1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_device_polling.h" 41 #include "opt_hwpmc_hooks.h" 42 #include "opt_ntp.h" 43 #include "opt_watchdog.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/callout.h> 48 #include <sys/kdb.h> 49 #include <sys/kernel.h> 50 #include <sys/lock.h> 51 #include <sys/ktr.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/resource.h> 55 #include <sys/resourcevar.h> 56 #include <sys/sched.h> 57 #include <sys/signalvar.h> 58 #include <sys/smp.h> 59 #include <vm/vm.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 #include <sys/sysctl.h> 63 #include <sys/bus.h> 64 #include <sys/interrupt.h> 65 #include <sys/limits.h> 66 #include <sys/timetc.h> 67 68 #include <machine/cpu.h> 69 70 #ifdef GPROF 71 #include <sys/gmon.h> 72 #endif 73 74 #ifdef HWPMC_HOOKS 75 #include <sys/pmckern.h> 76 #endif 77 78 #ifdef DEVICE_POLLING 79 extern void hardclock_device_poll(void); 80 #endif /* DEVICE_POLLING */ 81 82 static void initclocks(void *dummy); 83 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 84 85 /* Some of these don't belong here, but it's easiest to concentrate them. */ 86 long cp_time[CPUSTATES]; 87 88 static int 89 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS) 90 { 91 int error; 92 #ifdef SCTL_MASK32 93 int i; 94 unsigned int cp_time32[CPUSTATES]; 95 96 if (req->flags & SCTL_MASK32) { 97 if (!req->oldptr) 98 return SYSCTL_OUT(req, 0, sizeof(cp_time32)); 99 for (i = 0; i < CPUSTATES; i++) 100 cp_time32[i] = (unsigned int)cp_time[i]; 101 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32)); 102 } else 103 #endif 104 { 105 if (!req->oldptr) 106 return SYSCTL_OUT(req, 0, sizeof(cp_time)); 107 error = SYSCTL_OUT(req, cp_time, sizeof(cp_time)); 108 } 109 return error; 110 } 111 112 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD, 113 0,0, sysctl_kern_cp_time, "LU", "CPU time statistics"); 114 115 #ifdef SW_WATCHDOG 116 #include <sys/watchdog.h> 117 118 static int watchdog_ticks; 119 static int watchdog_enabled; 120 static void watchdog_fire(void); 121 static void watchdog_config(void *, u_int, int *); 122 #endif /* SW_WATCHDOG */ 123 124 /* 125 * Clock handling routines. 126 * 127 * This code is written to operate with two timers that run independently of 128 * each other. 129 * 130 * The main timer, running hz times per second, is used to trigger interval 131 * timers, timeouts and rescheduling as needed. 132 * 133 * The second timer handles kernel and user profiling, 134 * and does resource use estimation. If the second timer is programmable, 135 * it is randomized to avoid aliasing between the two clocks. For example, 136 * the randomization prevents an adversary from always giving up the cpu 137 * just before its quantum expires. Otherwise, it would never accumulate 138 * cpu ticks. The mean frequency of the second timer is stathz. 139 * 140 * If no second timer exists, stathz will be zero; in this case we drive 141 * profiling and statistics off the main clock. This WILL NOT be accurate; 142 * do not do it unless absolutely necessary. 143 * 144 * The statistics clock may (or may not) be run at a higher rate while 145 * profiling. This profile clock runs at profhz. We require that profhz 146 * be an integral multiple of stathz. 147 * 148 * If the statistics clock is running fast, it must be divided by the ratio 149 * profhz/stathz for statistics. (For profiling, every tick counts.) 150 * 151 * Time-of-day is maintained using a "timecounter", which may or may 152 * not be related to the hardware generating the above mentioned 153 * interrupts. 154 */ 155 156 int stathz; 157 int profhz; 158 int profprocs; 159 int ticks; 160 int psratio; 161 162 /* 163 * Initialize clock frequencies and start both clocks running. 