1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_kdb.h" 43 #include "opt_device_polling.h" 44 #include "opt_hwpmc_hooks.h" 45 #include "opt_ntp.h" 46 #include "opt_watchdog.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/callout.h> 51 #include <sys/epoch.h> 52 #include <sys/gtaskqueue.h> 53 #include <sys/kdb.h> 54 #include <sys/kernel.h> 55 #include <sys/kthread.h> 56 #include <sys/ktr.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/proc.h> 60 #include <sys/resource.h> 61 #include <sys/resourcevar.h> 62 #include <sys/sched.h> 63 #include <sys/sdt.h> 64 #include <sys/signalvar.h> 65 #include <sys/sleepqueue.h> 66 #include <sys/smp.h> 67 #include <vm/vm.h> 68 #include <vm/pmap.h> 69 #include <vm/vm_map.h> 70 #include <sys/sysctl.h> 71 #include <sys/bus.h> 72 #include <sys/interrupt.h> 73 #include <sys/limits.h> 74 #include <sys/timetc.h> 75 76 #ifdef GPROF 77 #include <sys/gmon.h> 78 #endif 79 80 #ifdef HWPMC_HOOKS 81 #include <sys/pmckern.h> 82 PMC_SOFT_DEFINE( , , clock, hard); 83 PMC_SOFT_DEFINE( , , clock, stat); 84 PMC_SOFT_DEFINE_EX( , , clock, prof, \ 85 cpu_startprofclock, cpu_stopprofclock); 86 #endif 87 88 #ifdef DEVICE_POLLING 89 extern void hardclock_device_poll(void); 90 #endif /* DEVICE_POLLING */ 91 92 static void initclocks(void *dummy); 93 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 94 95 /* Spin-lock protecting profiling statistics. */ 96 static struct mtx time_lock; 97 98 SDT_PROVIDER_DECLARE(sched); 99 SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *"); 100 101 static int 102 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS) 103 { 104 int error; 105 long cp_time[CPUSTATES]; 106 #ifdef SCTL_MASK32 107 int i; 108 unsigned int cp_time32[CPUSTATES]; 109 #endif 110 111 read_cpu_time(cp_time); 112 #ifdef SCTL_MASK32 113 if (req->flags & SCTL_MASK32) { 114 if (!req->oldptr) 115 return SYSCTL_OUT(req, 0, sizeof(cp_time32)); 116 for (i = 0; i < CPUSTATES; i++) 117 cp_time32[i] = (unsigned int)cp_time[i]; 118 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 119 } else 120 #endif 121 { 122 if (!req->oldptr) 123 return SYSCTL_OUT(req, 0, sizeof(cp_time)); 124 error = SYSCTL_OUT(req, cp_time, sizeof(cp_time)); 125 } 126 return error; 127 } 128 129 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 130 0,0, sysctl_kern_cp_time, "LU", "CPU time statistics"); 131 132 static long empty[CPUSTATES]; 133 134 static int 135 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS) 136 { 137 struct pcpu *pcpu; 138 int error; 139 int c; 140 long *cp_time; 141 #ifdef SCTL_MASK32 142 unsigned int cp_time32[CPUSTATES]; 143 int i; 144 #endif 145 146 if (!req->oldptr) { 147 #ifdef SCTL_MASK32 148 if (req->flags & SCTL_MASK32) 149 return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1)); 150 else 151 #endif 152 return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1)); 153 } 154 for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) { 155 if (!CPU_ABSENT(c)) { 156 pcpu = pcpu_find(c); 157 cp_time = pcpu->pc_cp_time; 158 } else { 159 cp_time = empty; 160 } 161 #ifdef SCTL_MASK32 162 if (req->flags & SCTL_MASK32) { 163 for (i = 0; i < CPUSTATES; i++) 164 cp_time32[i] = (unsigned int)cp_time[i]; 165 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 166 } else 167 #endif 168 error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES); 169 } 170 return error; 171 } 172 173 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 174 0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics"); 175 176 #ifdef DEADLKRES 177 static const char *blessed[] = { 178 "getblk", 179 "so_snd_sx", 180 "so_rcv_sx", 181 NULL 182 }; 183 static int slptime_threshold = 1800; 184 static int blktime_threshold = 900; 185 static int sleepfreq = 3; 186 187 static void 188 deadlkres(void) 189 { 190 struct proc *p; 191 struct thread *td; 192 void *wchan; 193 int blkticks, i, slpticks, slptype, tryl, tticks; 194 195 tryl = 0; 196 for (;;) { 197 blkticks = blktime_threshold * hz; 198 slpticks = slptime_threshold * hz; 199 200 /* 201 * Avoid to sleep on the sx_lock in order to avoid a possible 202 * priority inversion problem leading to starvation. 