xref: /freebsd/sys/kern/kern_clock.c (revision 3e41d09d08f5bfa2fc1386241f334b865d6da085)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdb.h"
41 #include "opt_device_polling.h"
42 #include "opt_hwpmc_hooks.h"
43 #include "opt_ntp.h"
44 #include "opt_watchdog.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/callout.h>
49 #include <sys/kdb.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/resource.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/sdt.h>
60 #include <sys/signalvar.h>
61 #include <sys/sleepqueue.h>
62 #include <sys/smp.h>
63 #include <vm/vm.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_map.h>
66 #include <sys/sysctl.h>
67 #include <sys/bus.h>
68 #include <sys/interrupt.h>
69 #include <sys/limits.h>
70 #include <sys/timetc.h>
71 
72 #ifdef GPROF
73 #include <sys/gmon.h>
74 #endif
75 
76 #ifdef HWPMC_HOOKS
77 #include <sys/pmckern.h>
78 PMC_SOFT_DEFINE( , , clock, hard);
79 PMC_SOFT_DEFINE( , , clock, stat);
80 PMC_SOFT_DEFINE_EX( , , clock, prof, \
81     cpu_startprofclock, cpu_stopprofclock);
82 #endif
83 
84 #ifdef DEVICE_POLLING
85 extern void hardclock_device_poll(void);
86 #endif /* DEVICE_POLLING */
87 
88 static void initclocks(void *dummy);
89 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
90 
91 /* Spin-lock protecting profiling statistics. */
92 static struct mtx time_lock;
93 
94 SDT_PROVIDER_DECLARE(sched);
95 SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *");
96 
97 static int
98 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
99 {
100 	int error;
101 	long cp_time[CPUSTATES];
102 #ifdef SCTL_MASK32
103 	int i;
104 	unsigned int cp_time32[CPUSTATES];
105 #endif
106 
107 	read_cpu_time(cp_time);
108 #ifdef SCTL_MASK32
109 	if (req->flags & SCTL_MASK32) {
110 		if (!req->oldptr)
111 			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
112 		for (i = 0; i < CPUSTATES; i++)
113 			cp_time32[i] = (unsigned int)cp_time[i];
114 		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
115 	} else
116 #endif
117 	{
118 		if (!req->oldptr)
119 			return SYSCTL_OUT(req, 0, sizeof(cp_time));
120 		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
121 	}
122 	return error;
123 }
124 
125 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
126     0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
127 
128 static long empty[CPUSTATES];
129 
130 static int
131 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
132 {
133 	struct pcpu *pcpu;
134 	int error;
135 	int c;
136 	long *cp_time;
137 #ifdef SCTL_MASK32
138 	unsigned int cp_time32[CPUSTATES];
139 	int i;
140 #endif
141 
142 	if (!req->oldptr) {
143 #ifdef SCTL_MASK32
144 		if (req->flags & SCTL_MASK32)
145 			return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
146 		else
147 #endif
148 			return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
149 	}
150 	for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
151 		if (!CPU_ABSENT(c)) {
152 			pcpu = pcpu_find(c);
153 			cp_time = pcpu->pc_cp_time;
154 		} else {
155 			cp_time = empty;
156 		}
157 #ifdef SCTL_MASK32
158 		if (req->flags & SCTL_MASK32) {
159 			for (i = 0; i < CPUSTATES; i++)
160 				cp_time32[i] = (unsigned int)cp_time[i];
161 			error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
162 		} else
163 #endif
164 			error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
165 	}
166 	return error;
167 }
168 
169 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
170     0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
171 
172 #ifdef DEADLKRES
173 static const char *blessed[] = {
174 	"getblk",
175 	"so_snd_sx",
176 	"so_rcv_sx",
177 	NULL
178 };
179 static int slptime_threshold = 1800;
180 static int blktime_threshold = 900;
181 static int sleepfreq = 3;
182 
183 static void
184 deadlkres(void)
185 {
186 	struct proc *p;
187 	struct thread *td;
188 	void *wchan;
189 	int blkticks, i, slpticks, slptype, tryl, tticks;
190 
191 	tryl = 0;
192 	for (;;) {
193 		blkticks = blktime_threshold * hz;
194 		slpticks = slptime_threshold * hz;
195 
196 		/*
197 		 * Avoid to sleep on the sx_lock in order to avoid a possible
198 		 * priority inversion problem leading to starvation.
