xref: /freebsd/sys/kern/kern_clock.c (revision 80ff58b89dcacfe07fe20b045890df9db5ca0af0)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdb.h"
41 #include "opt_device_polling.h"
42 #include "opt_hwpmc_hooks.h"
43 #include "opt_kdtrace.h"
44 #include "opt_ntp.h"
45 #include "opt_watchdog.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/callout.h>
50 #include <sys/kdb.h>
51 #include <sys/kernel.h>
52 #include <sys/kthread.h>
53 #include <sys/ktr.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/proc.h>
57 #include <sys/resource.h>
58 #include <sys/resourcevar.h>
59 #include <sys/sched.h>
60 #include <sys/sdt.h>
61 #include <sys/signalvar.h>
62 #include <sys/sleepqueue.h>
63 #include <sys/smp.h>
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_map.h>
67 #include <sys/sysctl.h>
68 #include <sys/bus.h>
69 #include <sys/interrupt.h>
70 #include <sys/limits.h>
71 #include <sys/timetc.h>
72 
73 #ifdef GPROF
74 #include <sys/gmon.h>
75 #endif
76 
77 #ifdef HWPMC_HOOKS
78 #include <sys/pmckern.h>
79 PMC_SOFT_DEFINE( , , clock, hard);
80 PMC_SOFT_DEFINE( , , clock, stat);
81 PMC_SOFT_DEFINE( , , clock, prof);
82 #endif
83 
84 #ifdef DEVICE_POLLING
85 extern void hardclock_device_poll(void);
86 #endif /* DEVICE_POLLING */
87 
88 static void initclocks(void *dummy);
89 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
90 
91 /* Spin-lock protecting profiling statistics. */
92 static struct mtx time_lock;
93 
94 SDT_PROVIDER_DECLARE(sched);
95 SDT_PROBE_DEFINE2(sched, , , tick, tick, "struct thread *", "struct proc *");
96 
97 static int
98 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
99 {
100 	int error;
101 	long cp_time[CPUSTATES];
102 #ifdef SCTL_MASK32
103 	int i;
104 	unsigned int cp_time32[CPUSTATES];
105 #endif
106 
107 	read_cpu_time(cp_time);
108 #ifdef SCTL_MASK32
109 	if (req->flags & SCTL_MASK32) {
110 		if (!req->oldptr)
111 			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
112 		for (i = 0; i < CPUSTATES; i++)
113 			cp_time32[i] = (unsigned int)cp_time[i];
114 		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
115 	} else
116 #endif
117 	{
118 		if (!req->oldptr)
119 			return SYSCTL_OUT(req, 0, sizeof(cp_time));
120 		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
121 	}
122 	return error;
123 }
124 
125 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
126     0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
127 
128 static long empty[CPUSTATES];
129 
130 static int
131 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
132 {
133 	struct pcpu *pcpu;
134 	int error;
135 	int c;
136 	long *cp_time;
137 #ifdef SCTL_MASK32
138 	unsigned int cp_time32[CPUSTATES];
139 	int i;
140 #endif
141 
142 	if (!req->oldptr) {
143 #ifdef SCTL_MASK32
144 		if (req->flags & SCTL_MASK32)
145 			return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
146 		else
147 #endif
148 			return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
149 	}
150 	for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
151 		if (!CPU_ABSENT(c)) {
152 			pcpu = pcpu_find(c);
153 			cp_time = pcpu->pc_cp_time;
154 		} else {
155 			cp_time = empty;
156 		}
157 #ifdef SCTL_MASK32
158 		if (req->flags & SCTL_MASK32) {
159 			for (i = 0; i < CPUSTATES; i++)
160 				cp_time32[i] = (unsigned int)cp_time[i];
161 			error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
162 		} else
163 #endif
164 			error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
165 	}
166 	return error;
167 }
168 
169 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
170     0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
171 
172 #ifdef DEADLKRES
173 static const char *blessed[] = {
174 	"getblk",
175 	"so_snd_sx",
176 	"so_rcv_sx",
177 	NULL
178 };
179 static int slptime_threshold = 1800;
180 static int blktime_threshold = 900;
181 static int sleepfreq = 3;
182 
183 static void
184 deadlkres(void)
185 {
186 	struct proc *p;
187 	struct thread *td;
188 	void *wchan;
189 	int blkticks, i, slpticks, slptype, tryl, tticks;
190 
191 	tryl = 0;
192 	for (;;) {
193 		blkticks = blktime_threshold * hz;
194 		slpticks = slptime_threshold * hz;
195 
196 		/*
197 		 * Avoid to sleep on the sx_lock in order to avoid a possible
198 		 * priority inversion problem leading to starvation.
