1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39 * $FreeBSD$ 40 */ 41 42 #include "opt_ntp.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/dkstat.h> 47 #include <sys/callout.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/mutex.h> 51 #include <sys/proc.h> 52 #include <sys/resourcevar.h> 53 #include <sys/signalvar.h> 54 #include <sys/smp.h> 55 #include <sys/timetc.h> 56 #include <sys/timepps.h> 57 #include <vm/vm.h> 58 #include <vm/pmap.h> 59 #include <vm/vm_map.h> 60 #include <sys/sysctl.h> 61 #include <sys/bus.h> 62 #include <sys/interrupt.h> 63 64 #include <machine/cpu.h> 65 #include <machine/limits.h> 66 67 #ifdef GPROF 68 #include <sys/gmon.h> 69 #endif 70 71 72 static void initclocks __P((void *dummy)); 73 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 74 75 /* Some of these don't belong here, but it's easiest to concentrate them. */ 76 long cp_time[CPUSTATES]; 77 78 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time), 79 "LU", "CPU time statistics"); 80 81 long tk_cancc; 82 long tk_nin; 83 long tk_nout; 84 long tk_rawcc; 85 86 /* 87 * Clock handling routines. 88 * 89 * This code is written to operate with two timers that run independently of 90 * each other. 91 * 92 * The main timer, running hz times per second, is used to trigger interval 93 * timers, timeouts and rescheduling as needed. 94 * 95 * The second timer handles kernel and user profiling, 96 * and does resource use estimation. If the second timer is programmable, 97 * it is randomized to avoid aliasing between the two clocks. For example, 98 * the randomization prevents an adversary from always giving up the cpu 99 * just before its quantum expires. Otherwise, it would never accumulate 100 * cpu ticks. The mean frequency of the second timer is stathz. 101 * 102 * If no second timer exists, stathz will be zero; in this case we drive 103 * profiling and statistics off the main clock. This WILL NOT be accurate; 104 * do not do it unless absolutely necessary. 105 * 106 * The statistics clock may (or may not) be run at a higher rate while 107 * profiling. This profile clock runs at profhz. We require that profhz 108 * be an integral multiple of stathz. 109 * 110 * If the statistics clock is running fast, it must be divided by the ratio 111 * profhz/stathz for statistics. (For profiling, every tick counts.) 112 * 113 * Time-of-day is maintained using a "timecounter", which may or may 114 * not be related to the hardware generating the above mentioned 115 * interrupts. 116 */ 117 118 int stathz; 119 int profhz; 120 static int profprocs; 121 int ticks; 122 static int psdiv, pscnt; /* prof => stat divider */ 123 int psratio; /* ratio: prof / stat */ 124 125 /* 126 * Initialize clock frequencies and start both clocks running. 127 */ 128 /* ARGSUSED*/ 129 static void 130 initclocks(dummy) 131 void *dummy; 132 { 133 register int i; 134 135 /* 136 * Set divisors to 1 (normal case) and let the machine-specific 137 * code do its bit. 138 */ 139 psdiv = pscnt = 1; 140 cpu_initclocks(); 141 142 /* 143 * Compute profhz/stathz, and fix profhz if needed. 144 */ 145 i = stathz ? stathz : hz; 146 if (profhz == 0) 147 profhz = i; 148 psratio = profhz / i; 149 } 150 151 /* 152 * Each time the real-time timer fires, this function is called on all CPUs 153 * with each CPU passing in its curproc as the first argument. If possible 154 * a nice optimization in the future would be to allow the CPU receiving the 155 * actual real-time timer interrupt to call this function on behalf of the 156 * other CPUs rather than sending an IPI to all other CPUs so that they 157 * can call this function. Note that hardclock() calls hardclock_process() 158 * for the CPU receiving the timer interrupt, so only the other CPUs in the 159 * system need to call this function (or have it called on their behalf. 160 */ 161 void 162 hardclock_process(p, user) 163 struct proc *p; 164 int user; 165 { 166 struct pstats *pstats; 167 168 /* 169 * Run current process's virtual and profile time, as needed. 