xref: /freebsd/sys/kern/kern_clock.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdb.h"
41 #include "opt_device_polling.h"
42 #include "opt_hwpmc_hooks.h"
43 #include "opt_ntp.h"
44 #include "opt_watchdog.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/callout.h>
49 #include <sys/kdb.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/resource.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/signalvar.h>
60 #include <sys/sleepqueue.h>
61 #include <sys/smp.h>
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <sys/sysctl.h>
66 #include <sys/bus.h>
67 #include <sys/interrupt.h>
68 #include <sys/limits.h>
69 #include <sys/timetc.h>
70 
71 #ifdef GPROF
72 #include <sys/gmon.h>
73 #endif
74 
75 #ifdef HWPMC_HOOKS
76 #include <sys/pmckern.h>
77 #endif
78 
79 #ifdef DEVICE_POLLING
80 extern void hardclock_device_poll(void);
81 #endif /* DEVICE_POLLING */
82 
83 static void initclocks(void *dummy);
84 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
85 
86 /* Spin-lock protecting profiling statistics. */
87 static struct mtx time_lock;
88 
89 static int
90 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
91 {
92 	int error;
93 	long cp_time[CPUSTATES];
94 #ifdef SCTL_MASK32
95 	int i;
96 	unsigned int cp_time32[CPUSTATES];
97 #endif
98 
99 	read_cpu_time(cp_time);
100 #ifdef SCTL_MASK32
101 	if (req->flags & SCTL_MASK32) {
102 		if (!req->oldptr)
103 			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
104 		for (i = 0; i < CPUSTATES; i++)
105 			cp_time32[i] = (unsigned int)cp_time[i];
106 		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
107 	} else
108 #endif
109 	{
110 		if (!req->oldptr)
111 			return SYSCTL_OUT(req, 0, sizeof(cp_time));
112 		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
113 	}
114 	return error;
115 }
116 
117 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
118     0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
119 
120 static long empty[CPUSTATES];
121 
122 static int
123 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
124 {
125 	struct pcpu *pcpu;
126 	int error;
127 	int c;
128 	long *cp_time;
129 #ifdef SCTL_MASK32
130 	unsigned int cp_time32[CPUSTATES];
131 	int i;
132 #endif
133 
134 	if (!req->oldptr) {
135 #ifdef SCTL_MASK32
136 		if (req->flags & SCTL_MASK32)
137 			return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
138 		else
139 #endif
140 			return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
141 	}
142 	for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
143 		if (!CPU_ABSENT(c)) {
144 			pcpu = pcpu_find(c);
145 			cp_time = pcpu->pc_cp_time;
146 		} else {
147 			cp_time = empty;
148 		}
149 #ifdef SCTL_MASK32
150 		if (req->flags & SCTL_MASK32) {
151 			for (i = 0; i < CPUSTATES; i++)
152 				cp_time32[i] = (unsigned int)cp_time[i];
153 			error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
154 		} else
155 #endif
156 			error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
157 	}
158 	return error;
159 }
160 
161 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
162     0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
163 
164 #ifdef DEADLKRES
165 static int slptime_threshold = 1800;
166 static int blktime_threshold = 900;
167 static int sleepfreq = 3;
168 
169 static void
170 deadlkres(void)
171 {
172 	struct proc *p;
173 	struct thread *td;
174 	void *wchan;
175 	int blkticks, slpticks, slptype, tryl, tticks;
176 
177 	tryl = 0;
178 	for (;;) {
179 		blkticks = blktime_threshold * hz;
180 		slpticks = slptime_threshold * hz;
181 
182 		/*
183 		 * Avoid to sleep on the sx_lock in order to avoid a possible
184 		 * priority inversion problem leading to starvation.
185 		 * If the lock can't be held after 100 tries, panic.
186 		 */
187 		if (!sx_try_slock(&allproc_lock)) {
188 			if (tryl > 100)
189 		panic("%s: possible deadlock detected on allproc_lock\n",
190 				    __func__);
191 			tryl++;
192 			pause("allproc_lock deadlkres", sleepfreq * hz);
193 			continue;
194 		}
195 		tryl = 0;
196 		FOREACH_PROC_IN_SYSTEM(p) {
197 			PROC_LOCK(p);
198 			FOREACH_THREAD_IN_PROC(p, td) {
199 				thread_lock(td);
200 				if (TD_ON_LOCK(td)) {
201 
202 					/*
203 					 * The thread should be blocked on a
204 					 * turnstile, simply check if the
205 					 * turnstile channel is in good state.
