1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_kdb.h" 41 #include "opt_device_polling.h" 42 #include "opt_hwpmc_hooks.h" 43 #include "opt_ntp.h" 44 #include "opt_watchdog.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/callout.h> 49 #include <sys/kdb.h> 50 #include <sys/kernel.h> 51 #include <sys/kthread.h> 52 #include <sys/ktr.h> 53 #include <sys/lock.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/resource.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sched.h> 59 #include <sys/signalvar.h> 60 #include <sys/sleepqueue.h> 61 #include <sys/smp.h> 62 #include <vm/vm.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <sys/sysctl.h> 66 #include <sys/bus.h> 67 #include <sys/interrupt.h> 68 #include <sys/limits.h> 69 #include <sys/timetc.h> 70 71 #ifdef GPROF 72 #include <sys/gmon.h> 73 #endif 74 75 #ifdef HWPMC_HOOKS 76 #include <sys/pmckern.h> 77 #endif 78 79 #ifdef DEVICE_POLLING 80 extern void hardclock_device_poll(void); 81 #endif /* DEVICE_POLLING */ 82 83 static void initclocks(void *dummy); 84 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 85 86 /* Spin-lock protecting profiling statistics. */ 87 static struct mtx time_lock; 88 89 static int 90 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS) 91 { 92 int error; 93 long cp_time[CPUSTATES]; 94 #ifdef SCTL_MASK32 95 int i; 96 unsigned int cp_time32[CPUSTATES]; 97 #endif 98 99 read_cpu_time(cp_time); 100 #ifdef SCTL_MASK32 101 if (req->flags & SCTL_MASK32) { 102 if (!req->oldptr) 103 return SYSCTL_OUT(req, 0, sizeof(cp_time32)); 104 for (i = 0; i < CPUSTATES; i++) 105 cp_time32[i] = (unsigned int)cp_time[i]; 106 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 107 } else 108 #endif 109 { 110 if (!req->oldptr) 111 return SYSCTL_OUT(req, 0, sizeof(cp_time)); 112 error = SYSCTL_OUT(req, cp_time, sizeof(cp_time)); 113 } 114 return error; 115 } 116 117 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 118 0,0, sysctl_kern_cp_time, "LU", "CPU time statistics"); 119 120 static long empty[CPUSTATES]; 121 122 static int 123 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS) 124 { 125 struct pcpu *pcpu; 126 int error; 127 int c; 128 long *cp_time; 129 #ifdef SCTL_MASK32 130 unsigned int cp_time32[CPUSTATES]; 131 int i; 132 #endif 133 134 if (!req->oldptr) { 135 #ifdef SCTL_MASK32 136 if (req->flags & SCTL_MASK32) 137 return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1)); 138 else 139 #endif 140 return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1)); 141 } 142 for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) { 143 if (!CPU_ABSENT(c)) { 144 pcpu = pcpu_find(c); 145 cp_time = pcpu->pc_cp_time; 146 } else { 147 cp_time = empty; 148 } 149 #ifdef SCTL_MASK32 150 if (req->flags & SCTL_MASK32) { 151 for (i = 0; i < CPUSTATES; i++) 152 cp_time32[i] = (unsigned int)cp_time[i]; 153 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 154 } else 155 #endif 156 error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES); 157 } 158 return error; 159 } 160 161 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 162 0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics"); 163 164 #ifdef DEADLKRES 165 static int slptime_threshold = 1800; 166 static int blktime_threshold = 900; 167 static int sleepfreq = 3; 168 169 static void 170 deadlkres(void) 171 { 172 struct proc *p; 173 struct thread *td; 174 void *wchan; 175 int blkticks, slpticks, slptype, tryl, tticks; 176 177 tryl = 0; 178 for (;;) { 179 blkticks = blktime_threshold * hz; 180 slpticks = slptime_threshold * hz; 181 182 /* 183 * Avoid to sleep on the sx_lock in order to avoid a possible 184 * priority inversion problem leading to starvation. 