164 */ 165 /* ARGSUSED*/ 166 static void 167 initclocks(dummy) 168 void *dummy; 169 { 170 register int i; 171 172 /* 173 * Set divisors to 1 (normal case) and let the machine-specific 174 * code do its bit. 175 */ 176 cpu_initclocks(); 177 178 /* 179 * Compute profhz/stathz, and fix profhz if needed. 180 */ 181 i = stathz ? stathz : hz; 182 if (profhz == 0) 183 profhz = i; 184 psratio = profhz / i; 185 #ifdef SW_WATCHDOG 186 EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0); 187 #endif 188 } 189 190 /* 191 * Each time the real-time timer fires, this function is called on all CPUs. 192 * Note that hardclock() calls hardclock_process() for the boot CPU, so only 193 * the other CPUs in the system need to call this function. 194 */ 195 void 196 hardclock_process(frame) 197 register struct clockframe *frame; 198 { 199 struct pstats *pstats; 200 struct thread *td = curthread; 201 struct proc *p = td->td_proc; 202 203 /* 204 * Run current process's virtual and profile time, as needed. 205 */ 206 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 207 if (p->p_flag & P_SA) { 208 /* XXXKSE What to do? */ 209 } else { 210 pstats = p->p_stats; 211 if (CLKF_USERMODE(frame) && 212 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 213 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) { 214 p->p_sflag |= PS_ALRMPEND; 215 td->td_flags |= TDF_ASTPENDING; 216 } 217 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 218 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) { 219 p->p_sflag |= PS_PROFPEND; 220 td->td_flags |= TDF_ASTPENDING; 221 } 222 } 223 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 224 225 #ifdef HWPMC_HOOKS 226 if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid))) 227 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL); 228 #endif 229 } 230 231 /* 232 * The real-time timer, interrupting hz times per second. 233 */ 234 void 235 hardclock(frame) 236 register struct clockframe *frame; 237 { 238 int need_softclock = 0; 239 240 CTR0(KTR_CLK, "hardclock fired"); 241 hardclock_process(frame); 242 243 tc_ticktock(); 244 /* 245 * If no separate statistics clock is available, run it from here. 246 * 247 * XXX: this only works for UP 248 */ 249 if (stathz == 0) { 250 profclock(frame); 251 statclock(frame); 252 } 253 254 #ifdef DEVICE_POLLING 255 hardclock_device_poll(); /* this is very short and quick */ 256 #endif /* DEVICE_POLLING */ 257 258 /* 259 * Process callouts at a very low cpu priority, so we don't keep the 260 * relatively high clock interrupt priority any longer than necessary. 261 */ 262 mtx_lock_spin_flags(&callout_lock, MTX_QUIET); 263 ticks++; 264 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) { 265 need_softclock = 1; 266 } else if (softticks + 1 == ticks) 267 ++softticks; 268 mtx_unlock_spin_flags(&callout_lock, MTX_QUIET); 269 270 /* 271 * swi_sched acquires sched_lock, so we don't want to call it with 272 * callout_lock held; incorrect locking order. 273 */ 274 if (need_softclock) 275 swi_sched(softclock_ih, 0); 276 277 #ifdef SW_WATCHDOG 278 if (watchdog_enabled > 0 && --watchdog_ticks <= 0) 279 watchdog_fire(); 280 #endif /* SW_WATCHDOG */ 281 } 282 283 /* 284 * Compute number of ticks in the specified amount of time. 285 */ 286 int 287 tvtohz(tv) 288 struct timeval *tv; 289 { 290 register unsigned long ticks; 291 register long sec, usec; 292 293 /* 294 * If the number of usecs in the whole seconds part of the time 295 * difference fits in a long, then the total number of usecs will 296 * fit in an unsigned long. Compute the total and convert it to 297 * ticks, rounding up and adding 1 to allow for the current tick 298 * to expire. Rounding also depends on unsigned long arithmetic 299 * to avoid overflow. 