1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_kdb.h" 41 #include "opt_device_polling.h" 42 #include "opt_hwpmc_hooks.h" 43 #include "opt_ntp.h" 44 #include "opt_watchdog.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/callout.h> 49 #include <sys/kdb.h> 50 #include <sys/kernel.h> 51 #include <sys/kthread.h> 52 #include <sys/ktr.h> 53 #include <sys/lock.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/resource.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sched.h> 59 #include <sys/signalvar.h> 60 #include <sys/sleepqueue.h> 61 #include <sys/smp.h> 62 #include <vm/vm.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <sys/sysctl.h> 66 #include <sys/bus.h> 67 #include <sys/interrupt.h> 68 #include <sys/limits.h> 69 #include <sys/timetc.h> 70 71 #ifdef GPROF 72 #include <sys/gmon.h> 73 #endif 74 75 #ifdef HWPMC_HOOKS 76 #include <sys/pmckern.h> 77 #endif 78 79 #ifdef DEVICE_POLLING 80 extern void hardclock_device_poll(void); 81 #endif /* DEVICE_POLLING */ 82 83 static void initclocks(void *dummy); 84 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 85 86 /* Spin-lock protecting profiling statistics. */ 87 static struct mtx time_lock; 88 89 static int 90 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS) 91 { 92 int error; 93 long cp_time[CPUSTATES]; 94 #ifdef SCTL_MASK32 95 int i; 96 unsigned int cp_time32[CPUSTATES]; 97 #endif 98 99 read_cpu_time(cp_time); 100 #ifdef SCTL_MASK32 101 if (req->flags & SCTL_MASK32) { 102 if (!req->oldptr) 103 return SYSCTL_OUT(req, 0, sizeof(cp_time32)); 104 for (i = 0; i < CPUSTATES; i++) 105 cp_time32[i] = (unsigned int)cp_time[i]; 106 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 107 } else 108 #endif 109 { 110 if (!req->oldptr) 111 return SYSCTL_OUT(req, 0, sizeof(cp_time)); 112 error = SYSCTL_OUT(req, cp_time, sizeof(cp_time)); 113 } 114 return error; 115 } 116 117 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 118 0,0, sysctl_kern_cp_time, "LU", "CPU time statistics"); 119 120 static long empty[CPUSTATES]; 121 122 static int 123 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS) 124 { 125 struct pcpu *pcpu; 126 int error; 127 int c; 128 long *cp_time; 129 #ifdef SCTL_MASK32 130 unsigned int cp_time32[CPUSTATES]; 131 int i; 132 #endif 133 134 if (!req->oldptr) { 135 #ifdef SCTL_MASK32 136 if (req->flags & SCTL_MASK32) 137 return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1)); 138 else 139 #endif 140 return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1)); 141 } 142 for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) { 143 if (!CPU_ABSENT(c)) { 144 pcpu = pcpu_find(c); 145 cp_time = pcpu->pc_cp_time; 146 } else { 147 cp_time = empty; 148 } 149 #ifdef SCTL_MASK32 150 if (req->flags & SCTL_MASK32) { 151 for (i = 0; i < CPUSTATES; i++) 152 cp_time32[i] = (unsigned int)cp_time[i]; 153 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 154 } else 155 #endif 156 error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES); 157 } 158 return error; 159 } 160 161 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE, 162 0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics"); 163 164 #ifdef DEADLKRES 165 static const char *blessed[] = { 166 "getblk", 167 "so_snd_sx", 168 "so_rcv_sx", 169 NULL 170 }; 171 static int slptime_threshold = 1800; 172 static int blktime_threshold = 900; 173 static int sleepfreq = 3; 174 175 static void 176 deadlkres(void) 177 { 178 struct proc *p; 179 struct thread *td; 180 void *wchan; 181 int blkticks, i, slpticks, slptype, tryl, tticks; 182 183 tryl = 0; 184 for (;;) { 185 blkticks = blktime_threshold * hz; 186 slpticks = slptime_threshold * hz; 187 188 /* 189 * Avoid to sleep on the sx_lock in order to avoid a possible 190 * priority inversion problem leading to starvation. 