xref: /freebsd/sys/kern/kern_clock.c (revision 8fa113e5fc65fe6abc757f0089f477a87ee4d185)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
39  * $FreeBSD$
40  */
41 
42 #include "opt_ntp.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/dkstat.h>
47 #include <sys/callout.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/ktr.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/signalvar.h>
55 #include <sys/smp.h>
56 #include <sys/timetc.h>
57 #include <sys/timepps.h>
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_map.h>
61 #include <sys/sysctl.h>
62 #include <sys/bus.h>
63 #include <sys/interrupt.h>
64 
65 #include <machine/cpu.h>
66 #include <machine/limits.h>
67 
68 #ifdef GPROF
69 #include <sys/gmon.h>
70 #endif
71 
72 
73 static void initclocks __P((void *dummy));
74 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
75 
76 /* Some of these don't belong here, but it's easiest to concentrate them. */
77 long cp_time[CPUSTATES];
78 
79 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time),
80     "LU", "CPU time statistics");
81 
82 long tk_cancc;
83 long tk_nin;
84 long tk_nout;
85 long tk_rawcc;
86 
87 /*
88  * Clock handling routines.
89  *
90  * This code is written to operate with two timers that run independently of
91  * each other.
92  *
93  * The main timer, running hz times per second, is used to trigger interval
94  * timers, timeouts and rescheduling as needed.
95  *
96  * The second timer handles kernel and user profiling,
97  * and does resource use estimation.  If the second timer is programmable,
98  * it is randomized to avoid aliasing between the two clocks.  For example,
99  * the randomization prevents an adversary from always giving up the cpu
100  * just before its quantum expires.  Otherwise, it would never accumulate
101  * cpu ticks.  The mean frequency of the second timer is stathz.
102  *
103  * If no second timer exists, stathz will be zero; in this case we drive
104  * profiling and statistics off the main clock.  This WILL NOT be accurate;
105  * do not do it unless absolutely necessary.
106  *
107  * The statistics clock may (or may not) be run at a higher rate while
108  * profiling.  This profile clock runs at profhz.  We require that profhz
109  * be an integral multiple of stathz.
110  *
111  * If the statistics clock is running fast, it must be divided by the ratio
112  * profhz/stathz for statistics.  (For profiling, every tick counts.)
113  *
114  * Time-of-day is maintained using a "timecounter", which may or may
115  * not be related to the hardware generating the above mentioned
116  * interrupts.
117  */
118 
119 int	stathz;
120 int	profhz;
121 static int profprocs;
122 int	ticks;
123 static int psdiv, pscnt;		/* prof => stat divider */
124 int	psratio;			/* ratio: prof / stat */
125 
126 /*
127  * Initialize clock frequencies and start both clocks running.
128  */
129 /* ARGSUSED*/
130 static void
131 initclocks(dummy)
132 	void *dummy;
133 {
134 	register int i;
135 
136 	/*
137 	 * Set divisors to 1 (normal case) and let the machine-specific
138 	 * code do its bit.
139 	 */
140 	psdiv = pscnt = 1;
141 	cpu_initclocks();
142 
143 	/*
144 	 * Compute profhz/stathz, and fix profhz if needed.
145 	 */
146 	i = stathz ? stathz : hz;
147 	if (profhz == 0)
148 		profhz = i;
149 	psratio = profhz / i;
150 }
151 
152 /*
153  * Each time the real-time timer fires, this function is called on all CPUs
154  * with each CPU passing in its curthread as the first argument.  If possible
155  * a nice optimization in the future would be to allow the CPU receiving the
156  * actual real-time timer interrupt to call this function on behalf of the
157  * other CPUs rather than sending an IPI to all other CPUs so that they
158  * can call this function.  Note that hardclock() calls hardclock_process()
159  * for the CPU receiving the timer interrupt, so only the other CPUs in the
160  * system need to call this function (or have it called on their behalf.
161  */
162 void
163 hardclock_process(td, user)
164 	struct thread *td;
165 	int user;
166 {
167 	struct pstats *pstats;
168 	struct proc *p = td->td_proc;
169 
170 	/*
171 	 * Run current process's virtual and profile time, as needed.
172 	 */
173 	mtx_assert(&sched_lock, MA_OWNED);
174 	if (p->p_flag & P_KSES) {
175 		/* XXXKSE What to do? */
176 	} else {
177 		pstats = p->p_stats;
178 		if (user &&
179 		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
180 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
181 			p->p_sflag |= PS_ALRMPEND;
182 			td->td_kse->ke_flags |= KEF_ASTPENDING;
183 		}
184 		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
185 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
186 			p->p_sflag |= PS_PROFPEND;
187 			td->td_kse->ke_flags |= KEF_ASTPENDING;
188 		}
189 	}
190 }
191 
192 /*
193  * The real-time timer, interrupting hz times per second.
