xref: /freebsd/sys/kern/kern_clock.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_device_polling.h"
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_ntp.h"
43 #include "opt_watchdog.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/kdb.h>
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/ktr.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/resource.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sched.h>
57 #include <sys/signalvar.h>
58 #include <sys/smp.h>
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_map.h>
62 #include <sys/sysctl.h>
63 #include <sys/bus.h>
64 #include <sys/interrupt.h>
65 #include <sys/limits.h>
66 #include <sys/timetc.h>
67 
68 #include <machine/cpu.h>
69 
70 #ifdef GPROF
71 #include <sys/gmon.h>
72 #endif
73 
74 #ifdef HWPMC_HOOKS
75 #include <sys/pmckern.h>
76 #endif
77 
78 #ifdef DEVICE_POLLING
79 extern void hardclock_device_poll(void);
80 #endif /* DEVICE_POLLING */
81 
82 static void initclocks(void *dummy);
83 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
84 
85 /* Some of these don't belong here, but it's easiest to concentrate them. */
86 long cp_time[CPUSTATES];
87 
88 static int
89 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
90 {
91 	int error;
92 #ifdef SCTL_MASK32
93 	int i;
94 	unsigned int cp_time32[CPUSTATES];
95 
96 	if (req->flags & SCTL_MASK32) {
97 		if (!req->oldptr)
98 			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
99 		for (i = 0; i < CPUSTATES; i++)
100 			cp_time32[i] = (unsigned int)cp_time[i];
101 		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
102 	} else
103 #endif
104 	{
105 		if (!req->oldptr)
106 			return SYSCTL_OUT(req, 0, sizeof(cp_time));
107 		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
108 	}
109 	return error;
110 }
111 
112 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD,
113     0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
114 
115 #ifdef SW_WATCHDOG
116 #include <sys/watchdog.h>
117 
118 static int watchdog_ticks;
119 static int watchdog_enabled;
120 static void watchdog_fire(void);
121 static void watchdog_config(void *, u_int, int *);
122 #endif /* SW_WATCHDOG */
123 
124 /*
125  * Clock handling routines.
126  *
127  * This code is written to operate with two timers that run independently of
128  * each other.
129  *
130  * The main timer, running hz times per second, is used to trigger interval
131  * timers, timeouts and rescheduling as needed.
132  *
133  * The second timer handles kernel and user profiling,
134  * and does resource use estimation.  If the second timer is programmable,
135  * it is randomized to avoid aliasing between the two clocks.  For example,
136  * the randomization prevents an adversary from always giving up the cpu
137  * just before its quantum expires.  Otherwise, it would never accumulate
138  * cpu ticks.  The mean frequency of the second timer is stathz.
139  *
140  * If no second timer exists, stathz will be zero; in this case we drive
141  * profiling and statistics off the main clock.  This WILL NOT be accurate;
142  * do not do it unless absolutely necessary.
143  *
144  * The statistics clock may (or may not) be run at a higher rate while
145  * profiling.  This profile clock runs at profhz.  We require that profhz
146  * be an integral multiple of stathz.
147  *
148  * If the statistics clock is running fast, it must be divided by the ratio
149  * profhz/stathz for statistics.  (For profiling, every tick counts.)
150  *
151  * Time-of-day is maintained using a "timecounter", which may or may
152  * not be related to the hardware generating the above mentioned
153  * interrupts.
154  */
155 
156 int	stathz;
157 int	profhz;
158 int	profprocs;
159 int	ticks;
160 int	psratio;
161 
162 /*
163  * Initialize clock frequencies and start both clocks running.
164  */
165 /* ARGSUSED*/
166 static void
167 initclocks(dummy)
168 	void *dummy;
169 {
170 	register int i;
171 
172 	/*
173 	 * Set divisors to 1 (normal case) and let the machine-specific
174 	 * code do its bit.
175 	 */
176 	cpu_initclocks();
177 
178 	/*
179 	 * Compute profhz/stathz, and fix profhz if needed.
180 	 */
181 	i = stathz ? stathz : hz;
182 	if (profhz == 0)
183 		profhz = i;
184 	psratio = profhz / i;
185 #ifdef SW_WATCHDOG
186 	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
187 #endif
188 }
189 
190 /*
191  * Each time the real-time timer fires, this function is called on all CPUs.
192  * Note that hardclock() calls hardclock_process() for the boot CPU, so only
193  * the other CPUs in the system need to call this function.