199 		 * If the lock can't be held after 100 tries, panic.
200 		 */
201 		if (!sx_try_slock(&allproc_lock)) {
202 			if (tryl > 100)
203 		panic("%s: possible deadlock detected on allproc_lock\n",
204 				    __func__);
205 			tryl++;
206 			pause("allproc", sleepfreq * hz);
207 			continue;
208 		}
209 		tryl = 0;
210 		FOREACH_PROC_IN_SYSTEM(p) {
211 			PROC_LOCK(p);
212 			if (p->p_state == PRS_NEW) {
213 				PROC_UNLOCK(p);
214 				continue;
215 			}
216 			FOREACH_THREAD_IN_PROC(p, td) {
217 
218 				thread_lock(td);
219 				if (TD_ON_LOCK(td)) {
220 
221 					/*
222 					 * The thread should be blocked on a
223 					 * turnstile, simply check if the
224 					 * turnstile channel is in good state.
225 					 */
226 					MPASS(td->td_blocked != NULL);
227 
228 					tticks = ticks - td->td_blktick;
229 					thread_unlock(td);
230 					if (tticks > blkticks) {
231 
232 						/*
233 						 * Accordingly with provided
234 						 * thresholds, this thread is
235 						 * stuck for too long on a
236 						 * turnstile.
237 						 */
238 						PROC_UNLOCK(p);
239 						sx_sunlock(&allproc_lock);
240 	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
241 						    __func__, td, tticks);
242 					}
243 				} else if (TD_IS_SLEEPING(td) &&
244 				    TD_ON_SLEEPQ(td)) {
245 
246 					/*
247 					 * Check if the thread is sleeping on a
248 					 * lock, otherwise skip the check.
249 					 * Drop the thread lock in order to
250 					 * avoid a LOR with the sleepqueue
251 					 * spinlock.
252 					 */
253 					wchan = td->td_wchan;
254 					tticks = ticks - td->td_slptick;
255 					thread_unlock(td);
256 					slptype = sleepq_type(wchan);
257 					if ((slptype == SLEEPQ_SX ||
258 					    slptype == SLEEPQ_LK) &&
259 					    tticks > slpticks) {
260 
261 						/*
262 						 * Accordingly with provided
263 						 * thresholds, this thread is
264 						 * stuck for too long on a
265 						 * sleepqueue.
266 						 * However, being on a
267 						 * sleepqueue, we might still
268 						 * check for the blessed
269 						 * list.
270 						 */
271 						tryl = 0;
272 						for (i = 0; blessed[i] != NULL;
273 						    i++) {
274 							if (!strcmp(blessed[i],
275 							    td->td_wmesg)) {
276 								tryl = 1;
277 								break;
278 							}
279 						}
280 						if (tryl != 0) {
281 							tryl = 0;
282 							continue;
283 						}
284 						PROC_UNLOCK(p);
285 						sx_sunlock(&allproc_lock);
286 	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
287 						    __func__, td, tticks);
288 					}
289 				} else
290 					thread_unlock(td);
291 			}
292 			PROC_UNLOCK(p);
293 		}
294 		sx_sunlock(&allproc_lock);
295 
296 		/* Sleep for sleepfreq seconds. */
297 		pause("-", sleepfreq * hz);
298 	}
299 }
300 
301 static struct kthread_desc deadlkres_kd = {
302 	"deadlkres",
303 	deadlkres,
304 	(struct thread **)NULL
305 };
306 
307 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
308 
309 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0,
310     "Deadlock resolver");
311 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
312     &slptime_threshold, 0,
313     "Number of seconds within is valid to sleep on a sleepqueue");
314 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
315     &blktime_threshold, 0,
316     "Number of seconds within is valid to block on a turnstile");
317 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
318     "Number of seconds between any deadlock resolver thread run");
319 #endif	/* DEADLKRES */
320 
321 void
322 read_cpu_time(long *cp_time)
323 {
324 	struct pcpu *pc;
325 	int i, j;
326 
327 	/* Sum up global cp_time[]. */
328 	bzero(cp_time, sizeof(long) * CPUSTATES);
329 	CPU_FOREACH(i) {
330 		pc = pcpu_find(i);
331 		for (j = 0; j < CPUSTATES; j++)
332 			cp_time[j] += pc->pc_cp_time[j];
333 	}
334 }
335 
336 #ifdef SW_WATCHDOG
337 #include <sys/watchdog.h>
338 
339 static int watchdog_ticks;
340 static int watchdog_enabled;
341 static void watchdog_fire(void);
342 static void watchdog_config(void *, u_int, int *);
343 #endif /* SW_WATCHDOG */
344 
345 /*
346  * Clock handling routines.