191 * If the lock can't be held after 100 tries, panic. 192 */ 193 if (!sx_try_slock(&allproc_lock)) { 194 if (tryl > 100) 195 panic("%s: possible deadlock detected on allproc_lock\n", 196 __func__); 197 tryl++; 198 pause("allproc", sleepfreq * hz); 199 continue; 200 } 201 tryl = 0; 202 FOREACH_PROC_IN_SYSTEM(p) { 203 PROC_LOCK(p); 204 if (p->p_state == PRS_NEW) { 205 PROC_UNLOCK(p); 206 continue; 207 } 208 FOREACH_THREAD_IN_PROC(p, td) { 209 210 /* 211 * Once a thread is found in "interesting" 212 * state a possible ticks wrap-up needs to be 213 * checked. 214 */ 215 thread_lock(td); 216 if (TD_ON_LOCK(td) && ticks < td->td_blktick) { 217 218 /* 219 * The thread should be blocked on a 220 * turnstile, simply check if the 221 * turnstile channel is in good state. 222 */ 223 MPASS(td->td_blocked != NULL); 224 225 tticks = ticks - td->td_blktick; 226 thread_unlock(td); 227 if (tticks > blkticks) { 228 229 /* 230 * Accordingly with provided 231 * thresholds, this thread is 232 * stuck for too long on a 233 * turnstile. 234 */ 235 PROC_UNLOCK(p); 236 sx_sunlock(&allproc_lock); 237 panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", 238 __func__, td, tticks); 239 } 240 } else if (TD_IS_SLEEPING(td) && 241 TD_ON_SLEEPQ(td) && 242 ticks < td->td_blktick) { 243 244 /* 245 * Check if the thread is sleeping on a 246 * lock, otherwise skip the check. 247 * Drop the thread lock in order to 248 * avoid a LOR with the sleepqueue 249 * spinlock. 250 */ 251 wchan = td->td_wchan; 252 tticks = ticks - td->td_slptick; 253 thread_unlock(td); 254 slptype = sleepq_type(wchan); 255 if ((slptype == SLEEPQ_SX || 256 slptype == SLEEPQ_LK) && 257 tticks > slpticks) { 258 259 /* 260 * Accordingly with provided 261 * thresholds, this thread is 262 * stuck for too long on a 263 * sleepqueue. 264 * However, being on a 265 * sleepqueue, we might still 266 * check for the blessed 267 * list. 268 */ 269 tryl = 0; 270 for (i = 0; blessed[i] != NULL; 271 i++) { 272 if (!strcmp(blessed[i], 273 td->td_wmesg)) { 274 tryl = 1; 275 break; 276 } 277 } 278 if (tryl != 0) { 279 tryl = 0; 280 continue; 281 } 282 PROC_UNLOCK(p); 283 sx_sunlock(&allproc_lock); 284 panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", 285 __func__, td, tticks); 286 } 287 } else 288 thread_unlock(td); 289 } 290 PROC_UNLOCK(p); 291 } 292 sx_sunlock(&allproc_lock); 293 294 /* Sleep for sleepfreq seconds. */ 295 pause("-", sleepfreq * hz); 296 } 297 } 298 299 static struct kthread_desc deadlkres_kd = { 300 "deadlkres", 301 deadlkres, 302 (struct thread **)NULL 303 }; 304 305 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd); 306 307 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0, 308 "Deadlock resolver"); 309 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW, 310 &slptime_threshold, 0, 311 "Number of seconds within is valid to sleep on a sleepqueue"); 312 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW, 313 &blktime_threshold, 0, 314 "Number of seconds within is valid to block on a turnstile"); 315 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0, 316 "Number of seconds between any deadlock resolver thread run"); 317 #endif /* DEADLKRES */ 318 319 void 320 read_cpu_time(long *cp_time) 321 { 322 struct pcpu *pc; 323 int i, j; 324 325 /* Sum up global cp_time[]. */ 326 bzero(cp_time, sizeof(long) * CPUSTATES); 327 CPU_FOREACH(i) { 328 pc = pcpu_find(i); 329 for (j = 0; j < CPUSTATES; j++) 330 cp_time[j] += pc->pc_cp_time[j]; 331 } 332 } 333 334 #ifdef SW_WATCHDOG 335 #include <sys/watchdog.h> 336 337 static int watchdog_ticks; 338 static int watchdog_enabled; 339 static void watchdog_fire(void); 340 static void watchdog_config(void *, u_int, int *); 341 #endif /* SW_WATCHDOG */ 342 343 /* 344 * Clock handling routines. 