1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39 * $FreeBSD$ 40 */ 41 42 #include "opt_ntp.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/dkstat.h> 47 #include <sys/callout.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/ktr.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/resourcevar.h> 54 #include <sys/sched.h> 55 #include <sys/signalvar.h> 56 #include <sys/smp.h> 57 #include <vm/vm.h> 58 #include <vm/pmap.h> 59 #include <vm/vm_map.h> 60 #include <sys/sysctl.h> 61 #include <sys/bus.h> 62 #include <sys/interrupt.h> 63 #include <sys/timetc.h> 64 65 #include <machine/cpu.h> 66 #include <machine/limits.h> 67 68 #ifdef GPROF 69 #include <sys/gmon.h> 70 #endif 71 72 #ifdef DEVICE_POLLING 73 extern void init_device_poll(void); 74 extern void hardclock_device_poll(void); 75 #endif /* DEVICE_POLLING */ 76 77 static void initclocks(void *dummy); 78 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 79 80 /* Some of these don't belong here, but it's easiest to concentrate them. */ 81 long cp_time[CPUSTATES]; 82 83 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time), 84 "LU", "CPU time statistics"); 85 86 long tk_cancc; 87 long tk_nin; 88 long tk_nout; 89 long tk_rawcc; 90 91 /* 92 * Clock handling routines. 93 * 94 * This code is written to operate with two timers that run independently of 95 * each other. 96 * 97 * The main timer, running hz times per second, is used to trigger interval 98 * timers, timeouts and rescheduling as needed. 99 * 100 * The second timer handles kernel and user profiling, 101 * and does resource use estimation. If the second timer is programmable, 102 * it is randomized to avoid aliasing between the two clocks. For example, 103 * the randomization prevents an adversary from always giving up the cpu 104 * just before its quantum expires. Otherwise, it would never accumulate 105 * cpu ticks. The mean frequency of the second timer is stathz. 106 * 107 * If no second timer exists, stathz will be zero; in this case we drive 108 * profiling and statistics off the main clock. This WILL NOT be accurate; 109 * do not do it unless absolutely necessary. 110 * 111 * The statistics clock may (or may not) be run at a higher rate while 112 * profiling. This profile clock runs at profhz. We require that profhz 113 * be an integral multiple of stathz. 114 * 115 * If the statistics clock is running fast, it must be divided by the ratio 116 * profhz/stathz for statistics. (For profiling, every tick counts.) 117 * 118 * Time-of-day is maintained using a "timecounter", which may or may 119 * not be related to the hardware generating the above mentioned 120 * interrupts. 121 */ 122 123 int stathz; 124 int profhz; 125 int profprocs; 126 int ticks; 127 int psratio; 128 129 /* 130 * Initialize clock frequencies and start both clocks running. 131 */ 132 /* ARGSUSED*/ 133 static void 134 initclocks(dummy) 135 void *dummy; 136 { 137 register int i; 138 139 /* 140 * Set divisors to 1 (normal case) and let the machine-specific 141 * code do its bit. 142 */ 143 cpu_initclocks(); 144 145 #ifdef DEVICE_POLLING 146 init_device_poll(); 147 #endif 148 /* 149 * Compute profhz/stathz, and fix profhz if needed. 150 */ 151 i = stathz ? stathz : hz; 152 if (profhz == 0) 153 profhz = i; 154 psratio = profhz / i; 155 } 156 157 /* 158 * Each time the real-time timer fires, this function is called on all CPUs. 159 * Note that hardclock() calls hardclock_process() for the boot CPU, so only 160 * the other CPUs in the system need to call this function. 161 */ 162 void 163 hardclock_process(frame) 164 register struct clockframe *frame; 165 { 166 struct pstats *pstats; 167 struct thread *td = curthread; 168 struct proc *p = td->td_proc; 169 170 /* 171 * Run current process's virtual and profile time, as needed. 