardware generating the above mentioned 116 * interrupts. 117 */ 118 119 int stathz; 120 int profhz; 121 static int profprocs; 122 int ticks; 123 static int psdiv, pscnt; /* prof => stat divider */ 124 int psratio; /* ratio: prof / stat */ 125 126 /* 127 * Initialize clock frequencies and start both clocks running. 128 */ 129 /* ARGSUSED*/ 130 static void 131 initclocks(dummy) 132 void *dummy; 133 { 134 register int i; 135 136 /* 137 * Set divisors to 1 (normal case) and let the machine-specific 138 * code do its bit. 139 */ 140 psdiv = pscnt = 1; 141 cpu_initclocks(); 142 143 /* 144 * Compute profhz/stathz, and fix profhz if needed. 145 */ 146 i = stathz ? stathz : hz; 147 if (profhz == 0) 148 profhz = i; 149 psratio = profhz / i; 150 } 151 152 /* 153 * Each time the real-time timer fires, this function is called on all CPUs 154 * with each CPU passing in its curthread as the first argument. If possible 155 * a nice optimization in the future would be to allow the CPU receiving the 156 * actual real-time timer interrupt to call this function on behalf of the 157 * other CPUs rather than sending an IPI to all other CPUs so that they 158 * can call this function. Note that hardclock() calls hardclock_process() 159 * for the CPU receiving the timer interrupt, so only the other CPUs in the 160 * system need to call this function (or have it called on their behalf. 161 */ 162 void 163 hardclock_process(td, user) 164 struct thread *td; 165 int user; 166 { 167 struct pstats *pstats; 168 struct proc *p = td->td_proc; 169 170 /* 171 * Run current process's virtual and profile time, as needed. 172 */ 173 mtx_assert(&sched_lock, MA_OWNED); 174 if (p->p_flag & P_KSES) { 175 /* XXXKSE What to do? */ 176 } else { 177 pstats = p->p_stats; 178 if (user && 179 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 180 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) { 181 p->p_sflag |= PS_ALRMPEND; 182 td->td_kse->ke_flags |= KEF_ASTPENDING; 183 } 184 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 185 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) { 186 p->p_sflag |= PS_PROFPEND; 187 td->td_kse->ke_flags |= KEF_ASTPENDING; 188 } 189 } 190 } 191 192 /* 193 * The real-time timer, interrupting hz times per second. 194 */ 195 void 196 hardclock(frame) 197 register struct clockframe *frame; 198 { 199 int need_softclock = 0; 200 201 CTR0(KTR_INTR, "hardclock fired"); 202 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 203 hardclock_process(curthread, CLKF_USERMODE(frame)); 204 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 205 206 /* 207 * If no separate statistics clock is available, run it from here. 208 * 209 * XXX: this only works for UP 210 */ 211 if (stathz == 0) 212 statclock(frame); 213 214 tc_windup(); 215 216 /* 217 * Process callouts at a very low cpu priority, so we don't keep the 218 * relatively high clock interrupt priority any longer than necessary. 219 */ 220 mtx_lock_spin_flags(&callout_lock, MTX_QUIET); 221 ticks++; 222 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) { 223 need_softclock = 1; 224 } else if (softticks + 1 == ticks) 225 ++softticks; 226 mtx_unlock_spin_flags(&callout_lock, MTX_QUIET); 227 228 /* 229 * swi_sched acquires sched_lock, so we don't want to call it with 230 * callout_lock held; incorrect locking order. 