206 					 */
207 					MPASS(td->td_blocked != NULL);
208 					tticks = ticks - td->td_blktick;
209 					thread_unlock(td);
210 					if (tticks > blkticks) {
211 
212 						/*
213 						 * Accordingly with provided
214 						 * thresholds, this thread is
215 						 * stuck for too long on a
216 						 * turnstile.
217 						 */
218 						PROC_UNLOCK(p);
219 						sx_sunlock(&allproc_lock);
220 	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
221 						    __func__, td, tticks);
222 					}
223 				} else if (TD_IS_SLEEPING(td)) {
224 
225 					/*
226 					 * Check if the thread is sleeping on a
227 					 * lock, otherwise skip the check.
228 					 * Drop the thread lock in order to
229 					 * avoid a LOR with the sleepqueue
230 					 * spinlock.
231 					 */
232 					wchan = td->td_wchan;
233 					tticks = ticks - td->td_slptick;
234 					thread_unlock(td);
235 					slptype = sleepq_type(wchan);
236 					if ((slptype == SLEEPQ_SX ||
237 					    slptype == SLEEPQ_LK) &&
238 					    tticks > slpticks) {
239 
240 						/*
241 						 * Accordingly with provided
242 						 * thresholds, this thread is
243 						 * stuck for too long on a
244 						 * sleepqueue.
245 						 */
246 						PROC_UNLOCK(p);
247 						sx_sunlock(&allproc_lock);
248 	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
249 						    __func__, td, tticks);
250 					}
251 				} else
252 					thread_unlock(td);
253 			}
254 			PROC_UNLOCK(p);
255 		}
256 		sx_sunlock(&allproc_lock);
257 
258 		/* Sleep for sleepfreq seconds. */
259 		pause("deadlkres", sleepfreq * hz);
260 	}
261 }
262 
263 static struct kthread_desc deadlkres_kd = {
264 	"deadlkres",
265 	deadlkres,
266 	(struct thread **)NULL
267 };
268 
269 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
270 
271 SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0, "Deadlock resolver");
272 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
273     &slptime_threshold, 0,
274     "Number of seconds within is valid to sleep on a sleepqueue");
275 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
276     &blktime_threshold, 0,
277     "Number of seconds within is valid to block on a turnstile");
278 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
279     "Number of seconds between any deadlock resolver thread run");
280 #endif	/* DEADLKRES */
281 
282 void
283 read_cpu_time(long *cp_time)
284 {
285 	struct pcpu *pc;
286 	int i, j;
287 
288 	/* Sum up global cp_time[]. */
289 	bzero(cp_time, sizeof(long) * CPUSTATES);
290 	for (i = 0; i <= mp_maxid; i++) {
291 		if (CPU_ABSENT(i))
292 			continue;
293 		pc = pcpu_find(i);
294 		for (j = 0; j < CPUSTATES; j++)
295 			cp_time[j] += pc->pc_cp_time[j];
296 	}
297 }
298 
299 #ifdef SW_WATCHDOG
300 #include <sys/watchdog.h>
301 
302 static int watchdog_ticks;
303 static int watchdog_enabled;
304 static void watchdog_fire(void);
305 static void watchdog_config(void *, u_int, int *);
306 #endif /* SW_WATCHDOG */
307 
308 /*
309  * Clock handling routines.
310  *
311  * This code is written to operate with two timers that run independently of
312  * each other.
313  *
314  * The main timer, running hz times per second, is used to trigger interval
315  * timers, timeouts and rescheduling as needed.
316  *
317  * The second timer handles kernel and user profiling,
318  * and does resource use estimation.  If the second timer is programmable,
319  * it is randomized to avoid aliasing between the two clocks.  For example,
320  * the randomization prevents an adversary from always giving up the cpu
321  * just before its quantum expires.  Otherwise, it would never accumulate
322  * cpu ticks.  The mean frequency of the second timer is stathz.
323  *
324  * If no second timer exists, stathz will be zero; in this case we drive
325  * profiling and statistics off the main clock.  This WILL NOT be accurate;
326  * do not do it unless absolutely necessary.
