1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39 * $FreeBSD$ 40 */ 41 42 #include "opt_ntp.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/dkstat.h> 47 #include <sys/callout.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/ktr.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/resourcevar.h> 54 #include <sys/sched.h> 55 #include <sys/signalvar.h> 56 #include <sys/smp.h> 57 #include <vm/vm.h> 58 #include <vm/pmap.h> 59 #include <vm/vm_map.h> 60 #include <sys/sysctl.h> 61 #include <sys/bus.h> 62 #include <sys/interrupt.h> 63 #include <sys/timetc.h> 64 65 #include <machine/cpu.h> 66 #include <machine/limits.h> 67 68 #ifdef GPROF 69 #include <sys/gmon.h> 70 #endif 71 72 #ifdef DEVICE_POLLING 73 extern void init_device_poll(void); 74 extern void hardclock_device_poll(void); 75 #endif /* DEVICE_POLLING */ 76 77 static void initclocks(void *dummy); 78 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 79 80 /* Some of these don't belong here, but it's easiest to concentrate them. */ 81 long cp_time[CPUSTATES]; 82 83 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time), 84 "LU", "CPU time statistics"); 85 86 long tk_cancc; 87 long tk_nin; 88 long tk_nout; 89 long tk_rawcc; 90 91 /* 92 * Clock handling routines. 93 * 94 * This code is written to operate with two timers that run independently of 95 * each other. 96 * 97 * The main timer, running hz times per second, is used to trigger interval 98 * timers, timeouts and rescheduling as needed. 99 * 100 * The second timer handles kernel and user profiling, 101 * and does resource use estimation. If the second timer is programmable, 102 * it is randomized to avoid aliasing between the two clocks. For example, 103 * the randomization prevents an adversary from always giving up the cpu 104 * just before its quantum expires. Otherwise, it would never accumulate 105 * cpu ticks. The mean frequency of the second timer is stathz. 106 * 107 * If no second timer exists, stathz will be zero; in this case we drive 108 * profiling and statistics off the main clock. This WILL NOT be accurate; 109 * do not do it unless absolutely necessary. 110 * 111 * The statistics clock may (or may not) be run at a higher rate while 112 * profiling. This profile clock runs at profhz. We require that profhz 113 * be an integral multiple of stathz. 114 * 115 * If the statistics clock is running fast, it must be divided by the ratio 116 * profhz/stathz for statistics. (For profiling, every tick counts.) 117 * 118 * Time-of-day is maintained using a "timecounter", which may or may 119 * not be related to the hardware generating the above mentioned 120 * interrupts. 121 */ 122 123 int stathz; 124 int profhz; 125 static int profprocs; 126 int ticks; 127 static int psdiv, pscnt; /* prof => stat divider */ 128 int psratio; /* ratio: prof / stat */ 129 130 /* 131 * Initialize clock frequencies and start both clocks running. 132 */ 133 /* ARGSUSED*/ 134 static void 135 initclocks(dummy) 136 void *dummy; 137 { 138 register int i; 139 140 /* 141 * Set divisors to 1 (normal case) and let the machine-specific 142 * code do its bit. 143 */ 144 psdiv = pscnt = 1; 145 cpu_initclocks(); 146 147 #ifdef DEVICE_POLLING 148 init_device_poll(); 149 #endif 150 /* 151 * Compute profhz/stathz, and fix profhz if needed. 152 */ 153 i = stathz ? stathz : hz; 154 if (profhz == 0) 155 profhz = i; 156 psratio = profhz / i; 157 } 158 159 /* 160 * Each time the real-time timer fires, this function is called on all CPUs 161 * with each CPU passing in its curthread as the first argument. If possible 162 * a nice optimization in the future would be to allow the CPU receiving the 163 * actual real-time timer interrupt to call this function on behalf of the 164 * other CPUs rather than sending an IPI to all other CPUs so that they 165 * can call this function. Note that hardclock() calls hardclock_process() 166 * for the CPU receiving the timer interrupt, so only the other CPUs in the 167 * system need to call this function (or have it called on their behalf. 168 */ 169 void 170 hardclock_process(td, user) 171 struct thread *td; 172 int user; 173 { 174 struct pstats *pstats; 175 struct proc *p = td->td_proc; 176 177 /* 178 * Run current process's virtual and profile time, as needed. 