172 */ 173 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 174 if (p->p_flag & P_KSES) { 175 /* XXXKSE What to do? */ 176 } else { 177 pstats = p->p_stats; 178 if (CLKF_USERMODE(frame) && 179 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 180 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) { 181 p->p_sflag |= PS_ALRMPEND; 182 td->td_kse->ke_flags |= KEF_ASTPENDING; 183 } 184 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 185 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) { 186 p->p_sflag |= PS_PROFPEND; 187 td->td_kse->ke_flags |= KEF_ASTPENDING; 188 } 189 } 190 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 191 } 192 193 /* 194 * The real-time timer, interrupting hz times per second. 195 */ 196 void 197 hardclock(frame) 198 register struct clockframe *frame; 199 { 200 int need_softclock = 0; 201 202 CTR0(KTR_CLK, "hardclock fired"); 203 hardclock_process(frame); 204 205 tc_ticktock(); 206 /* 207 * If no separate statistics clock is available, run it from here. 208 * 209 * XXX: this only works for UP 210 */ 211 if (stathz == 0) { 212 profclock(frame); 213 statclock(frame); 214 } 215 216 #ifdef DEVICE_POLLING 217 hardclock_device_poll(); /* this is very short and quick */ 218 #endif /* DEVICE_POLLING */ 219 220 /* 221 * Process callouts at a very low cpu priority, so we don't keep the 222 * relatively high clock interrupt priority any longer than necessary. 223 */ 224 mtx_lock_spin_flags(&callout_lock, MTX_QUIET); 225 ticks++; 226 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) { 227 need_softclock = 1; 228 } else if (softticks + 1 == ticks) 229 ++softticks; 230 mtx_unlock_spin_flags(&callout_lock, MTX_QUIET); 231 232 /* 233 * swi_sched acquires sched_lock, so we don't want to call it with 234 * callout_lock held; incorrect locking order. 235 */ 236 if (need_softclock) 237 swi_sched(softclock_ih, 0); 238 } 239 240 /* 241 * Compute number of ticks in the specified amount of time. 242 */ 243 int 244 tvtohz(tv) 245 struct timeval *tv; 246 { 247 register unsigned long ticks; 248 register long sec, usec; 249 250 /* 251 * If the number of usecs in the whole seconds part of the time 252 * difference fits in a long, then the total number of usecs will 253 * fit in an unsigned long. Compute the total and convert it to 254 * ticks, rounding up and adding 1 to allow for the current tick 255 * to expire. Rounding also depends on unsigned long arithmetic 256 * to avoid overflow. 257 * 258 * Otherwise, if the number of ticks in the whole seconds part of 259 * the time difference fits in a long, then convert the parts to 260 * ticks separately and add, using similar rounding methods and 261 * overflow avoidance. This method would work in the previous 262 * case but it is slightly slower and assumes that hz is integral. 263 * 264 * Otherwise, round the time difference down to the maximum 265 * representable value. 266 * 267 * If ints have 32 bits, then the maximum value for any timeout in 268 * 10ms ticks is 248 days. 269 */ 270 sec = tv->tv_sec; 271 usec = tv->tv_usec; 272 if (usec < 0) { 273 sec--; 274 usec += 1000000; 275 } 276 if (sec < 0) { 277 #ifdef DIAGNOSTIC 278 if (usec > 0) { 279 sec++; 280 usec -= 1000000; 281 } 282 printf("tvotohz: negative time difference %ld sec %ld usec\n", 283 sec, usec); 284 #endif 285 ticks = 1; 286 } else if (sec <= LONG_MAX / 1000000) 287 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 288 / tick + 1; 289 else if (sec <= LONG_MAX / hz) 290 ticks = sec * hz 291 + ((unsigned long)usec + (tick - 1)) / tick + 1; 292 else 293 ticks = LONG_MAX; 294 if (ticks > INT_MAX) 295 ticks = INT_MAX; 296 return ((int)ticks); 297 } 298 299 /* 300 * Start profiling on a process. 301 * 302 * Kernel profiling passes proc0 which never exits and hence 303 * keeps the profile clock running constantly. 304 */ 305 void 306 startprofclock(p) 307 register struct proc *p; 308 { 309 310 /* 311 * XXX; Right now sched_lock protects statclock(), but perhaps 312 * it should be protected later on by a time_lock, which would 313 * cover psdiv, etc. as well. 314 */ 315 mtx_lock_spin(&sched_lock); 316 if ((p->p_sflag & PS_PROFIL) == 0) { 317 p->p_sflag |= PS_PROFIL; 318 if (++profprocs == 1) 319 cpu_startprofclock(); 320 } 321 mtx_unlock_spin(&sched_lock); 322 } 323 324 /* 325 * Stop profiling on a process. 