327  *
328  * The statistics clock may (or may not) be run at a higher rate while
329  * profiling.  This profile clock runs at profhz.  We require that profhz
330  * be an integral multiple of stathz.
331  *
332  * If the statistics clock is running fast, it must be divided by the ratio
333  * profhz/stathz for statistics.  (For profiling, every tick counts.)
334  *
335  * Time-of-day is maintained using a "timecounter", which may or may
336  * not be related to the hardware generating the above mentioned
337  * interrupts.
338  */
339 
340 int	stathz;
341 int	profhz;
342 int	profprocs;
343 int	ticks;
344 int	psratio;
345 
346 /*
347  * Initialize clock frequencies and start both clocks running.
348  */
349 /* ARGSUSED*/
350 static void
351 initclocks(dummy)
352 	void *dummy;
353 {
354 	register int i;
355 
356 	/*
357 	 * Set divisors to 1 (normal case) and let the machine-specific
358 	 * code do its bit.
359 	 */
360 	mtx_init(&time_lock, "time lock", NULL, MTX_SPIN);
361 	cpu_initclocks();
362 
363 	/*
364 	 * Compute profhz/stathz, and fix profhz if needed.
365 	 */
366 	i = stathz ? stathz : hz;
367 	if (profhz == 0)
368 		profhz = i;
369 	psratio = profhz / i;
370 #ifdef SW_WATCHDOG
371 	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
372 #endif
373 }
374 
375 /*
376  * Each time the real-time timer fires, this function is called on all CPUs.
377  * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
378  * the other CPUs in the system need to call this function.
379  */
380 void
381 hardclock_cpu(int usermode)
382 {
383 	struct pstats *pstats;
384 	struct thread *td = curthread;
385 	struct proc *p = td->td_proc;
386 	int flags;
387 
388 	/*
389 	 * Run current process's virtual and profile time, as needed.
390 	 */
391 	pstats = p->p_stats;
392 	flags = 0;
393 	if (usermode &&
394 	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
395 		PROC_SLOCK(p);
396 		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
397 			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
398 		PROC_SUNLOCK(p);
399 	}
400 	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
401 		PROC_SLOCK(p);
402 		if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
403 			flags |= TDF_PROFPEND | TDF_ASTPENDING;
404 		PROC_SUNLOCK(p);
405 	}
406 	thread_lock(td);
407 	sched_tick();
408 	td->td_flags |= flags;
409 	thread_unlock(td);
410 
411 #ifdef	HWPMC_HOOKS
412 	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
413 		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
414 #endif
415 	callout_tick();
416 }
417 
418 /*
419  * The real-time timer, interrupting hz times per second.
420  */
421 void
422 hardclock(int usermode, uintfptr_t pc)
423 {
424 
425 	atomic_add_int((volatile int *)&ticks, 1);
426 	hardclock_cpu(usermode);
427 	tc_ticktock();
428 	/*
429 	 * If no separate statistics clock is available, run it from here.
430 	 *
431 	 * XXX: this only works for UP
432 	 */
433 	if (stathz == 0) {
434 		profclock(usermode, pc);
435 		statclock(usermode);
436 	}
437 #ifdef DEVICE_POLLING
438 	hardclock_device_poll();	/* this is very short and quick */
439 #endif /* DEVICE_POLLING */
440 #ifdef SW_WATCHDOG
441 	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
442 		watchdog_fire();
443 #endif /* SW_WATCHDOG */
444 }
445 
446 /*
447  * Compute number of ticks in the specified amount of time.
448  */
449 int
450 tvtohz(tv)
451 	struct timeval *tv;
452 {
453 	register unsigned long ticks;
454 	register long sec, usec;
455 
456 	/*
457 	 * If the number of usecs in the whole seconds part of the time
458 	 * difference fits in a long, then the total number of usecs will
459 	 * fit in an unsigned long.  Compute the total and convert it to
460 	 * ticks, rounding up and adding 1 to allow for the current tick
461 	 * to expire.  Rounding also depends on unsigned long arithmetic
462 	 * to avoid overflow.
463 	 *
464 	 * Otherwise, if the number of ticks in the whole seconds part of
465 	 * the time difference fits in a long, then convert the parts to
466 	 * ticks separately and add, using similar rounding methods and
467 	 * overflow avoidance.  This method would work in the previous
468 	 * case but it is slightly slower and assumes that hz is integral.