347  *
348  * This code is written to operate with two timers that run independently of
349  * each other.
350  *
351  * The main timer, running hz times per second, is used to trigger interval
352  * timers, timeouts and rescheduling as needed.
353  *
354  * The second timer handles kernel and user profiling,
355  * and does resource use estimation.  If the second timer is programmable,
356  * it is randomized to avoid aliasing between the two clocks.  For example,
357  * the randomization prevents an adversary from always giving up the cpu
358  * just before its quantum expires.  Otherwise, it would never accumulate
359  * cpu ticks.  The mean frequency of the second timer is stathz.
360  *
361  * If no second timer exists, stathz will be zero; in this case we drive
362  * profiling and statistics off the main clock.  This WILL NOT be accurate;
363  * do not do it unless absolutely necessary.
364  *
365  * The statistics clock may (or may not) be run at a higher rate while
366  * profiling.  This profile clock runs at profhz.  We require that profhz
367  * be an integral multiple of stathz.
368  *
369  * If the statistics clock is running fast, it must be divided by the ratio
370  * profhz/stathz for statistics.  (For profiling, every tick counts.)
371  *
372  * Time-of-day is maintained using a "timecounter", which may or may
373  * not be related to the hardware generating the above mentioned
374  * interrupts.
375  */
376 
377 int	stathz;
378 int	profhz;
379 int	profprocs;
380 volatile int	ticks;
381 int	psratio;
382 
383 static DPCPU_DEFINE(int, pcputicks);	/* Per-CPU version of ticks. */
384 static int global_hardclock_run = 0;
385 
386 /*
387  * Initialize clock frequencies and start both clocks running.
388  */
389 /* ARGSUSED*/
390 static void
391 initclocks(dummy)
392 	void *dummy;
393 {
394 	register int i;
395 
396 	/*
397 	 * Set divisors to 1 (normal case) and let the machine-specific
398 	 * code do its bit.
399 	 */
400 	mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
401 	cpu_initclocks();
402 
403 	/*
404 	 * Compute profhz/stathz, and fix profhz if needed.
405 	 */
406 	i = stathz ? stathz : hz;
407 	if (profhz == 0)
408 		profhz = i;
409 	psratio = profhz / i;
410 #ifdef SW_WATCHDOG
411 	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
412 #endif
413 	/*
414 	 * Arrange for ticks to wrap 10 minutes after boot to help catch
415 	 * sign problems sooner.
416 	 */
417 	ticks = INT_MAX - (hz * 10 * 60);
418 }
419 
420 /*
421  * Each time the real-time timer fires, this function is called on all CPUs.
422  * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
423  * the other CPUs in the system need to call this function.
424  */
425 void
426 hardclock_cpu(int usermode)
427 {
428 	struct pstats *pstats;
429 	struct thread *td = curthread;
430 	struct proc *p = td->td_proc;
431 	int flags;
432 
433 	/*
434 	 * Run current process's virtual and profile time, as needed.
435 	 */
436 	pstats = p->p_stats;
437 	flags = 0;
438 	if (usermode &&
439 	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
440 		PROC_ITIMLOCK(p);
441 		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
442 			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
443 		PROC_ITIMUNLOCK(p);
444 	}
445 	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
446 		PROC_ITIMLOCK(p);
447 		if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
448 			flags |= TDF_PROFPEND | TDF_ASTPENDING;
449 		PROC_ITIMUNLOCK(p);
450 	}
451 	thread_lock(td);
452 	td->td_flags |= flags;
453 	thread_unlock(td);
454 
455 #ifdef HWPMC_HOOKS
456 	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
457 		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
458 	if (td->td_intr_frame != NULL)
459 		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
460 #endif
461 	callout_process(sbinuptime());
462 }
463 
464 /*
465  * The real-time timer, interrupting hz times per second.
466  */
467 void
468 hardclock(int usermode, uintfptr_t pc)
469 {
470 
471 	atomic_add_int(&ticks, 1);
472 	hardclock_cpu(usermode);
473 	tc_ticktock(1);
474 	cpu_tick_calibration();
475 	/*
476 	 * If no separate statistics clock is available, run it from here.
