xref: /freebsd/sys/kern/kern_clock.c (revision 11afcc8f9f96d657b8e6f7547c02c1957331fc96)
1 static volatile int print_tci = 1;
2 
3 /*-
4  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
5  * Copyright (c) 1982, 1986, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
42  * $Id: kern_clock.c,v 1.77 1998/07/11 07:45:39 bde Exp $
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/dkstat.h>
48 #include <sys/callout.h>
49 #include <sys/kernel.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/timex.h>
54 #include <vm/vm.h>
55 #include <sys/lock.h>
56 #include <vm/pmap.h>
57 #include <vm/vm_map.h>
58 #include <sys/sysctl.h>
59 
60 #include <machine/cpu.h>
61 #include <machine/limits.h>
62 
63 #ifdef GPROF
64 #include <sys/gmon.h>
65 #endif
66 
67 #if defined(SMP) && defined(BETTER_CLOCK)
68 #include <machine/smp.h>
69 #endif
70 
71 static void initclocks __P((void *dummy));
72 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
73 
74 static void tco_forward __P((void));
75 static void tco_setscales __P((struct timecounter *tc));
76 static __inline unsigned tco_delta __P((struct timecounter *tc));
77 
78 /* Some of these don't belong here, but it's easiest to concentrate them. */
79 #if defined(SMP) && defined(BETTER_CLOCK)
80 long cp_time[CPUSTATES];
81 #else
82 static long cp_time[CPUSTATES];
83 #endif
84 long dk_seek[DK_NDRIVE];
85 static long dk_time[DK_NDRIVE];	/* time busy (in statclock ticks) */
86 long dk_wds[DK_NDRIVE];
87 long dk_wpms[DK_NDRIVE];
88 long dk_xfer[DK_NDRIVE];
89 
90 int dk_busy;
91 int dk_ndrive = 0;
92 char dk_names[DK_NDRIVE][DK_NAMELEN];
93 
94 long tk_cancc;
95 long tk_nin;
96 long tk_nout;
97 long tk_rawcc;
98 
99 struct timecounter *timecounter;
100 
101 time_t time_second;
102 
103 /*
104  * Clock handling routines.
105  *
106  * This code is written to operate with two timers that run independently of
107  * each other.
108  *
109  * The main timer, running hz times per second, is used to trigger interval
110  * timers, timeouts and rescheduling as needed.
111  *
112  * The second timer handles kernel and user profiling,
113  * and does resource use estimation.  If the second timer is programmable,
114  * it is randomized to avoid aliasing between the two clocks.  For example,
115  * the randomization prevents an adversary from always giving up the cpu
116  * just before its quantum expires.  Otherwise, it would never accumulate
117  * cpu ticks.  The mean frequency of the second timer is stathz.
118  *
119  * If no second timer exists, stathz will be zero; in this case we drive
120  * profiling and statistics off the main clock.  This WILL NOT be accurate;
121  * do not do it unless absolutely necessary.
122  *
123  * The statistics clock may (or may not) be run at a higher rate while
124  * profiling.  This profile clock runs at profhz.  We require that profhz
125  * be an integral multiple of stathz.
126  *
127  * If the statistics clock is running fast, it must be divided by the ratio
128  * profhz/stathz for statistics.  (For profiling, every tick counts.)
129  *
130  * Time-of-day is maintained using a "timecounter", which may or may
131  * not be related to the hardware generating the above mentioned
132  * interrupts.
133  */
134 
135 int	stathz;
136 int	profhz;
137 static int profprocs;
138 int	ticks;
139 static int psdiv, pscnt;		/* prof => stat divider */
140 int	psratio;			/* ratio: prof / stat */
141 
142 /*
143  * Initialize clock frequencies and start both clocks running.
144  */
145 /* ARGSUSED*/
146 static void
147 initclocks(dummy)
148 	void *dummy;
149 {
150 	register int i;
151 
152 	/*
153 	 * Set divisors to 1 (normal case) and let the machine-specific
154 	 * code do its bit.