194  */
195 void
196 hardclock_process(frame)
197 	register struct clockframe *frame;
198 {
199 	struct pstats *pstats;
200 	struct thread *td = curthread;
201 	struct proc *p = td->td_proc;
202 
203 	/*
204 	 * Run current process's virtual and profile time, as needed.
205 	 */
206 	mtx_lock_spin_flags(&sched_lock, MTX_QUIET);
207 	if (p->p_flag & P_SA) {
208 		/* XXXKSE What to do? */
209 	} else {
210 		pstats = p->p_stats;
211 		if (CLKF_USERMODE(frame) &&
212 		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
213 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
214 			p->p_sflag |= PS_ALRMPEND;
215 			td->td_flags |= TDF_ASTPENDING;
216 		}
217 		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
218 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
219 			p->p_sflag |= PS_PROFPEND;
220 			td->td_flags |= TDF_ASTPENDING;
221 		}
222 	}
223 	mtx_unlock_spin_flags(&sched_lock, MTX_QUIET);
224 
225 #ifdef	HWPMC_HOOKS
226 	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
227 		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
228 #endif
229 }
230 
231 /*
232  * The real-time timer, interrupting hz times per second.
233  */
234 void
235 hardclock(frame)
236 	register struct clockframe *frame;
237 {
238 	int need_softclock = 0;
239 
240 	CTR0(KTR_CLK, "hardclock fired");
241 	hardclock_process(frame);
242 
243 	tc_ticktock();
244 	/*
245 	 * If no separate statistics clock is available, run it from here.
246 	 *
247 	 * XXX: this only works for UP
248 	 */
249 	if (stathz == 0) {
250 		profclock(frame);
251 		statclock(frame);
252 	}
253 
254 #ifdef DEVICE_POLLING
255 	hardclock_device_poll();	/* this is very short and quick */
256 #endif /* DEVICE_POLLING */
257 
258 	/*
259 	 * Process callouts at a very low cpu priority, so we don't keep the
260 	 * relatively high clock interrupt priority any longer than necessary.
261 	 */
262 	mtx_lock_spin_flags(&callout_lock, MTX_QUIET);
263 	ticks++;
264 	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
265 		need_softclock = 1;
266 	} else if (softticks + 1 == ticks)
267 		++softticks;
268 	mtx_unlock_spin_flags(&callout_lock, MTX_QUIET);
269 
270 	/*
271 	 * swi_sched acquires sched_lock, so we don't want to call it with
272 	 * callout_lock held; incorrect locking order.
273 	 */
274 	if (need_softclock)
275 		swi_sched(softclock_ih, 0);
276 
277 #ifdef SW_WATCHDOG
278 	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
279 		watchdog_fire();
280 #endif /* SW_WATCHDOG */
281 }
282 
283 /*
284  * Compute number of ticks in the specified amount of time.
285  */
286 int
287 tvtohz(tv)
288 	struct timeval *tv;
289 {
290 	register unsigned long ticks;
291 	register long sec, usec;
292 
293 	/*
294 	 * If the number of usecs in the whole seconds part of the time
295 	 * difference fits in a long, then the total number of usecs will
296 	 * fit in an unsigned long.  Compute the total and convert it to
297 	 * ticks, rounding up and adding 1 to allow for the current tick
298 	 * to expire.  Rounding also depends on unsigned long arithmetic
299 	 * to avoid overflow.
300 	 *
301 	 * Otherwise, if the number of ticks in the whole seconds part of
302 	 * the time difference fits in a long, then convert the parts to
303 	 * ticks separately and add, using similar rounding methods and
304 	 * overflow avoidance.  This method would work in the previous
305 	 * case but it is slightly slower and assumes that hz is integral.
306 	 *
307 	 * Otherwise, round the time difference down to the maximum
308 	 * representable value.
309 	 *
310 	 * If ints have 32 bits, then the maximum value for any timeout in
311 	 * 10ms ticks is 248 days.
312 	 */
313 	sec = tv->tv_sec;
314 	usec = tv->tv_usec;
315 	if (usec < 0) {
316 		sec--;
317 		usec += 1000000;
318 	}
319 	if (sec < 0) {
320 #ifdef DIAGNOSTIC
321 		if (usec > 0) {
322 			sec++;
323 			usec -= 1000000;
324 		}
325 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
326 		       sec, usec);
327 #endif
328 		ticks = 1;
329 	} else if (sec <= LONG_MAX / 1000000)
330 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
331 			/ tick + 1;
332 	else if (sec <= LONG_MAX / hz)
333 		ticks = sec * hz
334 			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
335 	else
336 		ticks = LONG_MAX;
337 	if (ticks > INT_MAX)
338 		ticks = INT_MAX;
339 	return ((int)ticks);
340 }
341 
342 /*
343  * Start profiling on a process.