345 * 346 * This code is written to operate with two timers that run independently of 347 * each other. 348 * 349 * The main timer, running hz times per second, is used to trigger interval 350 * timers, timeouts and rescheduling as needed. 351 * 352 * The second timer handles kernel and user profiling, 353 * and does resource use estimation. If the second timer is programmable, 354 * it is randomized to avoid aliasing between the two clocks. For example, 355 * the randomization prevents an adversary from always giving up the cpu 356 * just before its quantum expires. Otherwise, it would never accumulate 357 * cpu ticks. The mean frequency of the second timer is stathz. 358 * 359 * If no second timer exists, stathz will be zero; in this case we drive 360 * profiling and statistics off the main clock. This WILL NOT be accurate; 361 * do not do it unless absolutely necessary. 362 * 363 * The statistics clock may (or may not) be run at a higher rate while 364 * profiling. This profile clock runs at profhz. We require that profhz 365 * be an integral multiple of stathz. 366 * 367 * If the statistics clock is running fast, it must be divided by the ratio 368 * profhz/stathz for statistics. (For profiling, every tick counts.) 369 * 370 * Time-of-day is maintained using a "timecounter", which may or may 371 * not be related to the hardware generating the above mentioned 372 * interrupts. 373 */ 374 375 int stathz; 376 int profhz; 377 int profprocs; 378 int ticks; 379 int psratio; 380 381 static DPCPU_DEFINE(int, pcputicks); /* Per-CPU version of ticks. */ 382 static int global_hardclock_run = 0; 383 384 /* 385 * Initialize clock frequencies and start both clocks running. 386 */ 387 /* ARGSUSED*/ 388 static void 389 initclocks(dummy) 390 void *dummy; 391 { 392 register int i; 393 394 /* 395 * Set divisors to 1 (normal case) and let the machine-specific 396 * code do its bit. 397 */ 398 mtx_init(&time_lock, "time lock", NULL, MTX_DEF); 399 cpu_initclocks(); 400 401 /* 402 * Compute profhz/stathz, and fix profhz if needed. 403 */ 404 i = stathz ? stathz : hz; 405 if (profhz == 0) 406 profhz = i; 407 psratio = profhz / i; 408 #ifdef SW_WATCHDOG 409 EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0); 410 #endif 411 } 412 413 /* 414 * Each time the real-time timer fires, this function is called on all CPUs. 415 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only 416 * the other CPUs in the system need to call this function. 417 */ 418 void 419 hardclock_cpu(int usermode) 420 { 421 struct pstats *pstats; 422 struct thread *td = curthread; 423 struct proc *p = td->td_proc; 424 int flags; 425 426 /* 427 * Run current process's virtual and profile time, as needed. 428 */ 429 pstats = p->p_stats; 430 flags = 0; 431 if (usermode && 432 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) { 433 PROC_SLOCK(p); 434 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 435 flags |= TDF_ALRMPEND | TDF_ASTPENDING; 436 PROC_SUNLOCK(p); 437 } 438 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) { 439 PROC_SLOCK(p); 440 if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 441 flags |= TDF_PROFPEND | TDF_ASTPENDING; 442 PROC_SUNLOCK(p); 443 } 444 thread_lock(td); 445 sched_tick(1); 446 td->td_flags |= flags; 447 thread_unlock(td); 448 449 #ifdef HWPMC_HOOKS 450 if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid))) 451 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL); 452 #endif 453 callout_tick(); 454 } 455 456 /* 457 * The real-time timer, interrupting hz times per second. 