199 		 * If the lock can't be held after 100 tries, panic.
200 		 */
201 		if (!sx_try_slock(&allproc_lock)) {
202 			if (tryl > 100)
203 		panic("%s: possible deadlock detected on allproc_lock\n",
204 				    __func__);
205 			tryl++;
206 			pause("allproc", sleepfreq * hz);
207 			continue;
208 		}
209 		tryl = 0;
210 		FOREACH_PROC_IN_SYSTEM(p) {
211 			PROC_LOCK(p);
212 			if (p->p_state == PRS_NEW) {
213 				PROC_UNLOCK(p);
214 				continue;
215 			}
216 			FOREACH_THREAD_IN_PROC(p, td) {
217 
218 				/*
219 				 * Once a thread is found in "interesting"
220 				 * state a possible ticks wrap-up needs to be
221 				 * checked.
222 				 */
223 				thread_lock(td);
224 				if (TD_ON_LOCK(td) && ticks < td->td_blktick) {
225 
226 					/*
227 					 * The thread should be blocked on a
228 					 * turnstile, simply check if the
229 					 * turnstile channel is in good state.
230 					 */
231 					MPASS(td->td_blocked != NULL);
232 
233 					tticks = ticks - td->td_blktick;
234 					thread_unlock(td);
235 					if (tticks > blkticks) {
236 
237 						/*
238 						 * Accordingly with provided
239 						 * thresholds, this thread is
240 						 * stuck for too long on a
241 						 * turnstile.
242 						 */
243 						PROC_UNLOCK(p);
244 						sx_sunlock(&allproc_lock);
245 	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
246 						    __func__, td, tticks);
247 					}
248 				} else if (TD_IS_SLEEPING(td) &&
249 				    TD_ON_SLEEPQ(td) &&
250 				    ticks < td->td_blktick) {
251 
252 					/*
253 					 * Check if the thread is sleeping on a
254 					 * lock, otherwise skip the check.
255 					 * Drop the thread lock in order to
256 					 * avoid a LOR with the sleepqueue
257 					 * spinlock.
258 					 */
259 					wchan = td->td_wchan;
260 					tticks = ticks - td->td_slptick;
261 					thread_unlock(td);
262 					slptype = sleepq_type(wchan);
263 					if ((slptype == SLEEPQ_SX ||
264 					    slptype == SLEEPQ_LK) &&
265 					    tticks > slpticks) {
266 
267 						/*
268 						 * Accordingly with provided
269 						 * thresholds, this thread is
270 						 * stuck for too long on a
271 						 * sleepqueue.
272 						 * However, being on a
273 						 * sleepqueue, we might still
274 						 * check for the blessed
275 						 * list.
276 						 */
277 						tryl = 0;
278 						for (i = 0; blessed[i] != NULL;
279 						    i++) {
280 							if (!strcmp(blessed[i],
281 							    td->td_wmesg)) {
282 								tryl = 1;
283 								break;
284 							}
285 						}
286 						if (tryl != 0) {
287 							tryl = 0;
288 							continue;
289 						}
290 						PROC_UNLOCK(p);
291 						sx_sunlock(&allproc_lock);
292 	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
293 						    __func__, td, tticks);
294 					}
295 				} else
296 					thread_unlock(td);
297 			}
298 			PROC_UNLOCK(p);
299 		}
300 		sx_sunlock(&allproc_lock);
301 
302 		/* Sleep for sleepfreq seconds. */
303 		pause("-", sleepfreq * hz);
304 	}
305 }
306 
307 static struct kthread_desc deadlkres_kd = {
308 	"deadlkres",
309 	deadlkres,
310 	(struct thread **)NULL
311 };
312 
313 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
314 
315 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0,
316     "Deadlock resolver");
317 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
318     &slptime_threshold, 0,
319     "Number of seconds within is valid to sleep on a sleepqueue");
320 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
321     &blktime_threshold, 0,
322     "Number of seconds within is valid to block on a turnstile");
323 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
324     "Number of seconds between any deadlock resolver thread run");
325 #endif	/* DEADLKRES */
326 
327 void
328 read_cpu_time(long *cp_time)
329 {
330 	struct pcpu *pc;
331 	int i, j;
332 
333 	/* Sum up global cp_time[]. */
334 	bzero(cp_time, sizeof(long) * CPUSTATES);
335 	CPU_FOREACH(i) {
336 		pc = pcpu_find(i);
337 		for (j = 0; j < CPUSTATES; j++)
338 			cp_time[j] += pc->pc_cp_time[j];
339 	}
340 }
341 
342 #ifdef SW_WATCHDOG
343 #include <sys/watchdog.h>
344 
345 static int watchdog_ticks;
346 static int watchdog_enabled;
347 static void watchdog_fire(void);
348 static void watchdog_config(void *, u_int, int *);
349 #endif /* SW_WATCHDOG */
350 
351 /*
352  * Clock handling routines.