344  *
345  * Kernel profiling passes proc0 which never exits and hence
346  * keeps the profile clock running constantly.
347  */
348 void
349 startprofclock(p)
350 	register struct proc *p;
351 {
352 
353 	/*
354 	 * XXX; Right now sched_lock protects statclock(), but perhaps
355 	 * it should be protected later on by a time_lock, which would
356 	 * cover psdiv, etc. as well.
357 	 */
358 	PROC_LOCK_ASSERT(p, MA_OWNED);
359 	if (p->p_flag & P_STOPPROF)
360 		return;
361 	if ((p->p_flag & P_PROFIL) == 0) {
362 		mtx_lock_spin(&sched_lock);
363 		p->p_flag |= P_PROFIL;
364 		if (++profprocs == 1)
365 			cpu_startprofclock();
366 		mtx_unlock_spin(&sched_lock);
367 	}
368 }
369 
370 /*
371  * Stop profiling on a process.
372  */
373 void
374 stopprofclock(p)
375 	register struct proc *p;
376 {
377 
378 	PROC_LOCK_ASSERT(p, MA_OWNED);
379 	if (p->p_flag & P_PROFIL) {
380 		if (p->p_profthreads != 0) {
381 			p->p_flag |= P_STOPPROF;
382 			while (p->p_profthreads != 0)
383 				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
384 				    "stopprof", 0);
385 			p->p_flag &= ~P_STOPPROF;
386 		}
387 		if ((p->p_flag & P_PROFIL) == 0)
388 			return;
389 		mtx_lock_spin(&sched_lock);
390 		p->p_flag &= ~P_PROFIL;
391 		if (--profprocs == 0)
392 			cpu_stopprofclock();
393 		mtx_unlock_spin(&sched_lock);
394 	}
395 }
396 
397 /*
398  * Statistics clock.  Grab profile sample, and if divider reaches 0,
399  * do process and kernel statistics.  Most of the statistics are only
400  * used by user-level statistics programs.  The main exceptions are
401  * ke->ke_uticks, p->p_rux.rux_sticks, p->p_rux.rux_iticks, and p->p_estcpu.
402  * This should be called by all active processors.
403  */
404 void
405 statclock(frame)
406 	register struct clockframe *frame;
407 {
408 	struct rusage *ru;
409 	struct vmspace *vm;
410 	struct thread *td;
411 	struct proc *p;
412 	long rss;
413 
414 	td = curthread;
415 	p = td->td_proc;
416 
417 	mtx_lock_spin_flags(&sched_lock, MTX_QUIET);
418 	if (CLKF_USERMODE(frame)) {
419 		/*
420 		 * Charge the time as appropriate.
421 		 */
422 		if (p->p_flag & P_SA)
423 			thread_statclock(1);
424 		p->p_rux.rux_uticks++;
425 		if (p->p_nice > NZERO)
426 			cp_time[CP_NICE]++;
427 		else
428 			cp_time[CP_USER]++;
429 	} else {
430 		/*
431 		 * Came from kernel mode, so we were:
432 		 * - handling an interrupt,
433 		 * - doing syscall or trap work on behalf of the current
434 		 *   user process, or
435 		 * - spinning in the idle loop.
436 		 * Whichever it is, charge the time as appropriate.
437 		 * Note that we charge interrupts to the current process,
438 		 * regardless of whether they are ``for'' that process,
439 		 * so that we know how much of its real time was spent
440 		 * in ``non-process'' (i.e., interrupt) work.