185 * If the lock can't be held after 100 tries, panic. 186 */ 187 if (!sx_try_slock(&allproc_lock)) { 188 if (tryl > 100) 189 panic("%s: possible deadlock detected on allproc_lock\n", 190 __func__); 191 tryl++; 192 pause("allproc_lock deadlkres", sleepfreq * hz); 193 continue; 194 } 195 tryl = 0; 196 FOREACH_PROC_IN_SYSTEM(p) { 197 PROC_LOCK(p); 198 FOREACH_THREAD_IN_PROC(p, td) { 199 thread_lock(td); 200 if (TD_ON_LOCK(td)) { 201 202 /* 203 * The thread should be blocked on a 204 * turnstile, simply check if the 205 * turnstile channel is in good state. 206 */ 207 MPASS(td->td_blocked != NULL); 208 tticks = ticks - td->td_blktick; 209 thread_unlock(td); 210 if (tticks > blkticks) { 211 212 /* 213 * Accordingly with provided 214 * thresholds, this thread is 215 * stuck for too long on a 216 * turnstile. 217 */ 218 PROC_UNLOCK(p); 219 sx_sunlock(&allproc_lock); 220 panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", 221 __func__, td, tticks); 222 } 223 } else if (TD_IS_SLEEPING(td)) { 224 225 /* 226 * Check if the thread is sleeping on a 227 * lock, otherwise skip the check. 228 * Drop the thread lock in order to 229 * avoid a LOR with the sleepqueue 230 * spinlock. 231 */ 232 wchan = td->td_wchan; 233 tticks = ticks - td->td_slptick; 234 thread_unlock(td); 235 slptype = sleepq_type(wchan); 236 if ((slptype == SLEEPQ_SX || 237 slptype == SLEEPQ_LK) && 238 tticks > slpticks) { 239 240 /* 241 * Accordingly with provided 242 * thresholds, this thread is 243 * stuck for too long on a 244 * sleepqueue. 245 */ 246 PROC_UNLOCK(p); 247 sx_sunlock(&allproc_lock); 248 panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", 249 __func__, td, tticks); 250 } 251 } else 252 thread_unlock(td); 253 } 254 PROC_UNLOCK(p); 255 } 256 sx_sunlock(&allproc_lock); 257 258 /* Sleep for sleepfreq seconds. */ 259 pause("deadlkres", sleepfreq * hz); 260 } 261 } 262 263 static struct kthread_desc deadlkres_kd = { 264 "deadlkres", 265 deadlkres, 266 (struct thread **)NULL 267 }; 268 269 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd); 270 271 SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0, "Deadlock resolver"); 272 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW, 273 &slptime_threshold, 0, 274 "Number of seconds within is valid to sleep on a sleepqueue"); 275 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW, 276 &blktime_threshold, 0, 277 "Number of seconds within is valid to block on a turnstile"); 278 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0, 279 "Number of seconds between any deadlock resolver thread run"); 280 #endif /* DEADLKRES */ 281 282 void 283 read_cpu_time(long *cp_time) 284 { 285 struct pcpu *pc; 286 int i, j; 287 288 /* Sum up global cp_time[]. */ 289 bzero(cp_time, sizeof(long) * CPUSTATES); 290 for (i = 0; i <= mp_maxid; i++) { 291 if (CPU_ABSENT(i)) 292 continue; 293 pc = pcpu_find(i); 294 for (j = 0; j < CPUSTATES; j++) 295 cp_time[j] += pc->pc_cp_time[j]; 296 } 297 } 298 299 #ifdef SW_WATCHDOG 300 #include <sys/watchdog.h> 301 302 static int watchdog_ticks; 303 static int watchdog_enabled; 304 static void watchdog_fire(void); 305 static void watchdog_config(void *, u_int, int *); 306 #endif /* SW_WATCHDOG */ 307 308 /* 309 * Clock handling routines. 310 * 311 * This code is written to operate with two timers that run independently of 312 * each other. 313 * 314 * The main timer, running hz times per second, is used to trigger interval 315 * timers, timeouts and rescheduling as needed. 316 * 317 * The second timer handles kernel and user profiling, 318 * and does resource use estimation. If the second timer is programmable, 319 * it is randomized to avoid aliasing between the two clocks. For example, 320 * the randomization prevents an adversary from always giving up the cpu 321 * just before its quantum expires. Otherwise, it would never accumulate 322 * cpu ticks. The mean frequency of the second timer is stathz. 