194  */
195 void
196 hardclock(frame)
197 	register struct clockframe *frame;
198 {
199 	int need_softclock = 0;
200 
201 	CTR0(KTR_INTR, "hardclock fired");
202 	mtx_lock_spin_flags(&sched_lock, MTX_QUIET);
203 	hardclock_process(curthread, CLKF_USERMODE(frame));
204 	mtx_unlock_spin_flags(&sched_lock, MTX_QUIET);
205 
206 	/*
207 	 * If no separate statistics clock is available, run it from here.
208 	 *
209 	 * XXX: this only works for UP
210 	 */
211 	if (stathz == 0)
212 		statclock(frame);
213 
214 	tc_windup();
215 
216 	/*
217 	 * Process callouts at a very low cpu priority, so we don't keep the
218 	 * relatively high clock interrupt priority any longer than necessary.
219 	 */
220 	mtx_lock_spin_flags(&callout_lock, MTX_QUIET);
221 	ticks++;
222 	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
223 		need_softclock = 1;
224 	} else if (softticks + 1 == ticks)
225 		++softticks;
226 	mtx_unlock_spin_flags(&callout_lock, MTX_QUIET);
227 
228 	/*
229 	 * swi_sched acquires sched_lock, so we don't want to call it with
230 	 * callout_lock held; incorrect locking order.
231 	 */
232 	if (need_softclock)
233 		swi_sched(softclock_ih, SWI_NOSWITCH);
234 }
235 
236 /*
237  * Compute number of ticks in the specified amount of time.
238  */
239 int
240 tvtohz(tv)
241 	struct timeval *tv;
242 {
243 	register unsigned long ticks;
244 	register long sec, usec;
245 
246 	/*
247 	 * If the number of usecs in the whole seconds part of the time
248 	 * difference fits in a long, then the total number of usecs will
249 	 * fit in an unsigned long.  Compute the total and convert it to
250 	 * ticks, rounding up and adding 1 to allow for the current tick
251 	 * to expire.  Rounding also depends on unsigned long arithmetic
252 	 * to avoid overflow.
253 	 *
254 	 * Otherwise, if the number of ticks in the whole seconds part of
255 	 * the time difference fits in a long, then convert the parts to
256 	 * ticks separately and add, using similar rounding methods and
257 	 * overflow avoidance.  This method would work in the previous
258 	 * case but it is slightly slower and assumes that hz is integral.
259 	 *
260 	 * Otherwise, round the time difference down to the maximum
261 	 * representable value.
262 	 *
263 	 * If ints have 32 bits, then the maximum value for any timeout in
264 	 * 10ms ticks is 248 days.
265 	 */
266 	sec = tv->tv_sec;
267 	usec = tv->tv_usec;
268 	if (usec < 0) {
269 		sec--;
270 		usec += 1000000;
271 	}
272 	if (sec < 0) {
273 #ifdef DIAGNOSTIC
274 		if (usec > 0) {
275 			sec++;
276 			usec -= 1000000;
277 		}
278 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
279 		       sec, usec);
280 #endif
281 		ticks = 1;
282 	} else if (sec <= LONG_MAX / 1000000)
283 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
284 			/ tick + 1;
285 	else if (sec <= LONG_MAX / hz)
286 		ticks = sec * hz
287 			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
288 	else
289 		ticks = LONG_MAX;
290 	if (ticks > INT_MAX)
291 		ticks = INT_MAX;
292 	return ((int)ticks);
293 }
294 
295 /*
296  * Start profiling on a process.
297  *
298  * Kernel profiling passes proc0 which never exits and hence
299  * keeps the profile clock running constantly.
300  */
301 void
302 startprofclock(p)
303 	register struct proc *p;
304 {
305 	int s;
306 
307 	/*
308 	 * XXX; Right now sched_lock protects statclock(), but perhaps
309 	 * it should be protected later on by a time_lock, which would
310 	 * cover psdiv, etc. as well.
311 	 */
312 	mtx_lock_spin(&sched_lock);
313 	if ((p->p_sflag & PS_PROFIL) == 0) {
314 		p->p_sflag |= PS_PROFIL;
315 		if (++profprocs == 1 && stathz != 0) {
316 			s = splstatclock();
317 			psdiv = pscnt = psratio;
318 			setstatclockrate(profhz);
319 			splx(s);
320 		}
321 	}
322 	mtx_unlock_spin(&sched_lock);
323 }
324 
325 /*
326  * Stop profiling on a process.
327  */
328 void
329 stopprofclock(p)
330 	register struct proc *p;
331 {
332 	int s;
333 
334 	mtx_lock_spin(&sched_lock);
335 	if (p->p_sflag & PS_PROFIL) {
336 		p->p_sflag &= ~PS_PROFIL;
337 		if (--profprocs == 0 && stathz != 0) {
338 			s = splstatclock();
339 			psdiv = pscnt = 1;
340 			setstatclockrate(stathz);
341 			splx(s);
342 		}
343 	}
344 	mtx_unlock_spin(&sched_lock);
345 }
346 
347 /*
348  * Do process and kernel statistics.  Most of the statistics are only
349  * used by user-level statistics programs.  The main exceptions are
350  * ke->ke_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu.  This function
351  * should be called by all CPUs in the system for each statistics clock
352  * interrupt.  See the description of hardclock_process for more detail on
353  * this function's relationship to statclock.