441 		 */
442 		if ((td->td_pflags & TDP_ITHREAD) ||
443 		    td->td_intr_nesting_level >= 2) {
444 			p->p_rux.rux_iticks++;
445 			cp_time[CP_INTR]++;
446 		} else {
447 			if (p->p_flag & P_SA)
448 				thread_statclock(0);
449 			td->td_sticks++;
450 			p->p_rux.rux_sticks++;
451 			if (td != PCPU_GET(idlethread))
452 				cp_time[CP_SYS]++;
453 			else
454 				cp_time[CP_IDLE]++;
455 		}
456 	}
457 	CTR4(KTR_SCHED, "statclock: %p(%s) prio %d stathz %d",
458 	    td, td->td_proc->p_comm, td->td_priority, (stathz)?stathz:hz);
459 
460 	sched_clock(td);
461 
462 	/* Update resource usage integrals and maximums. */
463 	MPASS(p->p_stats != NULL);
464 	MPASS(p->p_vmspace != NULL);
465 	vm = p->p_vmspace;
466 	ru = &p->p_stats->p_ru;
467 	ru->ru_ixrss += pgtok(vm->vm_tsize);
468 	ru->ru_idrss += pgtok(vm->vm_dsize);
469 	ru->ru_isrss += pgtok(vm->vm_ssize);
470 	rss = pgtok(vmspace_resident_count(vm));
471 	if (ru->ru_maxrss < rss)
472 		ru->ru_maxrss = rss;
473 	mtx_unlock_spin_flags(&sched_lock, MTX_QUIET);
474 }
475 
476 void
477 profclock(frame)
478 	register struct clockframe *frame;
479 {
480 	struct thread *td;
481 #ifdef GPROF
482 	struct gmonparam *g;
483 	int i;
484 #endif
485 
486 	td = curthread;
487 	if (CLKF_USERMODE(frame)) {
488 		/*
489 		 * Came from user mode; CPU was in user state.
490 		 * If this process is being profiled, record the tick.
491 		 * if there is no related user location yet, don't
492 		 * bother trying to count it.
493 		 */
494 		if (td->td_proc->p_flag & P_PROFIL)
495 			addupc_intr(td, CLKF_PC(frame), 1);
496 	}
497 #ifdef GPROF
498 	else {
499 		/*
500 		 * Kernel statistics are just like addupc_intr, only easier.
501 		 */
502 		g = &_gmonparam;
503 		if (g->state == GMON_PROF_ON) {
504 			i = CLKF_PC(frame) - g->lowpc;
505 			if (i < g->textsize) {
506 				i /= HISTFRACTION * sizeof(*g->kcount);
507 				g->kcount[i]++;
508 			}
509 		}
510 	}
511 #endif
512 }
513 
514 /*
515  * Return information about system clocks.
516  */
517 static int
518 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
519 {
520 	struct clockinfo clkinfo;
521 	/*
522 	 * Construct clockinfo structure.
523 	 */
524 	bzero(&clkinfo, sizeof(clkinfo));
525 	clkinfo.hz = hz;
526 	clkinfo.tick = tick;
527 	clkinfo.profhz = profhz;
528 	clkinfo.stathz = stathz ? stathz : hz;
529 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
530 }
531 
532 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
533 	0, 0, sysctl_kern_clockrate, "S,clockinfo",
534 	"Rate and period of various kernel clocks");
535 
536 #ifdef SW_WATCHDOG
537 
538 static void
539 watchdog_config(void *unused __unused, u_int cmd, int *err)
540 {
541 	u_int u;
542 
543 	u = cmd & WD_INTERVAL;
544 	if ((cmd & WD_ACTIVE) && u >= WD_TO_1SEC) {
545 		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
546 		watchdog_enabled = 1;
547 		*err = 0;
548 	} else {
549 		watchdog_enabled = 0;
550 	}
551 }
552 
553 /*
554  * Handle a watchdog timeout by dumping interrupt information and
555  * then either dropping to DDB or panicing.
556  */
557 static void
558 watchdog_fire(void)
559 {
560 	int nintr;
561 	u_int64_t inttotal;
562 	u_long *curintr;
563 	char *curname;
564 
565 	curintr = intrcnt;
566 	curname = intrnames;
567 	inttotal = 0;
568 	nintr = eintrcnt - intrcnt;
569 
570 	printf("interrupt                   total\n");
571 	while (--nintr >= 0) {
572 		if (*curintr)
573 			printf("%-12s %20lu\n", curname, *curintr);
574 		curname += strlen(curname) + 1;
575 		inttotal += *curintr++;
576 	}
577 	printf("Total        %20ju\n", (uintmax_t)inttotal);
578 
579 #ifdef KDB
580 	kdb_backtrace();
581 	kdb_enter("watchdog timeout");
582 #else
583 	panic("watchdog timeout");
584 #endif /* KDB */
585 }
586 
587 #endif /* SW_WATCHDOG */
588