458 */ 459 void 460 hardclock(int usermode, uintfptr_t pc) 461 { 462 463 atomic_add_int((volatile int *)&ticks, 1); 464 hardclock_cpu(usermode); 465 tc_ticktock(1); 466 cpu_tick_calibration(); 467 /* 468 * If no separate statistics clock is available, run it from here. 469 * 470 * XXX: this only works for UP 471 */ 472 if (stathz == 0) { 473 profclock(usermode, pc); 474 statclock(usermode); 475 } 476 #ifdef DEVICE_POLLING 477 hardclock_device_poll(); /* this is very short and quick */ 478 #endif /* DEVICE_POLLING */ 479 #ifdef SW_WATCHDOG 480 if (watchdog_enabled > 0 && --watchdog_ticks <= 0) 481 watchdog_fire(); 482 #endif /* SW_WATCHDOG */ 483 } 484 485 void 486 hardclock_anycpu(int cnt, int usermode) 487 { 488 struct pstats *pstats; 489 struct thread *td = curthread; 490 struct proc *p = td->td_proc; 491 int *t = DPCPU_PTR(pcputicks); 492 int flags, global, newticks; 493 #ifdef SW_WATCHDOG 494 int i; 495 #endif /* SW_WATCHDOG */ 496 497 /* 498 * Update per-CPU and possibly global ticks values. 499 */ 500 *t += cnt; 501 do { 502 global = ticks; 503 newticks = *t - global; 504 if (newticks <= 0) { 505 if (newticks < -1) 506 *t = global - 1; 507 newticks = 0; 508 break; 509 } 510 } while (!atomic_cmpset_int(&ticks, global, *t)); 511 512 /* 513 * Run current process's virtual and profile time, as needed. 514 */ 515 pstats = p->p_stats; 516 flags = 0; 517 if (usermode && 518 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) { 519 PROC_SLOCK(p); 520 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], 521 tick * cnt) == 0) 522 flags |= TDF_ALRMPEND | TDF_ASTPENDING; 523 PROC_SUNLOCK(p); 524 } 525 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) { 526 PROC_SLOCK(p); 527 if (itimerdecr(&pstats->p_timer[ITIMER_PROF], 528 tick * cnt) == 0) 529 flags |= TDF_PROFPEND | TDF_ASTPENDING; 530 PROC_SUNLOCK(p); 531 } 532 thread_lock(td); 533 sched_tick(cnt); 534 td->td_flags |= flags; 535 thread_unlock(td); 536 537 #ifdef HWPMC_HOOKS 538 if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid))) 539 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL); 540 #endif 541 callout_tick(); 542 /* We are in charge to handle this tick duty. */ 543 if (newticks > 0) { 544 /* Dangerous and no need to call these things concurrently. */ 545 if (atomic_cmpset_acq_int(&global_hardclock_run, 0, 1)) { 546 tc_ticktock(newticks); 547 #ifdef DEVICE_POLLING 548 /* This is very short and quick. */ 549 hardclock_device_poll(); 550 #endif /* DEVICE_POLLING */ 551 atomic_store_rel_int(&global_hardclock_run, 0); 552 } 553 #ifdef SW_WATCHDOG 554 if (watchdog_enabled > 0) { 555 i = atomic_fetchadd_int(&watchdog_ticks, -newticks); 556 if (i > 0 && i <= newticks) 557 watchdog_fire(); 558 } 559 #endif /* SW_WATCHDOG */ 560 } 561 if (curcpu == CPU_FIRST()) 562 cpu_tick_calibration(); 563 } 564 565 void 566 hardclock_sync(int cpu) 567 { 568 int *t = DPCPU_ID_PTR(cpu, pcputicks); 569 570 *t = ticks; 571 } 572 573 /* 574 * Compute number of ticks in the specified amount of time. 575 */ 576 int 577 tvtohz(tv) 578 struct timeval *tv; 579 { 580 register unsigned long ticks; 581 register long sec, usec; 582 583 /* 584 * If the number of usecs in the whole seconds part of the time 585 * difference fits in a long, then the total number of usecs will 586 * fit in an unsigned long. Compute the total and convert it to 587 * ticks, rounding up and adding 1 to allow for the current tick 588 * to expire. Rounding also depends on unsigned long arithmetic 589 * to avoid overflow. 