xref: /freebsd/sys/kern/kern_clock.c (revision 3fc9e2c36555140de248a0b4def91bbfa44d7c2c)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdb.h"
41 #include "opt_device_polling.h"
42 #include "opt_hwpmc_hooks.h"
43 #include "opt_kdtrace.h"
44 #include "opt_ntp.h"
45 #include "opt_watchdog.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/callout.h>
50 #include <sys/kdb.h>
51 #include <sys/kernel.h>
52 #include <sys/kthread.h>
53 #include <sys/ktr.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/proc.h>
57 #include <sys/resource.h>
58 #include <sys/resourcevar.h>
59 #include <sys/sched.h>
60 #include <sys/sdt.h>
61 #include <sys/signalvar.h>
62 #include <sys/sleepqueue.h>
63 #include <sys/smp.h>
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_map.h>
67 #include <sys/sysctl.h>
68 #include <sys/bus.h>
69 #include <sys/interrupt.h>
70 #include <sys/limits.h>
71 #include <sys/timetc.h>
72 
73 #ifdef GPROF
74 #include <sys/gmon.h>
75 #endif
76 
77 #ifdef HWPMC_HOOKS
78 #include <sys/pmckern.h>
79 PMC_SOFT_DEFINE( , , clock, hard);
80 PMC_SOFT_DEFINE( , , clock, stat);
81 PMC_SOFT_DEFINE_EX( , , clock, prof, \
82     cpu_startprofclock, cpu_stopprofclock);
83 #endif
84 
85 #ifdef DEVICE_POLLING
86 extern void hardclock_device_poll(void);
87 #endif /* DEVICE_POLLING */
88 
89 static void initclocks(void *dummy);
90 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
91 
92 /* Spin-lock protecting profiling statistics. */
93 static struct mtx time_lock;
94 
95 SDT_PROVIDER_DECLARE(sched);
96 SDT_PROBE_DEFINE2(sched, , , tick, tick, "struct thread *", "struct proc *");
97 
98 static int
99 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
100 {
101 	int error;
102 	long cp_time[CPUSTATES];
103 #ifdef SCTL_MASK32
104 	int i;
105 	unsigned int cp_time32[CPUSTATES];
106 #endif
107 
108 	read_cpu_time(cp_time);
109 #ifdef SCTL_MASK32
110 	if (req->flags & SCTL_MASK32) {
111 		if (!req->oldptr)
112 			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
113 		for (i = 0; i < CPUSTATES; i++)
114 			cp_time32[i] = (unsigned int)cp_time[i];
115 		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
116 	} else
117 #endif
118 	{
119 		if (!req->oldptr)
120 			return SYSCTL_OUT(req, 0, sizeof(cp_time));
121 		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
122 	}
123 	return error;
124 }
125 
126 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
127     0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
128 
129 static long empty[CPUSTATES];
130 
131 static int
132 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
133 {
134 	struct pcpu *pcpu;
135 	int error;
136 	int c;
137 	long *cp_time;
138 #ifdef SCTL_MASK32
139 	unsigned int cp_time32[CPUSTATES];
140 	int i;
141 #endif
142 
143 	if (!req->oldptr) {
144 #ifdef SCTL_MASK32
145 		if (req->flags & SCTL_MASK32)
146 			return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
147 		else
148 #endif
149 			return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
150 	}
151 	for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
152 		if (!CPU_ABSENT(c)) {
153 			pcpu = pcpu_find(c);
154 			cp_time = pcpu->pc_cp_time;
155 		} else {
156 			cp_time = empty;
157 		}
158 #ifdef SCTL_MASK32
159 		if (req->flags & SCTL_MASK32) {
160 			for (i = 0; i < CPUSTATES; i++)
161 				cp_time32[i] = (unsigned int)cp_time[i];
162 			error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
163 		} else
164 #endif
165 			error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
166 	}
167 	return error;
168 }
169 
170 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
171     0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
172 
173 #ifdef DEADLKRES
174 static const char *blessed[] = {
175 	"getblk",
176 	"so_snd_sx",
177 	"so_rcv_sx",
178 	NULL
179 };
180 static int slptime_threshold = 1800;
181 static int blktime_threshold = 900;
182 static int sleepfreq = 3;
183 
184 static void
185 deadlkres(void)
186 {
187 	struct proc *p;
188 	struct thread *td;
189 	void *wchan;
190 	int blkticks, i, slpticks, slptype, tryl, tticks;
191 
192 	tryl = 0;
193 	for (;;) {
194 		blkticks = blktime_threshold * hz;
195 		slpticks = slptime_threshold * hz;
196 
197 		/*
198 		 * Avoid to sleep on the sx_lock in order to avoid a possible
199 		 * priority inversion problem leading to starvation.