477 	 *
478 	 * XXX: this only works for UP
479 	 */
480 	if (stathz == 0) {
481 		profclock(usermode, pc);
482 		statclock(usermode);
483 	}
484 #ifdef DEVICE_POLLING
485 	hardclock_device_poll();	/* this is very short and quick */
486 #endif /* DEVICE_POLLING */
487 #ifdef SW_WATCHDOG
488 	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
489 		watchdog_fire();
490 #endif /* SW_WATCHDOG */
491 }
492 
493 void
494 hardclock_cnt(int cnt, int usermode)
495 {
496 	struct pstats *pstats;
497 	struct thread *td = curthread;
498 	struct proc *p = td->td_proc;
499 	int *t = DPCPU_PTR(pcputicks);
500 	int flags, global, newticks;
501 #ifdef SW_WATCHDOG
502 	int i;
503 #endif /* SW_WATCHDOG */
504 
505 	/*
506 	 * Update per-CPU and possibly global ticks values.
507 	 */
508 	*t += cnt;
509 	do {
510 		global = ticks;
511 		newticks = *t - global;
512 		if (newticks <= 0) {
513 			if (newticks < -1)
514 				*t = global - 1;
515 			newticks = 0;
516 			break;
517 		}
518 	} while (!atomic_cmpset_int(&ticks, global, *t));
519 
520 	/*
521 	 * Run current process's virtual and profile time, as needed.
522 	 */
523 	pstats = p->p_stats;
524 	flags = 0;
525 	if (usermode &&
526 	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
527 		PROC_ITIMLOCK(p);
528 		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
529 		    tick * cnt) == 0)
530 			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
531 		PROC_ITIMUNLOCK(p);
532 	}
533 	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
534 		PROC_ITIMLOCK(p);
535 		if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
536 		    tick * cnt) == 0)
537 			flags |= TDF_PROFPEND | TDF_ASTPENDING;
538 		PROC_ITIMUNLOCK(p);
539 	}
540 	thread_lock(td);
541 	td->td_flags |= flags;
542 	thread_unlock(td);
543 
544 #ifdef	HWPMC_HOOKS
545 	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
546 		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
547 	if (td->td_intr_frame != NULL)
548 		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
549 #endif
550 	/* We are in charge to handle this tick duty. */
551 	if (newticks > 0) {
552 		/* Dangerous and no need to call these things concurrently. */
553 		if (atomic_cmpset_acq_int(&global_hardclock_run, 0, 1)) {
554 			tc_ticktock(newticks);
555 #ifdef DEVICE_POLLING
556 			/* This is very short and quick. */
557 			hardclock_device_poll();
558 #endif /* DEVICE_POLLING */
559 			atomic_store_rel_int(&global_hardclock_run, 0);
560 		}
561 #ifdef SW_WATCHDOG
562 		if (watchdog_enabled > 0) {
563 			i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
564 			if (i > 0 && i <= newticks)
565 				watchdog_fire();
566 		}
567 #endif /* SW_WATCHDOG */
568 	}
569 	if (curcpu == CPU_FIRST())
570 		cpu_tick_calibration();
571 }
572 
573 void
574 hardclock_sync(int cpu)
575 {
576 	int	*t = DPCPU_ID_PTR(cpu, pcputicks);
577 
578 	*t = ticks;
579 }
580 
581 /*
582  * Compute number of ticks in the specified amount of time.
583  */
584 int
585 tvtohz(tv)
586 	struct timeval *tv;
587 {
588 	register unsigned long ticks;
589 	register long sec, usec;
590 
591 	/*
592 	 * If the number of usecs in the whole seconds part of the time
593 	 * difference fits in a long, then the total number of usecs will
594 	 * fit in an unsigned long.  Compute the total and convert it to
595 	 * ticks, rounding up and adding 1 to allow for the current tick
596 	 * to expire.  Rounding also depends on unsigned long arithmetic
597 	 * to avoid overflow.
598 	 *
599 	 * Otherwise, if the number of ticks in the whole seconds part of
600 	 * the time difference fits in a long, then convert the parts to
601 	 * ticks separately and add, using similar rounding methods and
602 	 * overflow avoidance.  This method would work in the previous
603 	 * case but it is slightly slower and assumes that hz is integral.
604 	 *
605 	 * Otherwise, round the time difference down to the maximum
606 	 * representable value.