323 * 324 * If no second timer exists, stathz will be zero; in this case we drive 325 * profiling and statistics off the main clock. This WILL NOT be accurate; 326 * do not do it unless absolutely necessary. 327 * 328 * The statistics clock may (or may not) be run at a higher rate while 329 * profiling. This profile clock runs at profhz. We require that profhz 330 * be an integral multiple of stathz. 331 * 332 * If the statistics clock is running fast, it must be divided by the ratio 333 * profhz/stathz for statistics. (For profiling, every tick counts.) 334 * 335 * Time-of-day is maintained using a "timecounter", which may or may 336 * not be related to the hardware generating the above mentioned 337 * interrupts. 338 */ 339 340 int stathz; 341 int profhz; 342 int profprocs; 343 int ticks; 344 int psratio; 345 346 /* 347 * Initialize clock frequencies and start both clocks running. 348 */ 349 /* ARGSUSED*/ 350 static void 351 initclocks(dummy) 352 void *dummy; 353 { 354 register int i; 355 356 /* 357 * Set divisors to 1 (normal case) and let the machine-specific 358 * code do its bit. 359 */ 360 mtx_init(&time_lock, "time lock", NULL, MTX_SPIN); 361 cpu_initclocks(); 362 363 /* 364 * Compute profhz/stathz, and fix profhz if needed. 365 */ 366 i = stathz ? stathz : hz; 367 if (profhz == 0) 368 profhz = i; 369 psratio = profhz / i; 370 #ifdef SW_WATCHDOG 371 EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0); 372 #endif 373 } 374 375 /* 376 * Each time the real-time timer fires, this function is called on all CPUs. 377 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only 378 * the other CPUs in the system need to call this function. 379 */ 380 void 381 hardclock_cpu(int usermode) 382 { 383 struct pstats *pstats; 384 struct thread *td = curthread; 385 struct proc *p = td->td_proc; 386 int flags; 387 388 /* 389 * Run current process's virtual and profile time, as needed. 390 */ 391 pstats = p->p_stats; 392 flags = 0; 393 if (usermode && 394 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) { 395 PROC_SLOCK(p); 396 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 397 flags |= TDF_ALRMPEND | TDF_ASTPENDING; 398 PROC_SUNLOCK(p); 399 } 400 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) { 401 PROC_SLOCK(p); 402 if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 403 flags |= TDF_PROFPEND | TDF_ASTPENDING; 404 PROC_SUNLOCK(p); 405 } 406 thread_lock(td); 407 sched_tick(); 408 td->td_flags |= flags; 409 thread_unlock(td); 410 411 #ifdef HWPMC_HOOKS 412 if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid))) 413 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL); 414 #endif 415 callout_tick(); 416 } 417 418 /* 419 * The real-time timer, interrupting hz times per second. 420 */ 421 void 422 hardclock(int usermode, uintfptr_t pc) 423 { 424 425 atomic_add_int((volatile int *)&ticks, 1); 426 hardclock_cpu(usermode); 427 tc_ticktock(); 428 /* 429 * If no separate statistics clock is available, run it from here. 430 * 431 * XXX: this only works for UP 432 */ 433 if (stathz == 0) { 434 profclock(usermode, pc); 435 statclock(usermode); 436 } 437 #ifdef DEVICE_POLLING 438 hardclock_device_poll(); /* this is very short and quick */ 439 #endif /* DEVICE_POLLING */ 440 #ifdef SW_WATCHDOG 441 if (watchdog_enabled > 0 && --watchdog_ticks <= 0) 442 watchdog_fire(); 443 #endif /* SW_WATCHDOG */ 444 } 445 446 /* 447 * Compute number of ticks in the specified amount of time. 448 */ 449 int 450 tvtohz(tv) 451 struct timeval *tv; 452 { 453 register unsigned long ticks; 454 register long sec, usec; 455 456 /* 457 * If the number of usecs in the whole seconds part of the time 458 * difference fits in a long, then the total number of usecs will 459 * fit in an unsigned long. Compute the total and convert it to 460 * ticks, rounding up and adding 1 to allow for the current tick 461 * to expire. Rounding also depends on unsigned long arithmetic 462 * to avoid overflow. 