200 		 * If the lock can't be held after 100 tries, panic.
201 		 */
202 		if (!sx_try_slock(&allproc_lock)) {
203 			if (tryl > 100)
204 		panic("%s: possible deadlock detected on allproc_lock\n",
205 				    __func__);
206 			tryl++;
207 			pause("allproc", sleepfreq * hz);
208 			continue;
209 		}
210 		tryl = 0;
211 		FOREACH_PROC_IN_SYSTEM(p) {
212 			PROC_LOCK(p);
213 			if (p->p_state == PRS_NEW) {
214 				PROC_UNLOCK(p);
215 				continue;
216 			}
217 			FOREACH_THREAD_IN_PROC(p, td) {
218 
219 				thread_lock(td);
220 				if (TD_ON_LOCK(td)) {
221 
222 					/*
223 					 * The thread should be blocked on a
224 					 * turnstile, simply check if the
225 					 * turnstile channel is in good state.
226 					 */
227 					MPASS(td->td_blocked != NULL);
228 
229 					tticks = ticks - td->td_blktick;
230 					thread_unlock(td);
231 					if (tticks > blkticks) {
232 
233 						/*
234 						 * Accordingly with provided
235 						 * thresholds, this thread is
236 						 * stuck for too long on a
237 						 * turnstile.
238 						 */
239 						PROC_UNLOCK(p);
240 						sx_sunlock(&allproc_lock);
241 	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
242 						    __func__, td, tticks);
243 					}
244 				} else if (TD_IS_SLEEPING(td) &&
245 				    TD_ON_SLEEPQ(td)) {
246 
247 					/*
248 					 * Check if the thread is sleeping on a
249 					 * lock, otherwise skip the check.
250 					 * Drop the thread lock in order to
251 					 * avoid a LOR with the sleepqueue
252 					 * spinlock.
253 					 */
254 					wchan = td->td_wchan;
255 					tticks = ticks - td->td_slptick;
256 					thread_unlock(td);
257 					slptype = sleepq_type(wchan);
258 					if ((slptype == SLEEPQ_SX ||
259 					    slptype == SLEEPQ_LK) &&
260 					    tticks > slpticks) {
261 
262 						/*
263 						 * Accordingly with provided
264 						 * thresholds, this thread is
265 						 * stuck for too long on a
266 						 * sleepqueue.
267 						 * However, being on a
268 						 * sleepqueue, we might still
269 						 * check for the blessed
270 						 * list.
271 						 */
272 						tryl = 0;
273 						for (i = 0; blessed[i] != NULL;
274 						    i++) {
275 							if (!strcmp(blessed[i],
276 							    td->td_wmesg)) {
277 								tryl = 1;
278 								break;
279 							}
280 						}
281 						if (tryl != 0) {
282 							tryl = 0;
283 							continue;
284 						}
285 						PROC_UNLOCK(p);
286 						sx_sunlock(&allproc_lock);
287 	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
288 						    __func__, td, tticks);
289 					}
290 				} else
291 					thread_unlock(td);
292 			}
293 			PROC_UNLOCK(p);
294 		}
295 		sx_sunlock(&allproc_lock);
296 
297 		/* Sleep for sleepfreq seconds. */
298 		pause("-", sleepfreq * hz);
299 	}
300 }
301 
302 static struct kthread_desc deadlkres_kd = {
303 	"deadlkres",
304 	deadlkres,
305 	(struct thread **)NULL
306 };
307 
308 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
309 
310 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0,
311     "Deadlock resolver");
312 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
313     &slptime_threshold, 0,
314     "Number of seconds within is valid to sleep on a sleepqueue");
315 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
316     &blktime_threshold, 0,
317     "Number of seconds within is valid to block on a turnstile");
318 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
319     "Number of seconds between any deadlock resolver thread run");
320 #endif	/* DEADLKRES */
321 
322 void
323 read_cpu_time(long *cp_time)
324 {
325 	struct pcpu *pc;
326 	int i, j;
327 
328 	/* Sum up global cp_time[]. */
329 	bzero(cp_time, sizeof(long) * CPUSTATES);
330 	CPU_FOREACH(i) {
331 		pc = pcpu_find(i);
332 		for (j = 0; j < CPUSTATES; j++)
333 			cp_time[j] += pc->pc_cp_time[j];
334 	}
335 }
336 
337 #ifdef SW_WATCHDOG
338 #include <sys/watchdog.h>
339 
340 static int watchdog_ticks;
341 static int watchdog_enabled;
342 static void watchdog_fire(void);
343 static void watchdog_config(void *, u_int, int *);
344 #endif /* SW_WATCHDOG */
345 
346 /*
347  * Clock handling routines.