203 * If the lock can't be held after 100 tries, panic. 204 */ 205 if (!sx_try_slock(&allproc_lock)) { 206 if (tryl > 100) 207 panic("%s: possible deadlock detected on allproc_lock\n", 208 __func__); 209 tryl++; 210 pause("allproc", sleepfreq * hz); 211 continue; 212 } 213 tryl = 0; 214 FOREACH_PROC_IN_SYSTEM(p) { 215 PROC_LOCK(p); 216 if (p->p_state == PRS_NEW) { 217 PROC_UNLOCK(p); 218 continue; 219 } 220 FOREACH_THREAD_IN_PROC(p, td) { 221 222 thread_lock(td); 223 if (TD_ON_LOCK(td)) { 224 225 /* 226 * The thread should be blocked on a 227 * turnstile, simply check if the 228 * turnstile channel is in good state. 229 */ 230 MPASS(td->td_blocked != NULL); 231 232 tticks = ticks - td->td_blktick; 233 thread_unlock(td); 234 if (tticks > blkticks) { 235 236 /* 237 * Accordingly with provided 238 * thresholds, this thread is 239 * stuck for too long on a 240 * turnstile. 241 */ 242 PROC_UNLOCK(p); 243 sx_sunlock(&allproc_lock); 244 panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", 245 __func__, td, tticks); 246 } 247 } else if (TD_IS_SLEEPING(td) && 248 TD_ON_SLEEPQ(td)) { 249 250 /* 251 * Check if the thread is sleeping on a 252 * lock, otherwise skip the check. 253 * Drop the thread lock in order to 254 * avoid a LOR with the sleepqueue 255 * spinlock. 256 */ 257 wchan = td->td_wchan; 258 tticks = ticks - td->td_slptick; 259 thread_unlock(td); 260 slptype = sleepq_type(wchan); 261 if ((slptype == SLEEPQ_SX || 262 slptype == SLEEPQ_LK) && 263 tticks > slpticks) { 264 265 /* 266 * Accordingly with provided 267 * thresholds, this thread is 268 * stuck for too long on a 269 * sleepqueue. 270 * However, being on a 271 * sleepqueue, we might still 272 * check for the blessed 273 * list. 274 */ 275 tryl = 0; 276 for (i = 0; blessed[i] != NULL; 277 i++) { 278 if (!strcmp(blessed[i], 279 td->td_wmesg)) { 280 tryl = 1; 281 break; 282 } 283 } 284 if (tryl != 0) { 285 tryl = 0; 286 continue; 287 } 288 PROC_UNLOCK(p); 289 sx_sunlock(&allproc_lock); 290 panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", 291 __func__, td, tticks); 292 } 293 } else 294 thread_unlock(td); 295 } 296 PROC_UNLOCK(p); 297 } 298 sx_sunlock(&allproc_lock); 299 300 /* Sleep for sleepfreq seconds. */ 301 pause("-", sleepfreq * hz); 302 } 303 } 304 305 static struct kthread_desc deadlkres_kd = { 306 "deadlkres", 307 deadlkres, 308 (struct thread **)NULL 309 }; 310 311 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd); 312 313 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0, 314 "Deadlock resolver"); 315 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW, 316 &slptime_threshold, 0, 317 "Number of seconds within is valid to sleep on a sleepqueue"); 318 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW, 319 &blktime_threshold, 0, 320 "Number of seconds within is valid to block on a turnstile"); 321 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0, 322 "Number of seconds between any deadlock resolver thread run"); 323 #endif /* DEADLKRES */ 324 325 void 326 read_cpu_time(long *cp_time) 327 { 328 struct pcpu *pc; 329 int i, j; 330 331 /* Sum up global cp_time[]. */ 332 bzero(cp_time, sizeof(long) * CPUSTATES); 333 CPU_FOREACH(i) { 334 pc = pcpu_find(i); 335 for (j = 0; j < CPUSTATES; j++) 336 cp_time[j] += pc->pc_cp_time[j]; 337 } 338 } 339 340 #include <sys/watchdog.h> 341 342 static int watchdog_ticks; 343 static int watchdog_enabled; 344 static void watchdog_fire(void); 345 static void watchdog_config(void *, u_int, int *); 346 347 static void 348 watchdog_attach(void) 349 { 350 EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0); 351 } 352 353 /* 354 * Clock handling routines. 