469 	 *
470 	 * Otherwise, round the time difference down to the maximum
471 	 * representable value.
472 	 *
473 	 * If ints have 32 bits, then the maximum value for any timeout in
474 	 * 10ms ticks is 248 days.
475 	 */
476 	sec = tv->tv_sec;
477 	usec = tv->tv_usec;
478 	if (usec < 0) {
479 		sec--;
480 		usec += 1000000;
481 	}
482 	if (sec < 0) {
483 #ifdef DIAGNOSTIC
484 		if (usec > 0) {
485 			sec++;
486 			usec -= 1000000;
487 		}
488 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
489 		       sec, usec);
490 #endif
491 		ticks = 1;
492 	} else if (sec <= LONG_MAX / 1000000)
493 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
494 			/ tick + 1;
495 	else if (sec <= LONG_MAX / hz)
496 		ticks = sec * hz
497 			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
498 	else
499 		ticks = LONG_MAX;
500 	if (ticks > INT_MAX)
501 		ticks = INT_MAX;
502 	return ((int)ticks);
503 }
504 
505 /*
506  * Start profiling on a process.
507  *
508  * Kernel profiling passes proc0 which never exits and hence
509  * keeps the profile clock running constantly.
510  */
511 void
512 startprofclock(p)
513 	register struct proc *p;
514 {
515 
516 	PROC_LOCK_ASSERT(p, MA_OWNED);
517 	if (p->p_flag & P_STOPPROF)
518 		return;
519 	if ((p->p_flag & P_PROFIL) == 0) {
520 		p->p_flag |= P_PROFIL;
521 		mtx_lock_spin(&time_lock);
522 		if (++profprocs == 1)
523 			cpu_startprofclock();
524 		mtx_unlock_spin(&time_lock);
525 	}
526 }
527 
528 /*
529  * Stop profiling on a process.
530  */
531 void
532 stopprofclock(p)
533 	register struct proc *p;
534 {
535 
536 	PROC_LOCK_ASSERT(p, MA_OWNED);
537 	if (p->p_flag & P_PROFIL) {
538 		if (p->p_profthreads != 0) {
539 			p->p_flag |= P_STOPPROF;
540 			while (p->p_profthreads != 0)
541 				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
542 				    "stopprof", 0);
543 			p->p_flag &= ~P_STOPPROF;
544 		}
545 		if ((p->p_flag & P_PROFIL) == 0)
546 			return;
547 		p->p_flag &= ~P_PROFIL;
548 		mtx_lock_spin(&time_lock);
549 		if (--profprocs == 0)
550 			cpu_stopprofclock();
551 		mtx_unlock_spin(&time_lock);
552 	}
553 }
554 
555 /*
556  * Statistics clock.  Updates rusage information and calls the scheduler
557  * to adjust priorities of the active thread.
558  *
559  * This should be called by all active processors.
560  */
561 void
562 statclock(int usermode)
563 {
564 	struct rusage *ru;
565 	struct vmspace *vm;
566 	struct thread *td;
567 	struct proc *p;
568 	long rss;
569 	long *cp_time;
570 
571 	td = curthread;
572 	p = td->td_proc;
573 
574 	cp_time = (long *)PCPU_PTR(cp_time);
575 	if (usermode) {
576 		/*
577 		 * Charge the time as appropriate.
578 		 */
579 		td->td_uticks++;
580 		if (p->p_nice > NZERO)
581 			cp_time[CP_NICE]++;
582 		else
583 			cp_time[CP_USER]++;
584 	} else {
585 		/*
586 		 * Came from kernel mode, so we were:
587 		 * - handling an interrupt,
588 		 * - doing syscall or trap work on behalf of the current
589 		 *   user process, or
590 		 * - spinning in the idle loop.
591 		 * Whichever it is, charge the time as appropriate.
592 		 * Note that we charge interrupts to the current process,
593 		 * regardless of whether they are ``for'' that process,
594 		 * so that we know how much of its real time was spent
595 		 * in ``non-process'' (i.e., interrupt) work.