348  *
349  * This code is written to operate with two timers that run independently of
350  * each other.
351  *
352  * The main timer, running hz times per second, is used to trigger interval
353  * timers, timeouts and rescheduling as needed.
354  *
355  * The second timer handles kernel and user profiling,
356  * and does resource use estimation.  If the second timer is programmable,
357  * it is randomized to avoid aliasing between the two clocks.  For example,
358  * the randomization prevents an adversary from always giving up the cpu
359  * just before its quantum expires.  Otherwise, it would never accumulate
360  * cpu ticks.  The mean frequency of the second timer is stathz.
361  *
362  * If no second timer exists, stathz will be zero; in this case we drive
363  * profiling and statistics off the main clock.  This WILL NOT be accurate;
364  * do not do it unless absolutely necessary.
365  *
366  * The statistics clock may (or may not) be run at a higher rate while
367  * profiling.  This profile clock runs at profhz.  We require that profhz
368  * be an integral multiple of stathz.
369  *
370  * If the statistics clock is running fast, it must be divided by the ratio
371  * profhz/stathz for statistics.  (For profiling, every tick counts.)
372  *
373  * Time-of-day is maintained using a "timecounter", which may or may
374  * not be related to the hardware generating the above mentioned
375  * interrupts.
376  */
377 
378 int	stathz;
379 int	profhz;
380 int	profprocs;
381 volatile int	ticks;
382 int	psratio;
383 
384 static DPCPU_DEFINE(int, pcputicks);	/* Per-CPU version of ticks. */
385 static int global_hardclock_run = 0;
386 
387 /*
388  * Initialize clock frequencies and start both clocks running.
389  */
390 /* ARGSUSED*/
391 static void
392 initclocks(dummy)
393 	void *dummy;
394 {
395 	register int i;
396 
397 	/*
398 	 * Set divisors to 1 (normal case) and let the machine-specific
399 	 * code do its bit.
400 	 */
401 	mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
402 	cpu_initclocks();
403 
404 	/*
405 	 * Compute profhz/stathz, and fix profhz if needed.
406 	 */
407 	i = stathz ? stathz : hz;
408 	if (profhz == 0)
409 		profhz = i;
410 	psratio = profhz / i;
411 #ifdef SW_WATCHDOG
412 	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
413 #endif
414 }
415 
416 /*
417  * Each time the real-time timer fires, this function is called on all CPUs.
418  * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
419  * the other CPUs in the system need to call this function.
420  */
421 void
422 hardclock_cpu(int usermode)
423 {
424 	struct pstats *pstats;
425 	struct thread *td = curthread;
426 	struct proc *p = td->td_proc;
427 	int flags;
428 
429 	/*
430 	 * Run current process's virtual and profile time, as needed.
431 	 */
432 	pstats = p->p_stats;
433 	flags = 0;
434 	if (usermode &&
435 	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
436 		PROC_SLOCK(p);
437 		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
438 			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
439 		PROC_SUNLOCK(p);
440 	}
441 	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
442 		PROC_SLOCK(p);
443 		if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
444 			flags |= TDF_PROFPEND | TDF_ASTPENDING;
445 		PROC_SUNLOCK(p);
446 	}
447 	thread_lock(td);
448 	sched_tick(1);
449 	td->td_flags |= flags;
450 	thread_unlock(td);
451 
452 #ifdef HWPMC_HOOKS
453 	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
454 		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
455 	if (td->td_intr_frame != NULL)
456 		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
457 #endif
458 	callout_process(sbinuptime());
459 }
460 
461 /*
462  * The real-time timer, interrupting hz times per second.
463  */
464 void
465 hardclock(int usermode, uintfptr_t pc)
466 {
467 
468 	atomic_add_int(&ticks, 1);
469 	hardclock_cpu(usermode);
470 	tc_ticktock(1);
471 	cpu_tick_calibration();
472 	/*
473 	 * If no separate statistics clock is available, run it from here.