355 * 356 * This code is written to operate with two timers that run independently of 357 * each other. 358 * 359 * The main timer, running hz times per second, is used to trigger interval 360 * timers, timeouts and rescheduling as needed. 361 * 362 * The second timer handles kernel and user profiling, 363 * and does resource use estimation. If the second timer is programmable, 364 * it is randomized to avoid aliasing between the two clocks. For example, 365 * the randomization prevents an adversary from always giving up the cpu 366 * just before its quantum expires. Otherwise, it would never accumulate 367 * cpu ticks. The mean frequency of the second timer is stathz. 368 * 369 * If no second timer exists, stathz will be zero; in this case we drive 370 * profiling and statistics off the main clock. This WILL NOT be accurate; 371 * do not do it unless absolutely necessary. 372 * 373 * The statistics clock may (or may not) be run at a higher rate while 374 * profiling. This profile clock runs at profhz. We require that profhz 375 * be an integral multiple of stathz. 376 * 377 * If the statistics clock is running fast, it must be divided by the ratio 378 * profhz/stathz for statistics. (For profiling, every tick counts.) 379 * 380 * Time-of-day is maintained using a "timecounter", which may or may 381 * not be related to the hardware generating the above mentioned 382 * interrupts. 383 */ 384 385 int stathz; 386 int profhz; 387 int profprocs; 388 volatile int ticks; 389 int psratio; 390 391 static DPCPU_DEFINE(int, pcputicks); /* Per-CPU version of ticks. */ 392 #ifdef DEVICE_POLLING 393 static int devpoll_run = 0; 394 #endif 395 396 /* 397 * Initialize clock frequencies and start both clocks running. 398 */ 399 /* ARGSUSED*/ 400 static void 401 initclocks(void *dummy) 402 { 403 int i; 404 405 /* 406 * Set divisors to 1 (normal case) and let the machine-specific 407 * code do its bit. 408 */ 409 mtx_init(&time_lock, "time lock", NULL, MTX_DEF); 410 cpu_initclocks(); 411 412 /* 413 * Compute profhz/stathz, and fix profhz if needed. 414 */ 415 i = stathz ? stathz : hz; 416 if (profhz == 0) 417 profhz = i; 418 psratio = profhz / i; 419 420 #ifdef SW_WATCHDOG 421 /* Enable hardclock watchdog now, even if a hardware watchdog exists. */ 422 watchdog_attach(); 423 #else 424 /* Volunteer to run a software watchdog. */ 425 if (wdog_software_attach == NULL) 426 wdog_software_attach = watchdog_attach; 427 #endif 428 } 429 430 /* 431 * Each time the real-time timer fires, this function is called on all CPUs. 432 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only 433 * the other CPUs in the system need to call this function. 434 */ 435 void 436 hardclock_cpu(int usermode) 437 { 438 struct pstats *pstats; 439 struct thread *td = curthread; 440 struct proc *p = td->td_proc; 441 int flags; 442 443 /* 444 * Run current process's virtual and profile time, as needed. 445 */ 446 pstats = p->p_stats; 447 flags = 0; 448 if (usermode && 449 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) { 450 PROC_ITIMLOCK(p); 451 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 452 flags |= TDF_ALRMPEND | TDF_ASTPENDING; 453 PROC_ITIMUNLOCK(p); 454 } 455 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) { 456 PROC_ITIMLOCK(p); 457 if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 458 flags |= TDF_PROFPEND | TDF_ASTPENDING; 459 PROC_ITIMUNLOCK(p); 460 } 461 thread_lock(td); 462 td->td_flags |= flags; 463 thread_unlock(td); 464 465 #ifdef HWPMC_HOOKS 466 if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid))) 467 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL); 468 if (td->td_intr_frame != NULL) 469 PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame); 470 #endif 471 callout_process(sbinuptime()); 472 if (__predict_false(DPCPU_GET(epoch_cb_count))) 473 GROUPTASK_ENQUEUE(DPCPU_PTR(epoch_cb_task)); 474 } 475 476 /* 477 * The real-time timer, interrupting hz times per second. 