353  *
354  * This code is written to operate with two timers that run independently of
355  * each other.
356  *
357  * The main timer, running hz times per second, is used to trigger interval
358  * timers, timeouts and rescheduling as needed.
359  *
360  * The second timer handles kernel and user profiling,
361  * and does resource use estimation.  If the second timer is programmable,
362  * it is randomized to avoid aliasing between the two clocks.  For example,
363  * the randomization prevents an adversary from always giving up the cpu
364  * just before its quantum expires.  Otherwise, it would never accumulate
365  * cpu ticks.  The mean frequency of the second timer is stathz.
366  *
367  * If no second timer exists, stathz will be zero; in this case we drive
368  * profiling and statistics off the main clock.  This WILL NOT be accurate;
369  * do not do it unless absolutely necessary.
370  *
371  * The statistics clock may (or may not) be run at a higher rate while
372  * profiling.  This profile clock runs at profhz.  We require that profhz
373  * be an integral multiple of stathz.
374  *
375  * If the statistics clock is running fast, it must be divided by the ratio
376  * profhz/stathz for statistics.  (For profiling, every tick counts.)
377  *
378  * Time-of-day is maintained using a "timecounter", which may or may
379  * not be related to the hardware generating the above mentioned
380  * interrupts.
381  */
382 
383 int	stathz;
384 int	profhz;
385 int	profprocs;
386 volatile int	ticks;
387 int	psratio;
388 
389 static DPCPU_DEFINE(int, pcputicks);	/* Per-CPU version of ticks. */
390 static int global_hardclock_run = 0;
391 
392 /*
393  * Initialize clock frequencies and start both clocks running.
394  */
395 /* ARGSUSED*/
396 static void
397 initclocks(dummy)
398 	void *dummy;
399 {
400 	register int i;
401 
402 	/*
403 	 * Set divisors to 1 (normal case) and let the machine-specific
404 	 * code do its bit.
405 	 */
406 	mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
407 	cpu_initclocks();
408 
409 	/*
410 	 * Compute profhz/stathz, and fix profhz if needed.
411 	 */
412 	i = stathz ? stathz : hz;
413 	if (profhz == 0)
414 		profhz = i;
415 	psratio = profhz / i;
416 #ifdef SW_WATCHDOG
417 	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
418 #endif
419 }
420 
421 /*
422  * Each time the real-time timer fires, this function is called on all CPUs.
423  * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
424  * the other CPUs in the system need to call this function.
425  */
426 void
427 hardclock_cpu(int usermode)
428 {
429 	struct pstats *pstats;
430 	struct thread *td = curthread;
431 	struct proc *p = td->td_proc;
432 	int flags;
433 
434 	/*
435 	 * Run current process's virtual and profile time, as needed.
436 	 */
437 	pstats = p->p_stats;
438 	flags = 0;
439 	if (usermode &&
440 	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
441 		PROC_SLOCK(p);
442 		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
443 			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
444 		PROC_SUNLOCK(p);
445 	}
446 	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
447 		PROC_SLOCK(p);
448 		if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
449 			flags |= TDF_PROFPEND | TDF_ASTPENDING;
450 		PROC_SUNLOCK(p);
451 	}
452 	thread_lock(td);
453 	sched_tick(1);
454 	td->td_flags |= flags;
455 	thread_unlock(td);
456 
457 #ifdef HWPMC_HOOKS
458 	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
459 		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
460 	if (td->td_intr_frame != NULL)
461 		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
462 #endif
463 	callout_tick();
464 }
465 
466 /*
467  * The real-time timer, interrupting hz times per second.
468  */
469 void
470 hardclock(int usermode, uintfptr_t pc)
471 {
472 
473 	atomic_add_int(&ticks, 1);
474 	hardclock_cpu(usermode);
475 	tc_ticktock(1);
476 	cpu_tick_calibration();
477 	/*
478 	 * If no separate statistics clock is available, run it from here.