463 * 464 * Otherwise, if the number of ticks in the whole seconds part of 465 * the time difference fits in a long, then convert the parts to 466 * ticks separately and add, using similar rounding methods and 467 * overflow avoidance. This method would work in the previous 468 * case but it is slightly slower and assumes that hz is integral. 469 * 470 * Otherwise, round the time difference down to the maximum 471 * representable value. 472 * 473 * If ints have 32 bits, then the maximum value for any timeout in 474 * 10ms ticks is 248 days. 475 */ 476 sec = tv->tv_sec; 477 usec = tv->tv_usec; 478 if (usec < 0) { 479 sec--; 480 usec += 1000000; 481 } 482 if (sec < 0) { 483 #ifdef DIAGNOSTIC 484 if (usec > 0) { 485 sec++; 486 usec -= 1000000; 487 } 488 printf("tvotohz: negative time difference %ld sec %ld usec\n", 489 sec, usec); 490 #endif 491 ticks = 1; 492 } else if (sec <= LONG_MAX / 1000000) 493 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 494 / tick + 1; 495 else if (sec <= LONG_MAX / hz) 496 ticks = sec * hz 497 + ((unsigned long)usec + (tick - 1)) / tick + 1; 498 else 499 ticks = LONG_MAX; 500 if (ticks > INT_MAX) 501 ticks = INT_MAX; 502 return ((int)ticks); 503 } 504 505 /* 506 * Start profiling on a process. 507 * 508 * Kernel profiling passes proc0 which never exits and hence 509 * keeps the profile clock running constantly. 510 */ 511 void 512 startprofclock(p) 513 register struct proc *p; 514 { 515 516 PROC_LOCK_ASSERT(p, MA_OWNED); 517 if (p->p_flag & P_STOPPROF) 518 return; 519 if ((p->p_flag & P_PROFIL) == 0) { 520 p->p_flag |= P_PROFIL; 521 mtx_lock_spin(&time_lock); 522 if (++profprocs == 1) 523 cpu_startprofclock(); 524 mtx_unlock_spin(&time_lock); 525 } 526 } 527 528 /* 529 * Stop profiling on a process. 530 */ 531 void 532 stopprofclock(p) 533 register struct proc *p; 534 { 535 536 PROC_LOCK_ASSERT(p, MA_OWNED); 537 if (p->p_flag & P_PROFIL) { 538 if (p->p_profthreads != 0) { 539 p->p_flag |= P_STOPPROF; 540 while (p->p_profthreads != 0) 541 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE, 542 "stopprof", 0); 543 p->p_flag &= ~P_STOPPROF; 544 } 545 if ((p->p_flag & P_PROFIL) == 0) 546 return; 547 p->p_flag &= ~P_PROFIL; 548 mtx_lock_spin(&time_lock); 549 if (--profprocs == 0) 550 cpu_stopprofclock(); 551 mtx_unlock_spin(&time_lock); 552 } 553 } 554 555 /* 556 * Statistics clock. Updates rusage information and calls the scheduler 557 * to adjust priorities of the active thread. 558 * 559 * This should be called by all active processors. 560 */ 561 void 562 statclock(int usermode) 563 { 564 struct rusage *ru; 565 struct vmspace *vm; 566 struct thread *td; 567 struct proc *p; 568 long rss; 569 long *cp_time; 570 571 td = curthread; 572 p = td->td_proc; 573 574 cp_time = (long *)PCPU_PTR(cp_time); 575 if (usermode) { 576 /* 577 * Charge the time as appropriate. 578 */ 579 td->td_uticks++; 580 if (p->p_nice > NZERO) 581 cp_time[CP_NICE]++; 582 else 583 cp_time[CP_USER]++; 584 } else { 585 /* 586 * Came from kernel mode, so we were: 587 * - handling an interrupt, 588 * - doing syscall or trap work on behalf of the current 589 * user process, or 590 * - spinning in the idle loop. 591 * Whichever it is, charge the time as appropriate. 