231 */ 232 if (need_softclock) 233 swi_sched(softclock_ih, SWI_NOSWITCH); 234 } 235 236 /* 237 * Compute number of ticks in the specified amount of time. 238 */ 239 int 240 tvtohz(tv) 241 struct timeval *tv; 242 { 243 register unsigned long ticks; 244 register long sec, usec; 245 246 /* 247 * If the number of usecs in the whole seconds part of the time 248 * difference fits in a long, then the total number of usecs will 249 * fit in an unsigned long. Compute the total and convert it to 250 * ticks, rounding up and adding 1 to allow for the current tick 251 * to expire. Rounding also depends on unsigned long arithmetic 252 * to avoid overflow. 253 * 254 * Otherwise, if the number of ticks in the whole seconds part of 255 * the time difference fits in a long, then convert the parts to 256 * ticks separately and add, using similar rounding methods and 257 * overflow avoidance. This method would work in the previous 258 * case but it is slightly slower and assumes that hz is integral. 259 * 260 * Otherwise, round the time difference down to the maximum 261 * representable value. 262 * 263 * If ints have 32 bits, then the maximum value for any timeout in 264 * 10ms ticks is 248 days. 265 */ 266 sec = tv->tv_sec; 267 usec = tv->tv_usec; 268 if (usec < 0) { 269 sec--; 270 usec += 1000000; 271 } 272 if (sec < 0) { 273 #ifdef DIAGNOSTIC 274 if (usec > 0) { 275 sec++; 276 usec -= 1000000; 277 } 278 printf("tvotohz: negative time difference %ld sec %ld usec\n", 279 sec, usec); 280 #endif 281 ticks = 1; 282 } else if (sec <= LONG_MAX / 1000000) 283 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 284 / tick + 1; 285 else if (sec <= LONG_MAX / hz) 286 ticks = sec * hz 287 + ((unsigned long)usec + (tick - 1)) / tick + 1; 288 else 289 ticks = LONG_MAX; 290 if (ticks > INT_MAX) 291 ticks = INT_MAX; 292 return ((int)ticks); 293 } 294 295 /* 296 * Start profiling on a process. 297 * 298 * Kernel profiling passes proc0 which never exits and hence 299 * keeps the profile clock running constantly. 300 */ 301 void 302 startprofclock(p) 303 register struct proc *p; 304 { 305 int s; 306 307 /* 308 * XXX; Right now sched_lock protects statclock(), but perhaps 309 * it should be protected later on by a time_lock, which would 310 * cover psdiv, etc. as well. 311 */ 312 mtx_lock_spin(&sched_lock); 313 if ((p->p_sflag & PS_PROFIL) == 0) { 314 p->p_sflag |= PS_PROFIL; 315 if (++profprocs == 1 && stathz != 0) { 316 s = splstatclock(); 317 psdiv = pscnt = psratio; 318 setstatclockrate(profhz); 319 splx(s); 320 } 321 } 322 mtx_unlock_spin(&sched_lock); 323 } 324 325 /* 326 * Stop profiling on a process. 327 */ 328 void 329 stopprofclock(p) 330 register struct proc *p; 331 { 332 int s; 333 334 mtx_lock_spin(&sched_lock); 335 if (p->p_sflag & PS_PROFIL) { 336 p->p_sflag &= ~PS_PROFIL; 337 if (--profprocs == 0 && stathz != 0) { 338 s = splstatclock(); 339 psdiv = pscnt = 1; 340 setstatclockrate(stathz); 341 splx(s); 342 } 343 } 344 mtx_unlock_spin(&sched_lock); 345 } 346 347 /* 348 * Do process and kernel statistics. Most of the statistics are only 349 * used by user-level statistics programs. The main exceptions are 350 * ke->ke_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu. This function 351 * should be called by all CPUs in the system for each statistics clock 352 * interrupt. See the description of hardclock_process for more detail on 353 * this function's relationship to statclock. 