300 * 301 * Otherwise, if the number of ticks in the whole seconds part of 302 * the time difference fits in a long, then convert the parts to 303 * ticks separately and add, using similar rounding methods and 304 * overflow avoidance. This method would work in the previous 305 * case but it is slightly slower and assumes that hz is integral. 306 * 307 * Otherwise, round the time difference down to the maximum 308 * representable value. 309 * 310 * If ints have 32 bits, then the maximum value for any timeout in 311 * 10ms ticks is 248 days. 312 */ 313 sec = tv->tv_sec; 314 usec = tv->tv_usec; 315 if (usec < 0) { 316 sec--; 317 usec += 1000000; 318 } 319 if (sec < 0) { 320 #ifdef DIAGNOSTIC 321 if (usec > 0) { 322 sec++; 323 usec -= 1000000; 324 } 325 printf("tvotohz: negative time difference %ld sec %ld usec\n", 326 sec, usec); 327 #endif 328 ticks = 1; 329 } else if (sec <= LONG_MAX / 1000000) 330 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 331 / tick + 1; 332 else if (sec <= LONG_MAX / hz) 333 ticks = sec * hz 334 + ((unsigned long)usec + (tick - 1)) / tick + 1; 335 else 336 ticks = LONG_MAX; 337 if (ticks > INT_MAX) 338 ticks = INT_MAX; 339 return ((int)ticks); 340 } 341 342 /* 343 * Start profiling on a process. 344 * 345 * Kernel profiling passes proc0 which never exits and hence 346 * keeps the profile clock running constantly. 347 */ 348 void 349 startprofclock(p) 350 register struct proc *p; 351 { 352 353 /* 354 * XXX; Right now sched_lock protects statclock(), but perhaps 355 * it should be protected later on by a time_lock, which would 356 * cover psdiv, etc. as well. 357 */ 358 PROC_LOCK_ASSERT(p, MA_OWNED); 359 if (p->p_flag & P_STOPPROF) 360 return; 361 if ((p->p_flag & P_PROFIL) == 0) { 362 mtx_lock_spin(&sched_lock); 363 p->p_flag |= P_PROFIL; 364 if (++profprocs == 1) 365 cpu_startprofclock(); 366 mtx_unlock_spin(&sched_lock); 367 } 368 } 369 370 /* 371 * Stop profiling on a process. 372 */ 373 void 374 stopprofclock(p) 375 register struct proc *p; 376 { 377 378 PROC_LOCK_ASSERT(p, MA_OWNED); 379 if (p->p_flag & P_PROFIL) { 380 if (p->p_profthreads != 0) { 381 p->p_flag |= P_STOPPROF; 382 while (p->p_profthreads != 0) 383 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE, 384 "stopprof", 0); 385 p->p_flag &= ~P_STOPPROF; 386 } 387 if ((p->p_flag & P_PROFIL) == 0) 388 return; 389 mtx_lock_spin(&sched_lock); 390 p->p_flag &= ~P_PROFIL; 391 if (--profprocs == 0) 392 cpu_stopprofclock(); 393 mtx_unlock_spin(&sched_lock); 394 } 395 } 396 397 /* 398 * Statistics clock. Grab profile sample, and if divider reaches 0, 399 * do process and kernel statistics. Most of the statistics are only 400 * used by user-level statistics programs. The main exceptions are 401 * ke->ke_uticks, p->p_rux.rux_sticks, p->p_rux.rux_iticks, and p->p_estcpu. 402 * This should be called by all active processors. 403 */ 404 void 405 statclock(frame) 406 register struct clockframe *frame; 407 { 408 struct rusage *ru; 409 struct vmspace *vm; 410 struct thread *td; 411 struct proc *p; 412 long rss; 413 414 td = curthread; 415 p = td->td_proc; 416 417 mtx_lock_spin_flags(&sched_lock, MTX_QUIET); 418 if (CLKF_USERMODE(frame)) { 419 /* 420 * Charge the time as appropriate. 421 */ 422 if (p->p_flag & P_SA) 423 thread_statclock(1); 424 p->p_rux.rux_uticks++; 425 if (p->p_nice > NZERO) 426 cp_time[CP_NICE]++; 427 else 428 cp_time[CP_USER]++; 429 } else { 430 /* 431 * Came from kernel mode, so we were: 432 * - handling an interrupt, 433 * - doing syscall or trap work on behalf of the current 434 * user process, or 435 * - spinning in the idle loop. 436 * Whichever it is, charge the time as appropriate. 