170 */ 171 mtx_assert(&sched_lock, MA_OWNED); 172 pstats = p->p_stats; 173 if (user && 174 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 175 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) { 176 p->p_sflag |= PS_ALRMPEND; 177 aston(p); 178 } 179 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 180 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) { 181 p->p_sflag |= PS_PROFPEND; 182 aston(p); 183 } 184 } 185 186 /* 187 * The real-time timer, interrupting hz times per second. 188 */ 189 void 190 hardclock(frame) 191 register struct clockframe *frame; 192 { 193 int need_softclock = 0; 194 195 mtx_lock_spin(&sched_lock); 196 hardclock_process(curproc, CLKF_USERMODE(frame)); 197 mtx_unlock_spin(&sched_lock); 198 199 /* 200 * If no separate statistics clock is available, run it from here. 201 * 202 * XXX: this only works for UP 203 */ 204 if (stathz == 0) 205 statclock(frame); 206 207 tc_windup(); 208 209 /* 210 * Process callouts at a very low cpu priority, so we don't keep the 211 * relatively high clock interrupt priority any longer than necessary. 212 */ 213 mtx_lock_spin(&callout_lock); 214 ticks++; 215 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) { 216 need_softclock = 1; 217 } else if (softticks + 1 == ticks) 218 ++softticks; 219 mtx_unlock_spin(&callout_lock); 220 221 /* 222 * swi_sched acquires sched_lock, so we don't want to call it with 223 * callout_lock held; incorrect locking order. 224 */ 225 if (need_softclock) 226 swi_sched(softclock_ih, SWI_NOSWITCH); 227 } 228 229 /* 230 * Compute number of ticks in the specified amount of time. 231 */ 232 int 233 tvtohz(tv) 234 struct timeval *tv; 235 { 236 register unsigned long ticks; 237 register long sec, usec; 238 239 /* 240 * If the number of usecs in the whole seconds part of the time 241 * difference fits in a long, then the total number of usecs will 242 * fit in an unsigned long. Compute the total and convert it to 243 * ticks, rounding up and adding 1 to allow for the current tick 244 * to expire. Rounding also depends on unsigned long arithmetic 245 * to avoid overflow. 246 * 247 * Otherwise, if the number of ticks in the whole seconds part of 248 * the time difference fits in a long, then convert the parts to 249 * ticks separately and add, using similar rounding methods and 250 * overflow avoidance. This method would work in the previous 251 * case but it is slightly slower and assumes that hz is integral. 252 * 253 * Otherwise, round the time difference down to the maximum 254 * representable value. 255 * 256 * If ints have 32 bits, then the maximum value for any timeout in 257 * 10ms ticks is 248 days. 258 */ 259 sec = tv->tv_sec; 260 usec = tv->tv_usec; 261 if (usec < 0) { 262 sec--; 263 usec += 1000000; 264 } 265 if (sec < 0) { 266 #ifdef DIAGNOSTIC 267 if (usec > 0) { 268 sec++; 269 usec -= 1000000; 270 } 271 printf("tvotohz: negative time difference %ld sec %ld usec\n", 272 sec, usec); 273 #endif 274 ticks = 1; 275 } else if (sec <= LONG_MAX / 1000000) 276 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 277 / tick + 1; 278 else if (sec <= LONG_MAX / hz) 279 ticks = sec * hz 280 + ((unsigned long)usec + (tick - 1)) / tick + 1; 281 else 282 ticks = LONG_MAX; 283 if (ticks > INT_MAX) 284 ticks = INT_MAX; 285 return ((int)ticks); 286 } 287 288 /* 289 * Start profiling on a process. 290 * 291 * Kernel profiling passes proc0 which never exits and hence 292 * keeps the profile clock running constantly. 293 */ 294 void 295 startprofclock(p) 296 register struct proc *p; 297 { 298 int s; 299 300 /* 301 * XXX; Right now sched_lock protects statclock(), but perhaps 302 * it should be protected later on by a time_lock, which would 303 * cover psdiv, etc. as well. 304 */ 305 mtx_lock_spin(&sched_lock); 306 if ((p->p_sflag & PS_PROFIL) == 0) { 307 p->p_sflag |= PS_PROFIL; 308 if (++profprocs == 1 && stathz != 0) { 309 s = splstatclock(); 310 psdiv = pscnt = psratio; 311 setstatclockrate(profhz); 312 splx(s); 313 } 314 } 315 mtx_unlock_spin(&sched_lock); 316 } 317 318 /* 319 * Stop profiling on a process. 