354 */ 355 void 356 statclock_process(ke, pc, user) 357 struct kse *ke; 358 register_t pc; 359 int user; 360 { 361 #ifdef GPROF 362 struct gmonparam *g; 363 int i; 364 #endif 365 struct pstats *pstats; 366 long rss; 367 struct rusage *ru; 368 struct vmspace *vm; 369 struct proc *p = ke->ke_proc; 370 struct thread *td = ke->ke_thread; /* current thread */ 371 372 KASSERT(ke == curthread->td_kse, ("statclock_process: td != curthread")); 373 mtx_assert(&sched_lock, MA_OWNED); 374 if (user) { 375 /* 376 * Came from user mode; CPU was in user state. 377 * If this process is being profiled, record the tick. 378 */ 379 if (p->p_sflag & PS_PROFIL) 380 addupc_intr(ke, pc, 1); 381 if (pscnt < psdiv) 382 return; 383 /* 384 * Charge the time as appropriate. 385 */ 386 ke->ke_uticks++; 387 if (ke->ke_ksegrp->kg_nice > NZERO) 388 cp_time[CP_NICE]++; 389 else 390 cp_time[CP_USER]++; 391 } else { 392 #ifdef GPROF 393 /* 394 * Kernel statistics are just like addupc_intr, only easier. 395 */ 396 g = &_gmonparam; 397 if (g->state == GMON_PROF_ON) { 398 i = pc - g->lowpc; 399 if (i < g->textsize) { 400 i /= HISTFRACTION * sizeof(*g->kcount); 401 g->kcount[i]++; 402 } 403 } 404 #endif 405 if (pscnt < psdiv) 406 return; 407 /* 408 * Came from kernel mode, so we were: 409 * - handling an interrupt, 410 * - doing syscall or trap work on behalf of the current 411 * user process, or 412 * - spinning in the idle loop. 413 * Whichever it is, charge the time as appropriate. 414 * Note that we charge interrupts to the current process, 415 * regardless of whether they are ``for'' that process, 416 * so that we know how much of its real time was spent 417 * in ``non-process'' (i.e., interrupt) work. 418 */ 419 if ((td->td_ithd != NULL) || td->td_intr_nesting_level >= 2) { 420 ke->ke_iticks++; 421 cp_time[CP_INTR]++; 422 } else { 423 ke->ke_sticks++; 424 if (p != PCPU_GET(idlethread)->td_proc) 425 cp_time[CP_SYS]++; 426 else 427 cp_time[CP_IDLE]++; 428 } 429 } 430 431 schedclock(ke->ke_thread); 432 433 /* Update resource usage integrals and maximums. */ 434 if ((pstats = p->p_stats) != NULL && 435 (ru = &pstats->p_ru) != NULL && 436 (vm = p->p_vmspace) != NULL) { 437 ru->ru_ixrss += pgtok(vm->vm_tsize); 438 ru->ru_idrss += pgtok(vm->vm_dsize); 439 ru->ru_isrss += pgtok(vm->vm_ssize); 440 rss = pgtok(vmspace_resident_count(vm)); 441 if (ru->ru_maxrss < rss) 442 ru->ru_maxrss = rss; 443 } 444 } 445 446 /* 447 * Statistics clock. Grab profile sample, and if divider reaches 0, 448 * do process and kernel statistics. Most of the statistics are only 449 * used by user-level statistics programs. The main exceptions are 450 * ke->ke_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu. 451 */ 452 void 453 statclock(frame) 454 register struct clockframe *frame; 455 { 456 457 CTR0(KTR_INTR, "statclock fired"); 458 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 459 if (--pscnt == 0) 460 pscnt = psdiv; 461 statclock_process(curthread->td_kse, CLKF_PC(frame), CLKF_USERMODE(frame)); 462 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 463 } 464 465 /* 466 * Return information about system clocks. 467 */ 468 static int 469 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 470 { 471 struct clockinfo clkinfo; 472 /* 473 * Construct clockinfo structure. 474 */ 475 clkinfo.hz = hz; 476 clkinfo.tick = tick; 477 clkinfo.tickadj = tickadj; 478 clkinfo.profhz = profhz; 479 clkinfo.stathz = stathz ? stathz : hz; 480 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 481 } 482 483 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 484 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 485