590 * 591 * Otherwise, if the number of ticks in the whole seconds part of 592 * the time difference fits in a long, then convert the parts to 593 * ticks separately and add, using similar rounding methods and 594 * overflow avoidance. This method would work in the previous 595 * case but it is slightly slower and assumes that hz is integral. 596 * 597 * Otherwise, round the time difference down to the maximum 598 * representable value. 599 * 600 * If ints have 32 bits, then the maximum value for any timeout in 601 * 10ms ticks is 248 days. 602 */ 603 sec = tv->tv_sec; 604 usec = tv->tv_usec; 605 if (usec < 0) { 606 sec--; 607 usec += 1000000; 608 } 609 if (sec < 0) { 610 #ifdef DIAGNOSTIC 611 if (usec > 0) { 612 sec++; 613 usec -= 1000000; 614 } 615 printf("tvotohz: negative time difference %ld sec %ld usec\n", 616 sec, usec); 617 #endif 618 ticks = 1; 619 } else if (sec <= LONG_MAX / 1000000) 620 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 621 / tick + 1; 622 else if (sec <= LONG_MAX / hz) 623 ticks = sec * hz 624 + ((unsigned long)usec + (tick - 1)) / tick + 1; 625 else 626 ticks = LONG_MAX; 627 if (ticks > INT_MAX) 628 ticks = INT_MAX; 629 return ((int)ticks); 630 } 631 632 /* 633 * Start profiling on a process. 634 * 635 * Kernel profiling passes proc0 which never exits and hence 636 * keeps the profile clock running constantly. 637 */ 638 void 639 startprofclock(p) 640 register struct proc *p; 641 { 642 643 PROC_LOCK_ASSERT(p, MA_OWNED); 644 if (p->p_flag & P_STOPPROF) 645 return; 646 if ((p->p_flag & P_PROFIL) == 0) { 647 p->p_flag |= P_PROFIL; 648 mtx_lock(&time_lock); 649 if (++profprocs == 1) 650 cpu_startprofclock(); 651 mtx_unlock(&time_lock); 652 } 653 } 654 655 /* 656 * Stop profiling on a process. 657 */ 658 void 659 stopprofclock(p) 660 register struct proc *p; 661 { 662 663 PROC_LOCK_ASSERT(p, MA_OWNED); 664 if (p->p_flag & P_PROFIL) { 665 if (p->p_profthreads != 0) { 666 p->p_flag |= P_STOPPROF; 667 while (p->p_profthreads != 0) 668 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE, 669 "stopprof", 0); 670 p->p_flag &= ~P_STOPPROF; 671 } 672 if ((p->p_flag & P_PROFIL) == 0) 673 return; 674 p->p_flag &= ~P_PROFIL; 675 mtx_lock(&time_lock); 676 if (--profprocs == 0) 677 cpu_stopprofclock(); 678 mtx_unlock(&time_lock); 679 } 680 } 681 682 /* 683 * Statistics clock. Updates rusage information and calls the scheduler 684 * to adjust priorities of the active thread. 685 * 686 * This should be called by all active processors. 687 */ 688 void 689 statclock(int usermode) 690 { 691 struct rusage *ru; 692 struct vmspace *vm; 693 struct thread *td; 694 struct proc *p; 695 long rss; 696 long *cp_time; 697 698 td = curthread; 699 p = td->td_proc; 700 701 cp_time = (long *)PCPU_PTR(cp_time); 702 if (usermode) { 703 /* 704 * Charge the time as appropriate. 705 */ 706 td->td_uticks++; 707 if (p->p_nice > NZERO) 708 cp_time[CP_NICE]++; 709 else 710 cp_time[CP_USER]++; 711 } else { 712 /* 713 * Came from kernel mode, so we were: 714 * - handling an interrupt, 715 * - doing syscall or trap work on behalf of the current 716 * user process, or 717 * - spinning in the idle loop. 718 * Whichever it is, charge the time as appropriate. 