596 		 */
597 		if ((td->td_pflags & TDP_ITHREAD) ||
598 		    td->td_intr_nesting_level >= 2) {
599 			td->td_iticks++;
600 			cp_time[CP_INTR]++;
601 		} else {
602 			td->td_pticks++;
603 			td->td_sticks++;
604 			if (!TD_IS_IDLETHREAD(td))
605 				cp_time[CP_SYS]++;
606 			else
607 				cp_time[CP_IDLE]++;
608 		}
609 	}
610 
611 	/* Update resource usage integrals and maximums. */
612 	MPASS(p->p_vmspace != NULL);
613 	vm = p->p_vmspace;
614 	ru = &td->td_ru;
615 	ru->ru_ixrss += pgtok(vm->vm_tsize);
616 	ru->ru_idrss += pgtok(vm->vm_dsize);
617 	ru->ru_isrss += pgtok(vm->vm_ssize);
618 	rss = pgtok(vmspace_resident_count(vm));
619 	if (ru->ru_maxrss < rss)
620 		ru->ru_maxrss = rss;
621 	KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
622 	    "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
623 	thread_lock_flags(td, MTX_QUIET);
624 	sched_clock(td);
625 	thread_unlock(td);
626 }
627 
628 void
629 profclock(int usermode, uintfptr_t pc)
630 {
631 	struct thread *td;
632 #ifdef GPROF
633 	struct gmonparam *g;
634 	uintfptr_t i;
635 #endif
636 
637 	td = curthread;
638 	if (usermode) {
639 		/*
640 		 * Came from user mode; CPU was in user state.
641 		 * If this process is being profiled, record the tick.
642 		 * if there is no related user location yet, don't
643 		 * bother trying to count it.
644 		 */
645 		if (td->td_proc->p_flag & P_PROFIL)
646 			addupc_intr(td, pc, 1);
647 	}
648 #ifdef GPROF
649 	else {
650 		/*
651 		 * Kernel statistics are just like addupc_intr, only easier.
652 		 */
653 		g = &_gmonparam;
654 		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
655 			i = PC_TO_I(g, pc);
656 			if (i < g->textsize) {
657 				KCOUNT(g, i)++;
658 			}
659 		}
660 	}
661 #endif
662 }
663 
664 /*
665  * Return information about system clocks.
666  */
667 static int
668 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
669 {
670 	struct clockinfo clkinfo;
671 	/*
672 	 * Construct clockinfo structure.
673 	 */
674 	bzero(&clkinfo, sizeof(clkinfo));
675 	clkinfo.hz = hz;
676 	clkinfo.tick = tick;
677 	clkinfo.profhz = profhz;
678 	clkinfo.stathz = stathz ? stathz : hz;
679 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
680 }
681 
682 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
683 	CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
684 	0, 0, sysctl_kern_clockrate, "S,clockinfo",
685 	"Rate and period of various kernel clocks");
686 
687 #ifdef SW_WATCHDOG
688 
689 static void
690 watchdog_config(void *unused __unused, u_int cmd, int *error)
691 {
692 	u_int u;
693 
694 	u = cmd & WD_INTERVAL;
695 	if (u >= WD_TO_1SEC) {
696 		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
697 		watchdog_enabled = 1;
698 		*error = 0;
699 	} else {
700 		watchdog_enabled = 0;
701 	}
702 }
703 
704 /*
705  * Handle a watchdog timeout by dumping interrupt information and
706  * then either dropping to DDB or panicking.
707  */
708 static void
709 watchdog_fire(void)
710 {
711 	int nintr;
712 	u_int64_t inttotal;
713 	u_long *curintr;
714 	char *curname;
715 
716 	curintr = intrcnt;
717 	curname = intrnames;
718 	inttotal = 0;
719 	nintr = eintrcnt - intrcnt;
720 
721 	printf("interrupt                   total\n");
722 	while (--nintr >= 0) {
723 		if (*curintr)
724 			printf("%-12s %20lu\n", curname, *curintr);
725 		curname += strlen(curname) + 1;
726 		inttotal += *curintr++;
727 	}
728 	printf("Total        %20ju\n", (uintmax_t)inttotal);
729 
730 #if defined(KDB) && !defined(KDB_UNATTENDED)
731 	kdb_backtrace();
732 	kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
733 #else
734 	panic("watchdog timeout");
735 #endif
736 }
737 
738 #endif /* SW_WATCHDOG */
739