474 	 *
475 	 * XXX: this only works for UP
476 	 */
477 	if (stathz == 0) {
478 		profclock(usermode, pc);
479 		statclock(usermode);
480 	}
481 #ifdef DEVICE_POLLING
482 	hardclock_device_poll();	/* this is very short and quick */
483 #endif /* DEVICE_POLLING */
484 #ifdef SW_WATCHDOG
485 	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
486 		watchdog_fire();
487 #endif /* SW_WATCHDOG */
488 }
489 
490 void
491 hardclock_cnt(int cnt, int usermode)
492 {
493 	struct pstats *pstats;
494 	struct thread *td = curthread;
495 	struct proc *p = td->td_proc;
496 	int *t = DPCPU_PTR(pcputicks);
497 	int flags, global, newticks;
498 #ifdef SW_WATCHDOG
499 	int i;
500 #endif /* SW_WATCHDOG */
501 
502 	/*
503 	 * Update per-CPU and possibly global ticks values.
504 	 */
505 	*t += cnt;
506 	do {
507 		global = ticks;
508 		newticks = *t - global;
509 		if (newticks <= 0) {
510 			if (newticks < -1)
511 				*t = global - 1;
512 			newticks = 0;
513 			break;
514 		}
515 	} while (!atomic_cmpset_int(&ticks, global, *t));
516 
517 	/*
518 	 * Run current process's virtual and profile time, as needed.
519 	 */
520 	pstats = p->p_stats;
521 	flags = 0;
522 	if (usermode &&
523 	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
524 		PROC_SLOCK(p);
525 		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
526 		    tick * cnt) == 0)
527 			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
528 		PROC_SUNLOCK(p);
529 	}
530 	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
531 		PROC_SLOCK(p);
532 		if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
533 		    tick * cnt) == 0)
534 			flags |= TDF_PROFPEND | TDF_ASTPENDING;
535 		PROC_SUNLOCK(p);
536 	}
537 	thread_lock(td);
538 	sched_tick(cnt);
539 	td->td_flags |= flags;
540 	thread_unlock(td);
541 
542 #ifdef	HWPMC_HOOKS
543 	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
544 		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
545 	if (td->td_intr_frame != NULL)
546 		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
547 #endif
548 	/* We are in charge to handle this tick duty. */
549 	if (newticks > 0) {
550 		/* Dangerous and no need to call these things concurrently. */
551 		if (atomic_cmpset_acq_int(&global_hardclock_run, 0, 1)) {
552 			tc_ticktock(newticks);
553 #ifdef DEVICE_POLLING
554 			/* This is very short and quick. */
555 			hardclock_device_poll();
556 #endif /* DEVICE_POLLING */
557 			atomic_store_rel_int(&global_hardclock_run, 0);
558 		}
559 #ifdef SW_WATCHDOG
560 		if (watchdog_enabled > 0) {
561 			i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
562 			if (i > 0 && i <= newticks)
563 				watchdog_fire();
564 		}
565 #endif /* SW_WATCHDOG */
566 	}
567 	if (curcpu == CPU_FIRST())
568 		cpu_tick_calibration();
569 }
570 
571 void
572 hardclock_sync(int cpu)
573 {
574 	int	*t = DPCPU_ID_PTR(cpu, pcputicks);
575 
576 	*t = ticks;
577 }
578 
579 /*
580  * Compute number of ticks in the specified amount of time.
581  */
582 int
583 tvtohz(tv)
584 	struct timeval *tv;
585 {
586 	register unsigned long ticks;
587 	register long sec, usec;
588 
589 	/*
590 	 * If the number of usecs in the whole seconds part of the time
591 	 * difference fits in a long, then the total number of usecs will
592 	 * fit in an unsigned long.  Compute the total and convert it to
593 	 * ticks, rounding up and adding 1 to allow for the current tick
594 	 * to expire.  Rounding also depends on unsigned long arithmetic
595 	 * to avoid overflow.
596 	 *
597 	 * Otherwise, if the number of ticks in the whole seconds part of
598 	 * the time difference fits in a long, then convert the parts to
599 	 * ticks separately and add, using similar rounding methods and
600 	 * overflow avoidance.  This method would work in the previous
601 	 * case but it is slightly slower and assumes that hz is integral.
602 	 *
603 	 * Otherwise, round the time difference down to the maximum
604 	 * representable value.