719 * Note that we charge interrupts to the current process, 720 * regardless of whether they are ``for'' that process, 721 * so that we know how much of its real time was spent 722 * in ``non-process'' (i.e., interrupt) work. 723 */ 724 if ((td->td_pflags & TDP_ITHREAD) || 725 td->td_intr_nesting_level >= 2) { 726 td->td_iticks++; 727 cp_time[CP_INTR]++; 728 } else { 729 td->td_pticks++; 730 td->td_sticks++; 731 if (!TD_IS_IDLETHREAD(td)) 732 cp_time[CP_SYS]++; 733 else 734 cp_time[CP_IDLE]++; 735 } 736 } 737 738 /* Update resource usage integrals and maximums. */ 739 MPASS(p->p_vmspace != NULL); 740 vm = p->p_vmspace; 741 ru = &td->td_ru; 742 ru->ru_ixrss += pgtok(vm->vm_tsize); 743 ru->ru_idrss += pgtok(vm->vm_dsize); 744 ru->ru_isrss += pgtok(vm->vm_ssize); 745 rss = pgtok(vmspace_resident_count(vm)); 746 if (ru->ru_maxrss < rss) 747 ru->ru_maxrss = rss; 748 KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock", 749 "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz); 750 thread_lock_flags(td, MTX_QUIET); 751 sched_clock(td); 752 thread_unlock(td); 753 } 754 755 void 756 profclock(int usermode, uintfptr_t pc) 757 { 758 struct thread *td; 759 #ifdef GPROF 760 struct gmonparam *g; 761 uintfptr_t i; 762 #endif 763 764 td = curthread; 765 if (usermode) { 766 /* 767 * Came from user mode; CPU was in user state. 768 * If this process is being profiled, record the tick. 769 * if there is no related user location yet, don't 770 * bother trying to count it. 771 */ 772 if (td->td_proc->p_flag & P_PROFIL) 773 addupc_intr(td, pc, 1); 774 } 775 #ifdef GPROF 776 else { 777 /* 778 * Kernel statistics are just like addupc_intr, only easier. 779 */ 780 g = &_gmonparam; 781 if (g->state == GMON_PROF_ON && pc >= g->lowpc) { 782 i = PC_TO_I(g, pc); 783 if (i < g->textsize) { 784 KCOUNT(g, i)++; 785 } 786 } 787 } 788 #endif 789 } 790 791 /* 792 * Return information about system clocks. 793 */ 794 static int 795 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 796 { 797 struct clockinfo clkinfo; 798 /* 799 * Construct clockinfo structure. 800 */ 801 bzero(&clkinfo, sizeof(clkinfo)); 802 clkinfo.hz = hz; 803 clkinfo.tick = tick; 804 clkinfo.profhz = profhz; 805 clkinfo.stathz = stathz ? stathz : hz; 806 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 807 } 808 809 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, 810 CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE, 811 0, 0, sysctl_kern_clockrate, "S,clockinfo", 812 "Rate and period of various kernel clocks"); 813 814 #ifdef SW_WATCHDOG 815 816 static void 817 watchdog_config(void *unused __unused, u_int cmd, int *error) 818 { 819 u_int u; 820 821 u = cmd & WD_INTERVAL; 822 if (u >= WD_TO_1SEC) { 823 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz; 824 watchdog_enabled = 1; 825 *error = 0; 826 } else { 827 watchdog_enabled = 0; 828 } 829 } 830 831 /* 832 * Handle a watchdog timeout by dumping interrupt information and 833 * then either dropping to DDB or panicking. 834 */ 835 static void 836 watchdog_fire(void) 837 { 838 int nintr; 839 uint64_t inttotal; 840 u_long *curintr; 841 char *curname; 842 843 curintr = intrcnt; 844 curname = intrnames; 845 inttotal = 0; 846 nintr = sintrcnt / sizeof(u_long); 847 848 printf("interrupt total\n"); 849 while (--nintr >= 0) { 850 if (*curintr) 851 printf("%-12s %20lu\n", curname, *curintr); 852 curname += strlen(curname) + 1; 853 inttotal += *curintr++; 854 } 855 printf("Total %20ju\n", (uintmax_t)inttotal); 856 857 #if defined(KDB) && !defined(KDB_UNATTENDED) 858 kdb_backtrace(); 859 kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout"); 860 #else 861 panic("watchdog timeout"); 862 #endif 863 } 864 865 #endif /* SW_WATCHDOG */ 866