479 	 *
480 	 * XXX: this only works for UP
481 	 */
482 	if (stathz == 0) {
483 		profclock(usermode, pc);
484 		statclock(usermode);
485 	}
486 #ifdef DEVICE_POLLING
487 	hardclock_device_poll();	/* this is very short and quick */
488 #endif /* DEVICE_POLLING */
489 #ifdef SW_WATCHDOG
490 	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
491 		watchdog_fire();
492 #endif /* SW_WATCHDOG */
493 }
494 
495 void
496 hardclock_cnt(int cnt, int usermode)
497 {
498 	struct pstats *pstats;
499 	struct thread *td = curthread;
500 	struct proc *p = td->td_proc;
501 	int *t = DPCPU_PTR(pcputicks);
502 	int flags, global, newticks;
503 #ifdef SW_WATCHDOG
504 	int i;
505 #endif /* SW_WATCHDOG */
506 
507 	/*
508 	 * Update per-CPU and possibly global ticks values.
509 	 */
510 	*t += cnt;
511 	do {
512 		global = ticks;
513 		newticks = *t - global;
514 		if (newticks <= 0) {
515 			if (newticks < -1)
516 				*t = global - 1;
517 			newticks = 0;
518 			break;
519 		}
520 	} while (!atomic_cmpset_int(&ticks, global, *t));
521 
522 	/*
523 	 * Run current process's virtual and profile time, as needed.
524 	 */
525 	pstats = p->p_stats;
526 	flags = 0;
527 	if (usermode &&
528 	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
529 		PROC_SLOCK(p);
530 		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
531 		    tick * cnt) == 0)
532 			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
533 		PROC_SUNLOCK(p);
534 	}
535 	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
536 		PROC_SLOCK(p);
537 		if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
538 		    tick * cnt) == 0)
539 			flags |= TDF_PROFPEND | TDF_ASTPENDING;
540 		PROC_SUNLOCK(p);
541 	}
542 	thread_lock(td);
543 	sched_tick(cnt);
544 	td->td_flags |= flags;
545 	thread_unlock(td);
546 
547 #ifdef	HWPMC_HOOKS
548 	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
549 		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
550 	if (td->td_intr_frame != NULL)
551 		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
552 #endif
553 	callout_tick();
554 	/* We are in charge to handle this tick duty. */
555 	if (newticks > 0) {
556 		/* Dangerous and no need to call these things concurrently. */
557 		if (atomic_cmpset_acq_int(&global_hardclock_run, 0, 1)) {
558 			tc_ticktock(newticks);
559 #ifdef DEVICE_POLLING
560 			/* This is very short and quick. */
561 			hardclock_device_poll();
562 #endif /* DEVICE_POLLING */
563 			atomic_store_rel_int(&global_hardclock_run, 0);
564 		}
565 #ifdef SW_WATCHDOG
566 		if (watchdog_enabled > 0) {
567 			i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
568 			if (i > 0 && i <= newticks)
569 				watchdog_fire();
570 		}
571 #endif /* SW_WATCHDOG */
572 	}
573 	if (curcpu == CPU_FIRST())
574 		cpu_tick_calibration();
575 }
576 
577 void
578 hardclock_sync(int cpu)
579 {
580 	int	*t = DPCPU_ID_PTR(cpu, pcputicks);
581 
582 	*t = ticks;
583 }
584 
585 /*
586  * Compute number of ticks in the specified amount of time.
587  */
588 int
589 tvtohz(tv)
590 	struct timeval *tv;
591 {
592 	register unsigned long ticks;
593 	register long sec, usec;
594 
595 	/*
596 	 * If the number of usecs in the whole seconds part of the time
597 	 * difference fits in a long, then the total number of usecs will
598 	 * fit in an unsigned long.  Compute the total and convert it to
599 	 * ticks, rounding up and adding 1 to allow for the current tick
600 	 * to expire.  Rounding also depends on unsigned long arithmetic
601 	 * to avoid overflow.
602 	 *
603 	 * Otherwise, if the number of ticks in the whole seconds part of
604 	 * the time difference fits in a long, then convert the parts to
605 	 * ticks separately and add, using similar rounding methods and
606 	 * overflow avoidance.  This method would work in the previous
607 	 * case but it is slightly slower and assumes that hz is integral.
608 	 *
609 	 * Otherwise, round the time difference down to the maximum
610 	 * representable value.