605 	 *
606 	 * If ints have 32 bits, then the maximum value for any timeout in
607 	 * 10ms ticks is 248 days.
608 	 */
609 	sec = tv->tv_sec;
610 	usec = tv->tv_usec;
611 	if (usec < 0) {
612 		sec--;
613 		usec += 1000000;
614 	}
615 	if (sec < 0) {
616 #ifdef DIAGNOSTIC
617 		if (usec > 0) {
618 			sec++;
619 			usec -= 1000000;
620 		}
621 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
622 		       sec, usec);
623 #endif
624 		ticks = 1;
625 	} else if (sec <= LONG_MAX / 1000000)
626 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
627 			/ tick + 1;
628 	else if (sec <= LONG_MAX / hz)
629 		ticks = sec * hz
630 			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
631 	else
632 		ticks = LONG_MAX;
633 	if (ticks > INT_MAX)
634 		ticks = INT_MAX;
635 	return ((int)ticks);
636 }
637 
638 /*
639  * Start profiling on a process.
640  *
641  * Kernel profiling passes proc0 which never exits and hence
642  * keeps the profile clock running constantly.
643  */
644 void
645 startprofclock(p)
646 	register struct proc *p;
647 {
648 
649 	PROC_LOCK_ASSERT(p, MA_OWNED);
650 	if (p->p_flag & P_STOPPROF)
651 		return;
652 	if ((p->p_flag & P_PROFIL) == 0) {
653 		p->p_flag |= P_PROFIL;
654 		mtx_lock(&time_lock);
655 		if (++profprocs == 1)
656 			cpu_startprofclock();
657 		mtx_unlock(&time_lock);
658 	}
659 }
660 
661 /*
662  * Stop profiling on a process.
663  */
664 void
665 stopprofclock(p)
666 	register struct proc *p;
667 {
668 
669 	PROC_LOCK_ASSERT(p, MA_OWNED);
670 	if (p->p_flag & P_PROFIL) {
671 		if (p->p_profthreads != 0) {
672 			p->p_flag |= P_STOPPROF;
673 			while (p->p_profthreads != 0)
674 				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
675 				    "stopprof", 0);
676 			p->p_flag &= ~P_STOPPROF;
677 		}
678 		if ((p->p_flag & P_PROFIL) == 0)
679 			return;
680 		p->p_flag &= ~P_PROFIL;
681 		mtx_lock(&time_lock);
682 		if (--profprocs == 0)
683 			cpu_stopprofclock();
684 		mtx_unlock(&time_lock);
685 	}
686 }
687 
688 /*
689  * Statistics clock.  Updates rusage information and calls the scheduler
690  * to adjust priorities of the active thread.
691  *
692  * This should be called by all active processors.
693  */
694 void
695 statclock(int usermode)
696 {
697 
698 	statclock_cnt(1, usermode);
699 }
700 
701 void
702 statclock_cnt(int cnt, int usermode)
703 {
704 	struct rusage *ru;
705 	struct vmspace *vm;
706 	struct thread *td;
707 	struct proc *p;
708 	long rss;
709 	long *cp_time;
710 
711 	td = curthread;
712 	p = td->td_proc;
713 
714 	cp_time = (long *)PCPU_PTR(cp_time);
715 	if (usermode) {
716 		/*
717 		 * Charge the time as appropriate.
718 		 */
719 		td->td_uticks += cnt;
720 		if (p->p_nice > NZERO)
721 			cp_time[CP_NICE] += cnt;
722 		else
723 			cp_time[CP_USER] += cnt;
724 	} else {
725 		/*
726 		 * Came from kernel mode, so we were:
727 		 * - handling an interrupt,
728 		 * - doing syscall or trap work on behalf of the current
729 		 *   user process, or
730 		 * - spinning in the idle loop.
731 		 * Whichever it is, charge the time as appropriate.
732 		 * Note that we charge interrupts to the current process,
733 		 * regardless of whether they are ``for'' that process,
734 		 * so that we know how much of its real time was spent
735 		 * in ``non-process'' (i.e., interrupt) work.