354  */
355 void
356 statclock_process(ke, pc, user)
357 	struct kse *ke;
358 	register_t pc;
359 	int user;
360 {
361 #ifdef GPROF
362 	struct gmonparam *g;
363 	int i;
364 #endif
365 	struct pstats *pstats;
366 	long rss;
367 	struct rusage *ru;
368 	struct vmspace *vm;
369 	struct proc *p = ke->ke_proc;
370 	struct thread *td = ke->ke_thread; /* current thread */
371 
372 	KASSERT(ke == curthread->td_kse, ("statclock_process: td != curthread"));
373 	mtx_assert(&sched_lock, MA_OWNED);
374 	if (user) {
375 		/*
376 		 * Came from user mode; CPU was in user state.
377 		 * If this process is being profiled, record the tick.
378 		 */
379 		if (p->p_sflag & PS_PROFIL)
380 			addupc_intr(ke, pc, 1);
381 		if (pscnt < psdiv)
382 			return;
383 		/*
384 		 * Charge the time as appropriate.
385 		 */
386 		ke->ke_uticks++;
387 		if (ke->ke_ksegrp->kg_nice > NZERO)
388 			cp_time[CP_NICE]++;
389 		else
390 			cp_time[CP_USER]++;
391 	} else {
392 #ifdef GPROF
393 		/*
394 		 * Kernel statistics are just like addupc_intr, only easier.
395 		 */
396 		g = &_gmonparam;
397 		if (g->state == GMON_PROF_ON) {
398 			i = pc - g->lowpc;
399 			if (i < g->textsize) {
400 				i /= HISTFRACTION * sizeof(*g->kcount);
401 				g->kcount[i]++;
402 			}
403 		}
404 #endif
405 		if (pscnt < psdiv)
406 			return;
407 		/*
408 		 * Came from kernel mode, so we were:
409 		 * - handling an interrupt,
410 		 * - doing syscall or trap work on behalf of the current
411 		 *   user process, or
412 		 * - spinning in the idle loop.
413 		 * Whichever it is, charge the time as appropriate.
414 		 * Note that we charge interrupts to the current process,
415 		 * regardless of whether they are ``for'' that process,
416 		 * so that we know how much of its real time was spent
417 		 * in ``non-process'' (i.e., interrupt) work.
418 		 */
419 		if ((td->td_ithd != NULL) || td->td_intr_nesting_level >= 2) {
420 			ke->ke_iticks++;
421 			cp_time[CP_INTR]++;
422 		} else {
423 			ke->ke_sticks++;
424 			if (p != PCPU_GET(idlethread)->td_proc)
425 				cp_time[CP_SYS]++;
426 			else
427 				cp_time[CP_IDLE]++;
428 		}
429 	}
430 
431 	schedclock(ke->ke_thread);
432 
433 	/* Update resource usage integrals and maximums. */
434 	if ((pstats = p->p_stats) != NULL &&
435 	    (ru = &pstats->p_ru) != NULL &&
436 	    (vm = p->p_vmspace) != NULL) {
437 		ru->ru_ixrss += pgtok(vm->vm_tsize);
438 		ru->ru_idrss += pgtok(vm->vm_dsize);
439 		ru->ru_isrss += pgtok(vm->vm_ssize);
440 		rss = pgtok(vmspace_resident_count(vm));
441 		if (ru->ru_maxrss < rss)
442 			ru->ru_maxrss = rss;
443 	}
444 }
445 
446 /*
447  * Statistics clock.  Grab profile sample, and if divider reaches 0,
448  * do process and kernel statistics.  Most of the statistics are only
449  * used by user-level statistics programs.  The main exceptions are
450  * ke->ke_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu.
451  */
452 void
453 statclock(frame)
454 	register struct clockframe *frame;
455 {
456 
457 	CTR0(KTR_INTR, "statclock fired");
458 	mtx_lock_spin_flags(&sched_lock, MTX_QUIET);
459 	if (--pscnt == 0)
460 		pscnt = psdiv;
461 	statclock_process(curthread->td_kse, CLKF_PC(frame), CLKF_USERMODE(frame));
462 	mtx_unlock_spin_flags(&sched_lock, MTX_QUIET);
463 }
464 
465 /*
466  * Return information about system clocks.
467  */
468 static int
469 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
470 {
471 	struct clockinfo clkinfo;
472 	/*
473 	 * Construct clockinfo structure.
474 	 */
475 	clkinfo.hz = hz;
476 	clkinfo.tick = tick;
477 	clkinfo.tickadj = tickadj;
478 	clkinfo.profhz = profhz;
479 	clkinfo.stathz = stathz ? stathz : hz;
480 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
481 }
482 
483 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
484 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
485