607 	 *
608 	 * If ints have 32 bits, then the maximum value for any timeout in
609 	 * 10ms ticks is 248 days.
610 	 */
611 	sec = tv->tv_sec;
612 	usec = tv->tv_usec;
613 	if (usec < 0) {
614 		sec--;
615 		usec += 1000000;
616 	}
617 	if (sec < 0) {
618 #ifdef DIAGNOSTIC
619 		if (usec > 0) {
620 			sec++;
621 			usec -= 1000000;
622 		}
623 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
624 		       sec, usec);
625 #endif
626 		ticks = 1;
627 	} else if (sec <= LONG_MAX / 1000000)
628 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
629 			/ tick + 1;
630 	else if (sec <= LONG_MAX / hz)
631 		ticks = sec * hz
632 			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
633 	else
634 		ticks = LONG_MAX;
635 	if (ticks > INT_MAX)
636 		ticks = INT_MAX;
637 	return ((int)ticks);
638 }
639 
640 /*
641  * Start profiling on a process.
642  *
643  * Kernel profiling passes proc0 which never exits and hence
644  * keeps the profile clock running constantly.
645  */
646 void
647 startprofclock(p)
648 	register struct proc *p;
649 {
650 
651 	PROC_LOCK_ASSERT(p, MA_OWNED);
652 	if (p->p_flag & P_STOPPROF)
653 		return;
654 	if ((p->p_flag & P_PROFIL) == 0) {
655 		p->p_flag |= P_PROFIL;
656 		mtx_lock(&time_lock);
657 		if (++profprocs == 1)
658 			cpu_startprofclock();
659 		mtx_unlock(&time_lock);
660 	}
661 }
662 
663 /*
664  * Stop profiling on a process.
665  */
666 void
667 stopprofclock(p)
668 	register struct proc *p;
669 {
670 
671 	PROC_LOCK_ASSERT(p, MA_OWNED);
672 	if (p->p_flag & P_PROFIL) {
673 		if (p->p_profthreads != 0) {
674 			while (p->p_profthreads != 0) {
675 				p->p_flag |= P_STOPPROF;
676 				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
677 				    "stopprof", 0);
678 			}
679 		}
680 		if ((p->p_flag & P_PROFIL) == 0)
681 			return;
682 		p->p_flag &= ~P_PROFIL;
683 		mtx_lock(&time_lock);
684 		if (--profprocs == 0)
685 			cpu_stopprofclock();
686 		mtx_unlock(&time_lock);
687 	}
688 }
689 
690 /*
691  * Statistics clock.  Updates rusage information and calls the scheduler
692  * to adjust priorities of the active thread.
693  *
694  * This should be called by all active processors.
695  */
696 void
697 statclock(int usermode)
698 {
699 
700 	statclock_cnt(1, usermode);
701 }
702 
703 void
704 statclock_cnt(int cnt, int usermode)
705 {
706 	struct rusage *ru;
707 	struct vmspace *vm;
708 	struct thread *td;
709 	struct proc *p;
710 	long rss;
711 	long *cp_time;
712 
713 	td = curthread;
714 	p = td->td_proc;
715 
716 	cp_time = (long *)PCPU_PTR(cp_time);
717 	if (usermode) {
718 		/*
719 		 * Charge the time as appropriate.
720 		 */
721 		td->td_uticks += cnt;
722 		if (p->p_nice > NZERO)
723 			cp_time[CP_NICE] += cnt;
724 		else
725 			cp_time[CP_USER] += cnt;
726 	} else {
727 		/*
728 		 * Came from kernel mode, so we were:
729 		 * - handling an interrupt,
730 		 * - doing syscall or trap work on behalf of the current
731 		 *   user process, or
732 		 * - spinning in the idle loop.
733 		 * Whichever it is, charge the time as appropriate.
734 		 * Note that we charge interrupts to the current process,
735 		 * regardless of whether they are ``for'' that process,
736 		 * so that we know how much of its real time was spent
737 		 * in ``non-process'' (i.e., interrupt) work.