611 	 *
612 	 * If ints have 32 bits, then the maximum value for any timeout in
613 	 * 10ms ticks is 248 days.
614 	 */
615 	sec = tv->tv_sec;
616 	usec = tv->tv_usec;
617 	if (usec < 0) {
618 		sec--;
619 		usec += 1000000;
620 	}
621 	if (sec < 0) {
622 #ifdef DIAGNOSTIC
623 		if (usec > 0) {
624 			sec++;
625 			usec -= 1000000;
626 		}
627 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
628 		       sec, usec);
629 #endif
630 		ticks = 1;
631 	} else if (sec <= LONG_MAX / 1000000)
632 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
633 			/ tick + 1;
634 	else if (sec <= LONG_MAX / hz)
635 		ticks = sec * hz
636 			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
637 	else
638 		ticks = LONG_MAX;
639 	if (ticks > INT_MAX)
640 		ticks = INT_MAX;
641 	return ((int)ticks);
642 }
643 
644 /*
645  * Start profiling on a process.
646  *
647  * Kernel profiling passes proc0 which never exits and hence
648  * keeps the profile clock running constantly.
649  */
650 void
651 startprofclock(p)
652 	register struct proc *p;
653 {
654 
655 	PROC_LOCK_ASSERT(p, MA_OWNED);
656 	if (p->p_flag & P_STOPPROF)
657 		return;
658 	if ((p->p_flag & P_PROFIL) == 0) {
659 		p->p_flag |= P_PROFIL;
660 		mtx_lock(&time_lock);
661 		if (++profprocs == 1)
662 			cpu_startprofclock();
663 		mtx_unlock(&time_lock);
664 	}
665 }
666 
667 /*
668  * Stop profiling on a process.
669  */
670 void
671 stopprofclock(p)
672 	register struct proc *p;
673 {
674 
675 	PROC_LOCK_ASSERT(p, MA_OWNED);
676 	if (p->p_flag & P_PROFIL) {
677 		if (p->p_profthreads != 0) {
678 			p->p_flag |= P_STOPPROF;
679 			while (p->p_profthreads != 0)
680 				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
681 				    "stopprof", 0);
682 			p->p_flag &= ~P_STOPPROF;
683 		}
684 		if ((p->p_flag & P_PROFIL) == 0)
685 			return;
686 		p->p_flag &= ~P_PROFIL;
687 		mtx_lock(&time_lock);
688 		if (--profprocs == 0)
689 			cpu_stopprofclock();
690 		mtx_unlock(&time_lock);
691 	}
692 }
693 
694 /*
695  * Statistics clock.  Updates rusage information and calls the scheduler
696  * to adjust priorities of the active thread.
697  *
698  * This should be called by all active processors.
699  */
700 void
701 statclock(int usermode)
702 {
703 
704 	statclock_cnt(1, usermode);
705 }
706 
707 void
708 statclock_cnt(int cnt, int usermode)
709 {
710 	struct rusage *ru;
711 	struct vmspace *vm;
712 	struct thread *td;
713 	struct proc *p;
714 	long rss;
715 	long *cp_time;
716 
717 	td = curthread;
718 	p = td->td_proc;
719 
720 	cp_time = (long *)PCPU_PTR(cp_time);
721 	if (usermode) {
722 		/*
723 		 * Charge the time as appropriate.
724 		 */
725 		td->td_uticks += cnt;
726 		if (p->p_nice > NZERO)
727 			cp_time[CP_NICE] += cnt;
728 		else
729 			cp_time[CP_USER] += cnt;
730 	} else {
731 		/*
732 		 * Came from kernel mode, so we were:
733 		 * - handling an interrupt,
734 		 * - doing syscall or trap work on behalf of the current
735 		 *   user process, or
736 		 * - spinning in the idle loop.
737 		 * Whichever it is, charge the time as appropriate.
738 		 * Note that we charge interrupts to the current process,
739 		 * regardless of whether they are ``for'' that process,
740 		 * so that we know how much of its real time was spent
741 		 * in ``non-process'' (i.e., interrupt) work.