478 */ 479 void 480 hardclock(int usermode, uintfptr_t pc) 481 { 482 483 atomic_add_int(&ticks, 1); 484 hardclock_cpu(usermode); 485 tc_ticktock(1); 486 cpu_tick_calibration(); 487 /* 488 * If no separate statistics clock is available, run it from here. 489 * 490 * XXX: this only works for UP 491 */ 492 if (stathz == 0) { 493 profclock(usermode, pc); 494 statclock(usermode); 495 } 496 #ifdef DEVICE_POLLING 497 hardclock_device_poll(); /* this is very short and quick */ 498 #endif /* DEVICE_POLLING */ 499 if (watchdog_enabled > 0 && --watchdog_ticks <= 0) 500 watchdog_fire(); 501 } 502 503 void 504 hardclock_cnt(int cnt, int usermode) 505 { 506 struct pstats *pstats; 507 struct thread *td = curthread; 508 struct proc *p = td->td_proc; 509 int *t = DPCPU_PTR(pcputicks); 510 int flags, global, newticks; 511 int i; 512 513 /* 514 * Update per-CPU and possibly global ticks values. 515 */ 516 *t += cnt; 517 do { 518 global = ticks; 519 newticks = *t - global; 520 if (newticks <= 0) { 521 if (newticks < -1) 522 *t = global - 1; 523 newticks = 0; 524 break; 525 } 526 } while (!atomic_cmpset_int(&ticks, global, *t)); 527 528 /* 529 * Run current process's virtual and profile time, as needed. 530 */ 531 pstats = p->p_stats; 532 flags = 0; 533 if (usermode && 534 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) { 535 PROC_ITIMLOCK(p); 536 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], 537 tick * cnt) == 0) 538 flags |= TDF_ALRMPEND | TDF_ASTPENDING; 539 PROC_ITIMUNLOCK(p); 540 } 541 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) { 542 PROC_ITIMLOCK(p); 543 if (itimerdecr(&pstats->p_timer[ITIMER_PROF], 544 tick * cnt) == 0) 545 flags |= TDF_PROFPEND | TDF_ASTPENDING; 546 PROC_ITIMUNLOCK(p); 547 } 548 if (flags != 0) { 549 thread_lock(td); 550 td->td_flags |= flags; 551 thread_unlock(td); 552 } 553 554 #ifdef HWPMC_HOOKS 555 if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid))) 556 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL); 557 if (td->td_intr_frame != NULL) 558 PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame); 559 #endif 560 /* We are in charge to handle this tick duty. */ 561 if (newticks > 0) { 562 tc_ticktock(newticks); 563 #ifdef DEVICE_POLLING 564 /* Dangerous and no need to call these things concurrently. */ 565 if (atomic_cmpset_acq_int(&devpoll_run, 0, 1)) { 566 /* This is very short and quick. */ 567 hardclock_device_poll(); 568 atomic_store_rel_int(&devpoll_run, 0); 569 } 570 #endif /* DEVICE_POLLING */ 571 if (watchdog_enabled > 0) { 572 i = atomic_fetchadd_int(&watchdog_ticks, -newticks); 573 if (i > 0 && i <= newticks) 574 watchdog_fire(); 575 } 576 } 577 if (curcpu == CPU_FIRST()) 578 cpu_tick_calibration(); 579 if (__predict_false(DPCPU_GET(epoch_cb_count))) 580 GROUPTASK_ENQUEUE(DPCPU_PTR(epoch_cb_task)); 581 } 582 583 void 584 hardclock_sync(int cpu) 585 { 586 int *t; 587 KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu)); 588 t = DPCPU_ID_PTR(cpu, pcputicks); 589 590 *t = ticks; 591 } 592 593 /* 594 * Compute number of ticks in the specified amount of time. 595 */ 596 int 597 tvtohz(struct timeval *tv) 598 { 599 unsigned long ticks; 600 long sec, usec; 601 602 /* 603 * If the number of usecs in the whole seconds part of the time 604 * difference fits in a long, then the total number of usecs will 605 * fit in an unsigned long. Compute the total and convert it to 606 * ticks, rounding up and adding 1 to allow for the current tick 607 * to expire. Rounding also depends on unsigned long arithmetic 608 * to avoid overflow. 