736 		 */
737 		if ((td->td_pflags & TDP_ITHREAD) ||
738 		    td->td_intr_nesting_level >= 2) {
739 			td->td_iticks += cnt;
740 			cp_time[CP_INTR] += cnt;
741 		} else {
742 			td->td_pticks += cnt;
743 			td->td_sticks += cnt;
744 			if (!TD_IS_IDLETHREAD(td))
745 				cp_time[CP_SYS] += cnt;
746 			else
747 				cp_time[CP_IDLE] += cnt;
748 		}
749 	}
750 
751 	/* Update resource usage integrals and maximums. */
752 	MPASS(p->p_vmspace != NULL);
753 	vm = p->p_vmspace;
754 	ru = &td->td_ru;
755 	ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
756 	ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
757 	ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
758 	rss = pgtok(vmspace_resident_count(vm));
759 	if (ru->ru_maxrss < rss)
760 		ru->ru_maxrss = rss;
761 	KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
762 	    "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
763 	SDT_PROBE2(sched, , , tick, td, td->td_proc);
764 	thread_lock_flags(td, MTX_QUIET);
765 	for ( ; cnt > 0; cnt--)
766 		sched_clock(td);
767 	thread_unlock(td);
768 #ifdef HWPMC_HOOKS
769 	if (td->td_intr_frame != NULL)
770 		PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
771 #endif
772 }
773 
774 void
775 profclock(int usermode, uintfptr_t pc)
776 {
777 
778 	profclock_cnt(1, usermode, pc);
779 }
780 
781 void
782 profclock_cnt(int cnt, int usermode, uintfptr_t pc)
783 {
784 	struct thread *td;
785 #ifdef GPROF
786 	struct gmonparam *g;
787 	uintfptr_t i;
788 #endif
789 
790 	td = curthread;
791 	if (usermode) {
792 		/*
793 		 * Came from user mode; CPU was in user state.
794 		 * If this process is being profiled, record the tick.
795 		 * if there is no related user location yet, don't
796 		 * bother trying to count it.
797 		 */
798 		if (td->td_proc->p_flag & P_PROFIL)
799 			addupc_intr(td, pc, cnt);
800 	}
801 #ifdef GPROF
802 	else {
803 		/*
804 		 * Kernel statistics are just like addupc_intr, only easier.
805 		 */
806 		g = &_gmonparam;
807 		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
808 			i = PC_TO_I(g, pc);
809 			if (i < g->textsize) {
810 				KCOUNT(g, i) += cnt;
811 			}
812 		}
813 	}
814 #endif
815 #ifdef HWPMC_HOOKS
816 	if (td->td_intr_frame != NULL)
817 		PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
818 #endif
819 }
820 
821 /*
822  * Return information about system clocks.
823  */
824 static int
825 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
826 {
827 	struct clockinfo clkinfo;
828 	/*
829 	 * Construct clockinfo structure.
830 	 */
831 	bzero(&clkinfo, sizeof(clkinfo));
832 	clkinfo.hz = hz;
833 	clkinfo.tick = tick;
834 	clkinfo.profhz = profhz;
835 	clkinfo.stathz = stathz ? stathz : hz;
836 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
837 }
838 
839 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
840 	CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
841 	0, 0, sysctl_kern_clockrate, "S,clockinfo",
842 	"Rate and period of various kernel clocks");
843 
844 #ifdef SW_WATCHDOG
845 
846 static void
847 watchdog_config(void *unused __unused, u_int cmd, int *error)
848 {
849 	u_int u;
850 
851 	u = cmd & WD_INTERVAL;
852 	if (u >= WD_TO_1SEC) {
853 		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
854 		watchdog_enabled = 1;
855 		*error = 0;
856 	} else {
857 		watchdog_enabled = 0;
858 	}
859 }
860 
861 /*
862  * Handle a watchdog timeout by dumping interrupt information and
863  * then either dropping to DDB or panicking.
864  */
865 static void
866 watchdog_fire(void)
867 {
868 	int nintr;
869 	uint64_t inttotal;
870 	u_long *curintr;
871 	char *curname;
872 
873 	curintr = intrcnt;
874 	curname = intrnames;
875 	inttotal = 0;
876 	nintr = sintrcnt / sizeof(u_long);
877 
878 	printf("interrupt                   total\n");
879 	while (--nintr >= 0) {
880 		if (*curintr)
881 			printf("%-12s %20lu\n", curname, *curintr);
882 		curname += strlen(curname) + 1;
883 		inttotal += *curintr++;
884 	}
885 	printf("Total        %20ju\n", (uintmax_t)inttotal);
886 
887 #if defined(KDB) && !defined(KDB_UNATTENDED)
888 	kdb_backtrace();
889 	kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
890 #else
891 	panic("watchdog timeout");
892 #endif
893 }
894 
895 #endif /* SW_WATCHDOG */
896