326 */ 327 void 328 stopprofclock(p) 329 register struct proc *p; 330 { 331 332 mtx_lock_spin(&sched_lock); 333 if (p->p_sflag & PS_PROFIL) { 334 p->p_sflag &= ~PS_PROFIL; 335 if (--profprocs == 0) 336 cpu_stopprofclock(); 337 } 338 mtx_unlock_spin(&sched_lock); 339 } 340 341 /* 342 * Statistics clock. Grab profile sample, and if divider reaches 0, 343 * do process and kernel statistics. Most of the statistics are only 344 * used by user-level statistics programs. The main exceptions are 345 * ke->ke_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu. 346 * This should be called by all active processors. 347 */ 348 void 349 statclock(frame) 350 register struct clockframe *frame; 351 { 352 struct pstats *pstats; 353 struct rusage *ru; 354 struct vmspace *vm; 355 struct thread *td; 356 struct kse *ke; 357 struct proc *p; 358 long rss; 359 360 td = curthread; 361 p = td->td_proc; 362 363 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 364 ke = td->td_kse; 365 if (CLKF_USERMODE(frame)) { 366 /* 367 * Charge the time as appropriate. 368 */ 369 if (p->p_flag & P_KSES) 370 thread_add_ticks_intr(1, 1); 371 ke->ke_uticks++; 372 if (ke->ke_ksegrp->kg_nice > NZERO) 373 cp_time[CP_NICE]++; 374 else 375 cp_time[CP_USER]++; 376 } else { 377 /* 378 * Came from kernel mode, so we were: 379 * - handling an interrupt, 380 * - doing syscall or trap work on behalf of the current 381 * user process, or 382 * - spinning in the idle loop. 383 * Whichever it is, charge the time as appropriate. 384 * Note that we charge interrupts to the current process, 385 * regardless of whether they are ``for'' that process, 386 * so that we know how much of its real time was spent 387 * in ``non-process'' (i.e., interrupt) work. 388 */ 389 if ((td->td_ithd != NULL) || td->td_intr_nesting_level >= 2) { 390 ke->ke_iticks++; 391 cp_time[CP_INTR]++; 392 } else { 393 if (p->p_flag & P_KSES) 394 thread_add_ticks_intr(0, 1); 395 ke->ke_sticks++; 396 if (p != PCPU_GET(idlethread)->td_proc) 397 cp_time[CP_SYS]++; 398 else 399 cp_time[CP_IDLE]++; 400 } 401 } 402 403 sched_clock(ke->ke_thread); 404 405 /* Update resource usage integrals and maximums. */ 406 if ((pstats = p->p_stats) != NULL && 407 (ru = &pstats->p_ru) != NULL && 408 (vm = p->p_vmspace) != NULL) { 409 ru->ru_ixrss += pgtok(vm->vm_tsize); 410 ru->ru_idrss += pgtok(vm->vm_dsize); 411 ru->ru_isrss += pgtok(vm->vm_ssize); 412 rss = pgtok(vmspace_resident_count(vm)); 413 if (ru->ru_maxrss < rss) 414 ru->ru_maxrss = rss; 415 } 416 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 417 } 418 419 void 420 profclock(frame) 421 register struct clockframe *frame; 422 { 423 struct thread *td; 424 #ifdef GPROF 425 struct gmonparam *g; 426 int i; 427 #endif 428 429 if (CLKF_USERMODE(frame)) { 430 /* 431 * Came from user mode; CPU was in user state. 432 * If this process is being profiled, record the tick. 433 */ 434 td = curthread; 435 if (td->td_proc->p_sflag & PS_PROFIL) 436 addupc_intr(td->td_kse, CLKF_PC(frame), 1); 437 } 438 #ifdef GPROF 439 else { 440 /* 441 * Kernel statistics are just like addupc_intr, only easier. 442 */ 443 g = &_gmonparam; 444 if (g->state == GMON_PROF_ON) { 445 i = CLKF_PC(frame) - g->lowpc; 446 if (i < g->textsize) { 447 i /= HISTFRACTION * sizeof(*g->kcount); 448 g->kcount[i]++; 449 } 450 } 451 } 452 #endif 453 } 454 455 /* 456 * Return information about system clocks. 457 */ 458 static int 459 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 460 { 461 struct clockinfo clkinfo; 462 /* 463 * Construct clockinfo structure. 464 */ 465 bzero(&clkinfo, sizeof(clkinfo)); 466 clkinfo.hz = hz; 467 clkinfo.tick = tick; 468 clkinfo.profhz = profhz; 469 clkinfo.stathz = stathz ? stathz : hz; 470 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 471 } 472 473 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 474 0, 0, sysctl_kern_clockrate, "S,clockinfo", 475 "Rate and period of various kernel clocks"); 476