609 * 610 * Otherwise, if the number of ticks in the whole seconds part of 611 * the time difference fits in a long, then convert the parts to 612 * ticks separately and add, using similar rounding methods and 613 * overflow avoidance. This method would work in the previous 614 * case but it is slightly slower and assumes that hz is integral. 615 * 616 * Otherwise, round the time difference down to the maximum 617 * representable value. 618 * 619 * If ints have 32 bits, then the maximum value for any timeout in 620 * 10ms ticks is 248 days. 621 */ 622 sec = tv->tv_sec; 623 usec = tv->tv_usec; 624 if (usec < 0) { 625 sec--; 626 usec += 1000000; 627 } 628 if (sec < 0) { 629 #ifdef DIAGNOSTIC 630 if (usec > 0) { 631 sec++; 632 usec -= 1000000; 633 } 634 printf("tvotohz: negative time difference %ld sec %ld usec\n", 635 sec, usec); 636 #endif 637 ticks = 1; 638 } else if (sec <= LONG_MAX / 1000000) 639 ticks = howmany(sec * 1000000 + (unsigned long)usec, tick) + 1; 640 else if (sec <= LONG_MAX / hz) 641 ticks = sec * hz 642 + howmany((unsigned long)usec, tick) + 1; 643 else 644 ticks = LONG_MAX; 645 if (ticks > INT_MAX) 646 ticks = INT_MAX; 647 return ((int)ticks); 648 } 649 650 /* 651 * Start profiling on a process. 652 * 653 * Kernel profiling passes proc0 which never exits and hence 654 * keeps the profile clock running constantly. 655 */ 656 void 657 startprofclock(struct proc *p) 658 { 659 660 PROC_LOCK_ASSERT(p, MA_OWNED); 661 if (p->p_flag & P_STOPPROF) 662 return; 663 if ((p->p_flag & P_PROFIL) == 0) { 664 p->p_flag |= P_PROFIL; 665 mtx_lock(&time_lock); 666 if (++profprocs == 1) 667 cpu_startprofclock(); 668 mtx_unlock(&time_lock); 669 } 670 } 671 672 /* 673 * Stop profiling on a process. 674 */ 675 void 676 stopprofclock(struct proc *p) 677 { 678 679 PROC_LOCK_ASSERT(p, MA_OWNED); 680 if (p->p_flag & P_PROFIL) { 681 if (p->p_profthreads != 0) { 682 while (p->p_profthreads != 0) { 683 p->p_flag |= P_STOPPROF; 684 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE, 685 "stopprof", 0); 686 } 687 } 688 if ((p->p_flag & P_PROFIL) == 0) 689 return; 690 p->p_flag &= ~P_PROFIL; 691 mtx_lock(&time_lock); 692 if (--profprocs == 0) 693 cpu_stopprofclock(); 694 mtx_unlock(&time_lock); 695 } 696 } 697 698 /* 699 * Statistics clock. Updates rusage information and calls the scheduler 700 * to adjust priorities of the active thread. 701 * 702 * This should be called by all active processors. 703 */ 704 void 705 statclock(int usermode) 706 { 707 708 statclock_cnt(1, usermode); 709 } 710 711 void 712 statclock_cnt(int cnt, int usermode) 713 { 714 struct rusage *ru; 715 struct vmspace *vm; 716 struct thread *td; 717 struct proc *p; 718 long rss; 719 long *cp_time; 720 721 td = curthread; 722 p = td->td_proc; 723 724 cp_time = (long *)PCPU_PTR(cp_time); 725 if (usermode) { 726 /* 727 * Charge the time as appropriate. 728 */ 729 td->td_uticks += cnt; 730 if (p->p_nice > NZERO) 731 cp_time[CP_NICE] += cnt; 732 else 733 cp_time[CP_USER] += cnt; 734 } else { 735 /* 736 * Came from kernel mode, so we were: 737 * - handling an interrupt, 738 * - doing syscall or trap work on behalf of the current 739 * user process, or 740 * - spinning in the idle loop. 741 * Whichever it is, charge the time as appropriate. 