320 */ 321 void 322 stopprofclock(p) 323 register struct proc *p; 324 { 325 int s; 326 327 mtx_lock_spin(&sched_lock); 328 if (p->p_sflag & PS_PROFIL) { 329 p->p_sflag &= ~PS_PROFIL; 330 if (--profprocs == 0 && stathz != 0) { 331 s = splstatclock(); 332 psdiv = pscnt = 1; 333 setstatclockrate(stathz); 334 splx(s); 335 } 336 } 337 mtx_unlock_spin(&sched_lock); 338 } 339 340 /* 341 * Do process and kernel statistics. Most of the statistics are only 342 * used by user-level statistics programs. The main exceptions are 343 * p->p_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu. This function 344 * should be called by all CPUs in the system for each statistics clock 345 * interrupt. See the description of hardclock_process for more detail on 346 * this function's relationship to statclock. 347 */ 348 void 349 statclock_process(p, pc, user) 350 struct proc *p; 351 register_t pc; 352 int user; 353 { 354 #ifdef GPROF 355 struct gmonparam *g; 356 int i; 357 #endif 358 struct pstats *pstats; 359 long rss; 360 struct rusage *ru; 361 struct vmspace *vm; 362 363 KASSERT(p == curproc, ("statclock_process: p != curproc")); 364 mtx_assert(&sched_lock, MA_OWNED); 365 if (user) { 366 /* 367 * Came from user mode; CPU was in user state. 368 * If this process is being profiled, record the tick. 369 */ 370 if (p->p_sflag & PS_PROFIL) 371 addupc_intr(p, pc, 1); 372 if (pscnt < psdiv) 373 return; 374 /* 375 * Charge the time as appropriate. 376 */ 377 p->p_uticks++; 378 if (p->p_nice > NZERO) 379 cp_time[CP_NICE]++; 380 else 381 cp_time[CP_USER]++; 382 } else { 383 #ifdef GPROF 384 /* 385 * Kernel statistics are just like addupc_intr, only easier. 386 */ 387 g = &_gmonparam; 388 if (g->state == GMON_PROF_ON) { 389 i = pc - g->lowpc; 390 if (i < g->textsize) { 391 i /= HISTFRACTION * sizeof(*g->kcount); 392 g->kcount[i]++; 393 } 394 } 395 #endif 396 if (pscnt < psdiv) 397 return; 398 /* 399 * Came from kernel mode, so we were: 400 * - handling an interrupt, 401 * - doing syscall or trap work on behalf of the current 402 * user process, or 403 * - spinning in the idle loop. 404 * Whichever it is, charge the time as appropriate. 405 * Note that we charge interrupts to the current process, 406 * regardless of whether they are ``for'' that process, 407 * so that we know how much of its real time was spent 408 * in ``non-process'' (i.e., interrupt) work. 409 */ 410 if ((p->p_ithd != NULL) || p->p_intr_nesting_level >= 2) { 411 p->p_iticks++; 412 cp_time[CP_INTR]++; 413 } else { 414 p->p_sticks++; 415 if (p != PCPU_GET(idleproc)) 416 cp_time[CP_SYS]++; 417 else 418 cp_time[CP_IDLE]++; 419 } 420 } 421 422 schedclock(p); 423 424 /* Update resource usage integrals and maximums. */ 425 if ((pstats = p->p_stats) != NULL && 426 (ru = &pstats->p_ru) != NULL && 427 (vm = p->p_vmspace) != NULL) { 428 ru->ru_ixrss += pgtok(vm->vm_tsize); 429 ru->ru_idrss += pgtok(vm->vm_dsize); 430 ru->ru_isrss += pgtok(vm->vm_ssize); 431 rss = pgtok(vmspace_resident_count(vm)); 432 if (ru->ru_maxrss < rss) 433 ru->ru_maxrss = rss; 434 } 435 } 436 437 /* 438 * Statistics clock. Grab profile sample, and if divider reaches 0, 439 * do process and kernel statistics. Most of the statistics are only 440 * used by user-level statistics programs. The main exceptions are 441 * p->p_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu. 442 */ 443 void 444 statclock(frame) 445 register struct clockframe *frame; 446 { 447 448 mtx_lock_spin(&sched_lock); 449 if (--pscnt == 0) 450 pscnt = psdiv; 451 statclock_process(curproc, CLKF_PC(frame), CLKF_USERMODE(frame)); 452 mtx_unlock_spin(&sched_lock); 453 } 454 455 /* 456 * Return information about system clocks. 457 */ 458 static int 459 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 460 { 461 struct clockinfo clkinfo; 462 /* 463 * Construct clockinfo structure. 464 */ 465 clkinfo.hz = hz; 466 clkinfo.tick = tick; 467 clkinfo.tickadj = tickadj; 468 clkinfo.profhz = profhz; 469 clkinfo.stathz = stathz ? stathz : hz; 470 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 471 } 472 473 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 474 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 475