738 		 */
739 		if ((td->td_pflags & TDP_ITHREAD) ||
740 		    td->td_intr_nesting_level >= 2) {
741 			td->td_iticks += cnt;
742 			cp_time[CP_INTR] += cnt;
743 		} else {
744 			td->td_pticks += cnt;
745 			td->td_sticks += cnt;
746 			if (!TD_IS_IDLETHREAD(td))
747 				cp_time[CP_SYS] += cnt;
748 			else
749 				cp_time[CP_IDLE] += cnt;
750 		}
751 	}
752 
753 	/* Update resource usage integrals and maximums. */
754 	MPASS(p->p_vmspace != NULL);
755 	vm = p->p_vmspace;
756 	ru = &td->td_ru;
757 	ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
758 	ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
759 	ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
760 	rss = pgtok(vmspace_resident_count(vm));
761 	if (ru->ru_maxrss < rss)
762 		ru->ru_maxrss = rss;
763 	KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
764 	    "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
765 	SDT_PROBE2(sched, , , tick, td, td->td_proc);
766 	thread_lock_flags(td, MTX_QUIET);
767 	for ( ; cnt > 0; cnt--)
768 		sched_clock(td);
769 	thread_unlock(td);
770 #ifdef HWPMC_HOOKS
771 	if (td->td_intr_frame != NULL)
772 		PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
773 #endif
774 }
775 
776 void
777 profclock(int usermode, uintfptr_t pc)
778 {
779 
780 	profclock_cnt(1, usermode, pc);
781 }
782 
783 void
784 profclock_cnt(int cnt, int usermode, uintfptr_t pc)
785 {
786 	struct thread *td;
787 #ifdef GPROF
788 	struct gmonparam *g;
789 	uintfptr_t i;
790 #endif
791 
792 	td = curthread;
793 	if (usermode) {
794 		/*
795 		 * Came from user mode; CPU was in user state.
796 		 * If this process is being profiled, record the tick.
797 		 * if there is no related user location yet, don't
798 		 * bother trying to count it.
799 		 */
800 		if (td->td_proc->p_flag & P_PROFIL)
801 			addupc_intr(td, pc, cnt);
802 	}
803 #ifdef GPROF
804 	else {
805 		/*
806 		 * Kernel statistics are just like addupc_intr, only easier.
807 		 */
808 		g = &_gmonparam;
809 		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
810 			i = PC_TO_I(g, pc);
811 			if (i < g->textsize) {
812 				KCOUNT(g, i) += cnt;
813 			}
814 		}
815 	}
816 #endif
817 #ifdef HWPMC_HOOKS
818 	if (td->td_intr_frame != NULL)
819 		PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
820 #endif
821 }
822 
823 /*
824  * Return information about system clocks.
825  */
826 static int
827 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
828 {
829 	struct clockinfo clkinfo;
830 	/*
831 	 * Construct clockinfo structure.
832 	 */
833 	bzero(&clkinfo, sizeof(clkinfo));
834 	clkinfo.hz = hz;
835 	clkinfo.tick = tick;
836 	clkinfo.profhz = profhz;
837 	clkinfo.stathz = stathz ? stathz : hz;
838 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
839 }
840 
841 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
842 	CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
843 	0, 0, sysctl_kern_clockrate, "S,clockinfo",
844 	"Rate and period of various kernel clocks");
845 
846 #ifdef SW_WATCHDOG
847 
848 static void
849 watchdog_config(void *unused __unused, u_int cmd, int *error)
850 {
851 	u_int u;
852 
853 	u = cmd & WD_INTERVAL;
854 	if (u >= WD_TO_1SEC) {
855 		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
856 		watchdog_enabled = 1;
857 		*error = 0;
858 	} else {
859 		watchdog_enabled = 0;
860 	}
861 }
862 
863 /*
864  * Handle a watchdog timeout by dumping interrupt information and
865  * then either dropping to DDB or panicking.
866  */
867 static void
868 watchdog_fire(void)
869 {
870 	int nintr;
871 	uint64_t inttotal;
872 	u_long *curintr;
873 	char *curname;
874 
875 	curintr = intrcnt;
876 	curname = intrnames;
877 	inttotal = 0;
878 	nintr = sintrcnt / sizeof(u_long);
879 
880 	printf("interrupt                   total\n");
881 	while (--nintr >= 0) {
882 		if (*curintr)
883 			printf("%-12s %20lu\n", curname, *curintr);
884 		curname += strlen(curname) + 1;
885 		inttotal += *curintr++;
886 	}
887 	printf("Total        %20ju\n", (uintmax_t)inttotal);
888 
889 #if defined(KDB) && !defined(KDB_UNATTENDED)
890 	kdb_backtrace();
891 	kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
892 #else
893 	panic("watchdog timeout");
894 #endif
895 }
896 
897 #endif /* SW_WATCHDOG */
898