742 * Note that we charge interrupts to the current process, 743 * regardless of whether they are ``for'' that process, 744 * so that we know how much of its real time was spent 745 * in ``non-process'' (i.e., interrupt) work. 746 */ 747 if ((td->td_pflags & TDP_ITHREAD) || 748 td->td_intr_nesting_level >= 2) { 749 td->td_iticks += cnt; 750 cp_time[CP_INTR] += cnt; 751 } else { 752 td->td_pticks += cnt; 753 td->td_sticks += cnt; 754 if (!TD_IS_IDLETHREAD(td)) 755 cp_time[CP_SYS] += cnt; 756 else 757 cp_time[CP_IDLE] += cnt; 758 } 759 } 760 761 /* Update resource usage integrals and maximums. */ 762 MPASS(p->p_vmspace != NULL); 763 vm = p->p_vmspace; 764 ru = &td->td_ru; 765 ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt; 766 ru->ru_idrss += pgtok(vm->vm_dsize) * cnt; 767 ru->ru_isrss += pgtok(vm->vm_ssize) * cnt; 768 rss = pgtok(vmspace_resident_count(vm)); 769 if (ru->ru_maxrss < rss) 770 ru->ru_maxrss = rss; 771 KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock", 772 "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz); 773 SDT_PROBE2(sched, , , tick, td, td->td_proc); 774 thread_lock_flags(td, MTX_QUIET); 775 for ( ; cnt > 0; cnt--) 776 sched_clock(td); 777 thread_unlock(td); 778 #ifdef HWPMC_HOOKS 779 if (td->td_intr_frame != NULL) 780 PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame); 781 #endif 782 } 783 784 void 785 profclock(int usermode, uintfptr_t pc) 786 { 787 788 profclock_cnt(1, usermode, pc); 789 } 790 791 void 792 profclock_cnt(int cnt, int usermode, uintfptr_t pc) 793 { 794 struct thread *td; 795 #ifdef GPROF 796 struct gmonparam *g; 797 uintfptr_t i; 798 #endif 799 800 td = curthread; 801 if (usermode) { 802 /* 803 * Came from user mode; CPU was in user state. 804 * If this process is being profiled, record the tick. 805 * if there is no related user location yet, don't 806 * bother trying to count it. 807 */ 808 if (td->td_proc->p_flag & P_PROFIL) 809 addupc_intr(td, pc, cnt); 810 } 811 #ifdef GPROF 812 else { 813 /* 814 * Kernel statistics are just like addupc_intr, only easier. 815 */ 816 g = &_gmonparam; 817 if (g->state == GMON_PROF_ON && pc >= g->lowpc) { 818 i = PC_TO_I(g, pc); 819 if (i < g->textsize) { 820 KCOUNT(g, i) += cnt; 821 } 822 } 823 } 824 #endif 825 #ifdef HWPMC_HOOKS 826 if (td->td_intr_frame != NULL) 827 PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame); 828 #endif 829 } 830 831 /* 832 * Return information about system clocks. 833 */ 834 static int 835 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 836 { 837 struct clockinfo clkinfo; 838 /* 839 * Construct clockinfo structure. 840 */ 841 bzero(&clkinfo, sizeof(clkinfo)); 842 clkinfo.hz = hz; 843 clkinfo.tick = tick; 844 clkinfo.profhz = profhz; 845 clkinfo.stathz = stathz ? stathz : hz; 846 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 847 } 848 849 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, 850 CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE, 851 0, 0, sysctl_kern_clockrate, "S,clockinfo", 852 "Rate and period of various kernel clocks"); 853 854 static void 855 watchdog_config(void *unused __unused, u_int cmd, int *error) 856 { 857 u_int u; 858 859 u = cmd & WD_INTERVAL; 860 if (u >= WD_TO_1SEC) { 861 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz; 862 watchdog_enabled = 1; 863 *error = 0; 864 } else { 865 watchdog_enabled = 0; 866 } 867 } 868 869 /* 870 * Handle a watchdog timeout by dumping interrupt information and 871 * then either dropping to DDB or panicking. 872 */ 873 static void 874 watchdog_fire(void) 875 { 876 int nintr; 877 uint64_t inttotal; 878 u_long *curintr; 879 char *curname; 880 881 curintr = intrcnt; 882 curname = intrnames; 883 inttotal = 0; 884 nintr = sintrcnt / sizeof(u_long); 885 886 printf("interrupt total\n"); 887 while (--nintr >= 0) { 888 if (*curintr) 889 printf("%-12s %20lu\n", curname, *curintr); 890 curname += strlen(curname) + 1; 891 inttotal += *curintr++; 892 } 893 printf("Total %20ju\n", (uintmax_t)inttotal); 894 895 #if defined(KDB) && !defined(KDB_UNATTENDED) 896 kdb_backtrace(); 897 kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout"); 898 #else 899 panic("watchdog timeout"); 900 #endif 901 } 902