179 */ 180 mtx_assert(&sched_lock, MA_OWNED); 181 if (p->p_flag & P_KSES) { 182 /* XXXKSE What to do? */ 183 } else { 184 pstats = p->p_stats; 185 if (user && 186 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 187 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) { 188 p->p_sflag |= PS_ALRMPEND; 189 td->td_kse->ke_flags |= KEF_ASTPENDING; 190 } 191 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 192 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) { 193 p->p_sflag |= PS_PROFPEND; 194 td->td_kse->ke_flags |= KEF_ASTPENDING; 195 } 196 } 197 } 198 199 /* 200 * The real-time timer, interrupting hz times per second. 201 */ 202 void 203 hardclock(frame) 204 register struct clockframe *frame; 205 { 206 int need_softclock = 0; 207 208 CTR0(KTR_CLK, "hardclock fired"); 209 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 210 hardclock_process(curthread, CLKF_USERMODE(frame)); 211 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 212 213 tc_ticktock(); 214 /* 215 * If no separate statistics clock is available, run it from here. 216 * 217 * XXX: this only works for UP 218 */ 219 if (stathz == 0) 220 statclock(frame); 221 222 #ifdef DEVICE_POLLING 223 hardclock_device_poll(); /* this is very short and quick */ 224 #endif /* DEVICE_POLLING */ 225 226 /* 227 * Process callouts at a very low cpu priority, so we don't keep the 228 * relatively high clock interrupt priority any longer than necessary. 229 */ 230 mtx_lock_spin_flags(&callout_lock, MTX_QUIET); 231 ticks++; 232 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) { 233 need_softclock = 1; 234 } else if (softticks + 1 == ticks) 235 ++softticks; 236 mtx_unlock_spin_flags(&callout_lock, MTX_QUIET); 237 238 /* 239 * swi_sched acquires sched_lock, so we don't want to call it with 240 * callout_lock held; incorrect locking order. 241 */ 242 if (need_softclock) 243 swi_sched(softclock_ih, 0); 244 } 245 246 /* 247 * Compute number of ticks in the specified amount of time. 248 */ 249 int 250 tvtohz(tv) 251 struct timeval *tv; 252 { 253 register unsigned long ticks; 254 register long sec, usec; 255 256 /* 257 * If the number of usecs in the whole seconds part of the time 258 * difference fits in a long, then the total number of usecs will 259 * fit in an unsigned long. Compute the total and convert it to 260 * ticks, rounding up and adding 1 to allow for the current tick 261 * to expire. Rounding also depends on unsigned long arithmetic 262 * to avoid overflow. 263 * 264 * Otherwise, if the number of ticks in the whole seconds part of 265 * the time difference fits in a long, then convert the parts to 266 * ticks separately and add, using similar rounding methods and 267 * overflow avoidance. This method would work in the previous 268 * case but it is slightly slower and assumes that hz is integral. 269 * 270 * Otherwise, round the time difference down to the maximum 271 * representable value. 272 * 273 * If ints have 32 bits, then the maximum value for any timeout in 274 * 10ms ticks is 248 days. 275 */ 276 sec = tv->tv_sec; 277 usec = tv->tv_usec; 278 if (usec < 0) { 279 sec--; 280 usec += 1000000; 281 } 282 if (sec < 0) { 283 #ifdef DIAGNOSTIC 284 if (usec > 0) { 285 sec++; 286 usec -= 1000000; 287 } 288 printf("tvotohz: negative time difference %ld sec %ld usec\n", 289 sec, usec); 290 #endif 291 ticks = 1; 292 } else if (sec <= LONG_MAX / 1000000) 293 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 294 / tick + 1; 295 else if (sec <= LONG_MAX / hz) 296 ticks = sec * hz 297 + ((unsigned long)usec + (tick - 1)) / tick + 1; 298 else 299 ticks = LONG_MAX; 300 if (ticks > INT_MAX) 301 ticks = INT_MAX; 302 return ((int)ticks); 303 } 304 305 /* 306 * Start profiling on a process. 307 * 308 * Kernel profiling passes proc0 which never exits and hence 309 * keeps the profile clock running constantly. 310 */ 311 void 312 startprofclock(p) 313 register struct proc *p; 314 { 315 int s; 316 317 /* 318 * XXX; Right now sched_lock protects statclock(), but perhaps 319 * it should be protected later on by a time_lock, which would 320 * cover psdiv, etc. as well. 321 */ 322 mtx_lock_spin(&sched_lock); 323 if (p->p_sflag & PS_STOPPROF) { 324 mtx_unlock_spin(&sched_lock); 325 return; 326 } 327 if ((p->p_sflag & PS_PROFIL) == 0) { 328 p->p_sflag |= PS_PROFIL; 329 if (++profprocs == 1 && stathz != 0) { 330 s = splstatclock(); 331 psdiv = pscnt = psratio; 332 setstatclockrate(profhz); 333 splx(s); 334 } 335 } 336 mtx_unlock_spin(&sched_lock); 337 } 338 339 /* 340 * Stop profiling on a process. 