592 * Note that we charge interrupts to the current process, 593 * regardless of whether they are ``for'' that process, 594 * so that we know how much of its real time was spent 595 * in ``non-process'' (i.e., interrupt) work. 596 */ 597 if ((td->td_pflags & TDP_ITHREAD) || 598 td->td_intr_nesting_level >= 2) { 599 td->td_iticks++; 600 cp_time[CP_INTR]++; 601 } else { 602 td->td_pticks++; 603 td->td_sticks++; 604 if (!TD_IS_IDLETHREAD(td)) 605 cp_time[CP_SYS]++; 606 else 607 cp_time[CP_IDLE]++; 608 } 609 } 610 611 /* Update resource usage integrals and maximums. */ 612 MPASS(p->p_vmspace != NULL); 613 vm = p->p_vmspace; 614 ru = &td->td_ru; 615 ru->ru_ixrss += pgtok(vm->vm_tsize); 616 ru->ru_idrss += pgtok(vm->vm_dsize); 617 ru->ru_isrss += pgtok(vm->vm_ssize); 618 rss = pgtok(vmspace_resident_count(vm)); 619 if (ru->ru_maxrss < rss) 620 ru->ru_maxrss = rss; 621 KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock", 622 "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz); 623 thread_lock_flags(td, MTX_QUIET); 624 sched_clock(td); 625 thread_unlock(td); 626 } 627 628 void 629 profclock(int usermode, uintfptr_t pc) 630 { 631 struct thread *td; 632 #ifdef GPROF 633 struct gmonparam *g; 634 uintfptr_t i; 635 #endif 636 637 td = curthread; 638 if (usermode) { 639 /* 640 * Came from user mode; CPU was in user state. 641 * If this process is being profiled, record the tick. 642 * if there is no related user location yet, don't 643 * bother trying to count it. 644 */ 645 if (td->td_proc->p_flag & P_PROFIL) 646 addupc_intr(td, pc, 1); 647 } 648 #ifdef GPROF 649 else { 650 /* 651 * Kernel statistics are just like addupc_intr, only easier. 652 */ 653 g = &_gmonparam; 654 if (g->state == GMON_PROF_ON && pc >= g->lowpc) { 655 i = PC_TO_I(g, pc); 656 if (i < g->textsize) { 657 KCOUNT(g, i)++; 658 } 659 } 660 } 661 #endif 662 } 663 664 /* 665 * Return information about system clocks. 666 */ 667 static int 668 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 669 { 670 struct clockinfo clkinfo; 671 /* 672 * Construct clockinfo structure. 673 */ 674 bzero(&clkinfo, sizeof(clkinfo)); 675 clkinfo.hz = hz; 676 clkinfo.tick = tick; 677 clkinfo.profhz = profhz; 678 clkinfo.stathz = stathz ? stathz : hz; 679 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 680 } 681 682 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, 683 CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE, 684 0, 0, sysctl_kern_clockrate, "S,clockinfo", 685 "Rate and period of various kernel clocks"); 686 687 #ifdef SW_WATCHDOG 688 689 static void 690 watchdog_config(void *unused __unused, u_int cmd, int *error) 691 { 692 u_int u; 693 694 u = cmd & WD_INTERVAL; 695 if (u >= WD_TO_1SEC) { 696 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz; 697 watchdog_enabled = 1; 698 *error = 0; 699 } else { 700 watchdog_enabled = 0; 701 } 702 } 703 704 /* 705 * Handle a watchdog timeout by dumping interrupt information and 706 * then either dropping to DDB or panicking. 707 */ 708 static void 709 watchdog_fire(void) 710 { 711 int nintr; 712 u_int64_t inttotal; 713 u_long *curintr; 714 char *curname; 715 716 curintr = intrcnt; 717 curname = intrnames; 718 inttotal = 0; 719 nintr = eintrcnt - intrcnt; 720 721 printf("interrupt total\n"); 722 while (--nintr >= 0) { 723 if (*curintr) 724 printf("%-12s %20lu\n", curname, *curintr); 725 curname += strlen(curname) + 1; 726 inttotal += *curintr++; 727 } 728 printf("Total %20ju\n", (uintmax_t)inttotal); 729 730 #if defined(KDB) && !defined(KDB_UNATTENDED) 731 kdb_backtrace(); 732 kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout"); 733 #else 734 panic("watchdog timeout"); 735 #endif 736 } 737 738 #endif /* SW_WATCHDOG */ 739