437 * Note that we charge interrupts to the current process, 438 * regardless of whether they are ``for'' that process, 439 * so that we know how much of its real time was spent 440 * in ``non-process'' (i.e., interrupt) work. 441 */ 442 if ((td->td_pflags & TDP_ITHREAD) || 443 td->td_intr_nesting_level >= 2) { 444 p->p_rux.rux_iticks++; 445 cp_time[CP_INTR]++; 446 } else { 447 if (p->p_flag & P_SA) 448 thread_statclock(0); 449 td->td_sticks++; 450 p->p_rux.rux_sticks++; 451 if (td != PCPU_GET(idlethread)) 452 cp_time[CP_SYS]++; 453 else 454 cp_time[CP_IDLE]++; 455 } 456 } 457 CTR4(KTR_SCHED, "statclock: %p(%s) prio %d stathz %d", 458 td, td->td_proc->p_comm, td->td_priority, (stathz)?stathz:hz); 459 460 sched_clock(td); 461 462 /* Update resource usage integrals and maximums. */ 463 MPASS(p->p_stats != NULL); 464 MPASS(p->p_vmspace != NULL); 465 vm = p->p_vmspace; 466 ru = &p->p_stats->p_ru; 467 ru->ru_ixrss += pgtok(vm->vm_tsize); 468 ru->ru_idrss += pgtok(vm->vm_dsize); 469 ru->ru_isrss += pgtok(vm->vm_ssize); 470 rss = pgtok(vmspace_resident_count(vm)); 471 if (ru->ru_maxrss < rss) 472 ru->ru_maxrss = rss; 473 mtx_unlock_spin_flags(&sched_lock, MTX_QUIET); 474 } 475 476 void 477 profclock(frame) 478 register struct clockframe *frame; 479 { 480 struct thread *td; 481 #ifdef GPROF 482 struct gmonparam *g; 483 int i; 484 #endif 485 486 td = curthread; 487 if (CLKF_USERMODE(frame)) { 488 /* 489 * Came from user mode; CPU was in user state. 490 * If this process is being profiled, record the tick. 491 * if there is no related user location yet, don't 492 * bother trying to count it. 493 */ 494 if (td->td_proc->p_flag & P_PROFIL) 495 addupc_intr(td, CLKF_PC(frame), 1); 496 } 497 #ifdef GPROF 498 else { 499 /* 500 * Kernel statistics are just like addupc_intr, only easier. 501 */ 502 g = &_gmonparam; 503 if (g->state == GMON_PROF_ON) { 504 i = CLKF_PC(frame) - g->lowpc; 505 if (i < g->textsize) { 506 i /= HISTFRACTION * sizeof(*g->kcount); 507 g->kcount[i]++; 508 } 509 } 510 } 511 #endif 512 } 513 514 /* 515 * Return information about system clocks. 516 */ 517 static int 518 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 519 { 520 struct clockinfo clkinfo; 521 /* 522 * Construct clockinfo structure. 523 */ 524 bzero(&clkinfo, sizeof(clkinfo)); 525 clkinfo.hz = hz; 526 clkinfo.tick = tick; 527 clkinfo.profhz = profhz; 528 clkinfo.stathz = stathz ? stathz : hz; 529 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 530 } 531 532 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 533 0, 0, sysctl_kern_clockrate, "S,clockinfo", 534 "Rate and period of various kernel clocks"); 535 536 #ifdef SW_WATCHDOG 537 538 static void 539 watchdog_config(void *unused __unused, u_int cmd, int *err) 540 { 541 u_int u; 542 543 u = cmd & WD_INTERVAL; 544 if ((cmd & WD_ACTIVE) && u >= WD_TO_1SEC) { 545 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz; 546 watchdog_enabled = 1; 547 *err = 0; 548 } else { 549 watchdog_enabled = 0; 550 } 551 } 552 553 /* 554 * Handle a watchdog timeout by dumping interrupt information and 555 * then either dropping to DDB or panicing. 556 */ 557 static void 558 watchdog_fire(void) 559 { 560 int nintr; 561 u_int64_t inttotal; 562 u_long *curintr; 563 char *curname; 564 565 curintr = intrcnt; 566 curname = intrnames; 567 inttotal = 0; 568 nintr = eintrcnt - intrcnt; 569 570 printf("interrupt total\n"); 571 while (--nintr >= 0) { 572 if (*curintr) 573 printf("%-12s %20lu\n", curname, *curintr); 574 curname += strlen(curname) + 1; 575 inttotal += *curintr++; 576 } 577 printf("Total %20ju\n", (uintmax_t)inttotal); 578 579 #ifdef KDB 580 kdb_backtrace(); 581 kdb_enter("watchdog timeout"); 582 #else 583 panic("watchdog timeout"); 584 #endif /* KDB */ 585 } 586 587 #endif /* SW_WATCHDOG */ 588