341 */ 342 void 343 stopprofclock(p) 344 register struct proc *p; 345 { 346 int s; 347 348 PROC_LOCK_ASSERT(p, MA_OWNED); 349 350 retry: 351 mtx_lock_spin(&sched_lock); 352 if (p->p_sflag & PS_PROFIL) { 353 if (p->p_profthreads) { 354 p->p_sflag |= PS_STOPPROF; 355 mtx_unlock_spin(&sched_lock); 356 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE, 357 "stopprof", NULL); 358 goto retry; 359 } 360 p->p_sflag &= ~(PS_PROFIL|PS_STOPPROF); 361 if (--profprocs == 0 && stathz != 0) { 362 s = splstatclock(); 363 psdiv = pscnt = 1; 364 setstatclockrate(stathz); 365 splx(s); 366 } 367 } 368 mtx_unlock_spin(&sched_lock); 369 } 370 371 /* 372 * Do process and kernel statistics. Most of the statistics are only 373 * used by user-level statistics programs. The main exceptions are 374 * ke->ke_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu. This function 375 * should be called by all CPUs in the system for each statistics clock 376 * interrupt. See the description of hardclock_process for more detail on 377 * this function's relationship to statclock. 378 */ 379 void 380 statclock_process(struct thread *td, register_t pc, int user) 381 { 382 #ifdef GPROF 383 struct gmonparam *g; 384 int i; 385 #endif 386 struct pstats *pstats; 387 long rss; 388 struct rusage *ru; 389 struct vmspace *vm; 390 struct proc *p = td->td_proc; 391 392 mtx_assert(&sched_lock, MA_OWNED); 393 if (user) { 394 /* 395 * Came from user mode; CPU was in user state. 396 * If this process is being profiled, record the tick. 397 */ 398 if (p->p_sflag & PS_PROFIL) { 399 /* Only when thread is not in transition */ 400 if (!(td->td_flags & TDF_UPCALLING)) 401 addupc_intr(td, pc, 1); 402 } 403 if (pscnt < psdiv) 404 return; 405 /* 406 * Charge the time as appropriate. 407 */ 408 if (p->p_flag & P_KSES) 409 thread_statclock(1); 410 /* 411 td->td_uticks++; 412 */ 413 p->p_uticks++; 414 if (td->td_ksegrp->kg_nice > NZERO) 415 cp_time[CP_NICE]++; 416 else 417 cp_time[CP_USER]++; 418 } else { 419 #ifdef GPROF 420 /* 421 * Kernel statistics are just like addupc_intr, only easier. 422 */ 423 g = &_gmonparam; 424 if (g->state == GMON_PROF_ON) { 425 i = pc - g->lowpc; 426 if (i < g->textsize) { 427 i /= HISTFRACTION * sizeof(*g->kcount); 428 g->kcount[i]++; 429 } 430 } 431 #endif 432 if (pscnt < psdiv) 433 return; 434 /* 435 * Came from kernel mode, so we were: 436 * - handling an interrupt, 437 * - doing syscall or trap work on behalf of the current 438 * user process, or 439 * - spinning in the idle loop. 440 * Whichever it is, charge the time as appropriate. 441 * Note that we charge interrupts to the current process, 442 * regardless of whether they are ``for'' that process, 443 * so that we know how much of its real time was spent 444 * in ``non-process'' (i.e., interrupt) work. 445 */ 446 if ((td->td_ithd != NULL) || td->td_intr_nesting_level >= 2) { 447 p->p_iticks++; 448 /* 449 td->td_iticks++; 450 */ 451 cp_time[CP_INTR]++; 452 } else { 453 if (p->p_flag & P_KSES) 454 thread_statclock(0); 455 td->td_sticks++; 456 p->p_sticks++; 457 if (p != PCPU_GET(idlethread)->td_proc) 458 cp_time[CP_SYS]++; 459 else 460 cp_time[CP_IDLE]++; 461 } 462 } 463 464 sched_clock(td); 465 466 /* Update resource usage integrals and maximums. */ 467 if ((pstats = p->p_stats) != NULL && 468 (ru = &pstats->p_ru) != NULL && 469 (vm = p->p_vmspace) != NULL) { 470 ru->ru_ixrss += pgtok(vm->vm_tsize); 471 ru->ru_idrss += pgtok(vm->vm_dsize); 472 ru->ru_isrss += pgtok(vm->vm_ssize); 473 rss = pgtok(vmspace_resident_count(vm)); 474 if (ru->ru_maxrss < rss) 475 ru->ru_maxrss = rss; 476 } 477 } 478 479 /* 480 * Statistics clock. Grab profile sample, and if divider reaches 0, 481 * do process and kernel statistics. Most of the statistics are only 482 * used by user-level statistics programs. The main exceptions are 483 * ke->ke_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu. 484 */ 485 void 486 statclock(frame) 487 register struct clockframe *frame; 488 { 489 490 CTR0(KTR_CLK, "statclock fired"); 491 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 492 if (--pscnt == 0) 493 pscnt = psdiv; 494 statclock_process(curthread, CLKF_PC(frame), CLKF_USERMODE(frame)); 495 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 496 } 497 498 /* 499 * Return information about system clocks. 500 */ 501 static int 502 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 503 { 504 struct clockinfo clkinfo; 505 /* 506 * Construct clockinfo structure. 507 */ 508 bzero(&clkinfo, sizeof(clkinfo)); 509 clkinfo.hz = hz; 510 clkinfo.tick = tick; 511 clkinfo.profhz = profhz; 512 clkinfo.stathz = stathz ? stathz : hz; 513 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 514 } 515 516 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 517 0, 0, sysctl_kern_clockrate, "S,clockinfo", 518 "Rate and period of various kernel clocks"); 519