742 		 */
743 		if ((td->td_pflags & TDP_ITHREAD) ||
744 		    td->td_intr_nesting_level >= 2) {
745 			td->td_iticks += cnt;
746 			cp_time[CP_INTR] += cnt;
747 		} else {
748 			td->td_pticks += cnt;
749 			td->td_sticks += cnt;
750 			if (!TD_IS_IDLETHREAD(td))
751 				cp_time[CP_SYS] += cnt;
752 			else
753 				cp_time[CP_IDLE] += cnt;
754 		}
755 	}
756 
757 	/* Update resource usage integrals and maximums. */
758 	MPASS(p->p_vmspace != NULL);
759 	vm = p->p_vmspace;
760 	ru = &td->td_ru;
761 	ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
762 	ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
763 	ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
764 	rss = pgtok(vmspace_resident_count(vm));
765 	if (ru->ru_maxrss < rss)
766 		ru->ru_maxrss = rss;
767 	KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
768 	    "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
769 	SDT_PROBE2(sched, , , tick, td, td->td_proc);
770 	thread_lock_flags(td, MTX_QUIET);
771 	for ( ; cnt > 0; cnt--)
772 		sched_clock(td);
773 	thread_unlock(td);
774 #ifdef HWPMC_HOOKS
775 	if (td->td_intr_frame != NULL)
776 		PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
777 #endif
778 }
779 
780 void
781 profclock(int usermode, uintfptr_t pc)
782 {
783 
784 	profclock_cnt(1, usermode, pc);
785 }
786 
787 void
788 profclock_cnt(int cnt, int usermode, uintfptr_t pc)
789 {
790 	struct thread *td;
791 #ifdef GPROF
792 	struct gmonparam *g;
793 	uintfptr_t i;
794 #endif
795 
796 	td = curthread;
797 	if (usermode) {
798 		/*
799 		 * Came from user mode; CPU was in user state.
800 		 * If this process is being profiled, record the tick.
801 		 * if there is no related user location yet, don't
802 		 * bother trying to count it.
803 		 */
804 		if (td->td_proc->p_flag & P_PROFIL)
805 			addupc_intr(td, pc, cnt);
806 	}
807 #ifdef GPROF
808 	else {
809 		/*
810 		 * Kernel statistics are just like addupc_intr, only easier.
811 		 */
812 		g = &_gmonparam;
813 		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
814 			i = PC_TO_I(g, pc);
815 			if (i < g->textsize) {
816 				KCOUNT(g, i) += cnt;
817 			}
818 		}
819 	}
820 #endif
821 #ifdef HWPMC_HOOKS
822 	if (td->td_intr_frame != NULL)
823 		PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
824 #endif
825 }
826 
827 /*
828  * Return information about system clocks.
829  */
830 static int
831 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
832 {
833 	struct clockinfo clkinfo;
834 	/*
835 	 * Construct clockinfo structure.
836 	 */
837 	bzero(&clkinfo, sizeof(clkinfo));
838 	clkinfo.hz = hz;
839 	clkinfo.tick = tick;
840 	clkinfo.profhz = profhz;
841 	clkinfo.stathz = stathz ? stathz : hz;
842 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
843 }
844 
845 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
846 	CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
847 	0, 0, sysctl_kern_clockrate, "S,clockinfo",
848 	"Rate and period of various kernel clocks");
849 
850 #ifdef SW_WATCHDOG
851 
852 static void
853 watchdog_config(void *unused __unused, u_int cmd, int *error)
854 {
855 	u_int u;
856 
857 	u = cmd & WD_INTERVAL;
858 	if (u >= WD_TO_1SEC) {
859 		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
860 		watchdog_enabled = 1;
861 		*error = 0;
862 	} else {
863 		watchdog_enabled = 0;
864 	}
865 }
866 
867 /*
868  * Handle a watchdog timeout by dumping interrupt information and
869  * then either dropping to DDB or panicking.
870  */
871 static void
872 watchdog_fire(void)
873 {
874 	int nintr;
875 	uint64_t inttotal;
876 	u_long *curintr;
877 	char *curname;
878 
879 	curintr = intrcnt;
880 	curname = intrnames;
881 	inttotal = 0;
882 	nintr = sintrcnt / sizeof(u_long);
883 
884 	printf("interrupt                   total\n");
885 	while (--nintr >= 0) {
886 		if (*curintr)
887 			printf("%-12s %20lu\n", curname, *curintr);
888 		curname += strlen(curname) + 1;
889 		inttotal += *curintr++;
890 	}
891 	printf("Total        %20ju\n", (uintmax_t)inttotal);
892 
893 #if defined(KDB) && !defined(KDB_UNATTENDED)
894 	kdb_backtrace();
895 	kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
896 #else
897 	panic("watchdog timeout");
898 #endif
899 }
900 
901 #endif /* SW_WATCHDOG */
902