155 	 */
156 	psdiv = pscnt = 1;
157 	cpu_initclocks();
158 
159 	/*
160 	 * Compute profhz/stathz, and fix profhz if needed.
161 	 */
162 	i = stathz ? stathz : hz;
163 	if (profhz == 0)
164 		profhz = i;
165 	psratio = profhz / i;
166 }
167 
168 /*
169  * The real-time timer, interrupting hz times per second.
170  */
171 void
172 hardclock(frame)
173 	register struct clockframe *frame;
174 {
175 	register struct proc *p;
176 
177 	p = curproc;
178 	if (p) {
179 		register struct pstats *pstats;
180 
181 		/*
182 		 * Run current process's virtual and profile time, as needed.
183 		 */
184 		pstats = p->p_stats;
185 		if (CLKF_USERMODE(frame) &&
186 		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
187 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
188 			psignal(p, SIGVTALRM);
189 		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
190 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
191 			psignal(p, SIGPROF);
192 	}
193 
194 #if defined(SMP) && defined(BETTER_CLOCK)
195 	forward_hardclock(pscnt);
196 #endif
197 
198 	/*
199 	 * If no separate statistics clock is available, run it from here.
200 	 */
201 	if (stathz == 0)
202 		statclock(frame);
203 
204 	tco_forward();
205 	ticks++;
206 
207 	/*
208 	 * Process callouts at a very low cpu priority, so we don't keep the
209 	 * relatively high clock interrupt priority any longer than necessary.
210 	 */
211 	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
212 		if (CLKF_BASEPRI(frame)) {
213 			/*
214 			 * Save the overhead of a software interrupt;
215 			 * it will happen as soon as we return, so do it now.
216 			 */
217 			(void)splsoftclock();
218 			softclock();
219 		} else
220 			setsoftclock();
221 	} else if (softticks + 1 == ticks)
222 		++softticks;
223 }
224 
225 /*
226  * Compute number of ticks in the specified amount of time.
227  */
228 int
229 tvtohz(tv)
230 	struct timeval *tv;
231 {
232 	register unsigned long ticks;
233 	register long sec, usec;
234 
235 	/*
236 	 * If the number of usecs in the whole seconds part of the time
237 	 * difference fits in a long, then the total number of usecs will
238 	 * fit in an unsigned long.  Compute the total and convert it to
239 	 * ticks, rounding up and adding 1 to allow for the current tick
240 	 * to expire.  Rounding also depends on unsigned long arithmetic
241 	 * to avoid overflow.
242 	 *
243 	 * Otherwise, if the number of ticks in the whole seconds part of
244 	 * the time difference fits in a long, then convert the parts to
245 	 * ticks separately and add, using similar rounding methods and
246 	 * overflow avoidance.  This method would work in the previous
247 	 * case but it is slightly slower and assumes that hz is integral.
248 	 *
249 	 * Otherwise, round the time difference down to the maximum
250 	 * representable value.
251 	 *
252 	 * If ints have 32 bits, then the maximum value for any timeout in
253 	 * 10ms ticks is 248 days.
254 	 */
255 	sec = tv->tv_sec;
256 	usec = tv->tv_usec;
257 	if (usec < 0) {
258 		sec--;
259 		usec += 1000000;
260 	}
261 	if (sec < 0) {
262 #ifdef DIAGNOSTIC
263 		if (usec > 0) {
264 			sec++;
265 			usec -= 1000000;
266 		}
267 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
268 		       sec, usec);
269 #endif
270 		ticks = 1;
271 	} else if (sec <= LONG_MAX / 1000000)
272 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
273 			/ tick + 1;
274 	else if (sec <= LONG_MAX / hz)
275 		ticks = sec * hz
276 			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
277 	else
278 		ticks = LONG_MAX;
279 	if (ticks > INT_MAX)
280 		ticks = INT_MAX;
281 	return (ticks);
282 }
283 
284 /*
285  * Start profiling on a process.
286  *
287  * Kernel profiling passes proc0 which never exits and hence
288  * keeps the profile clock running constantly.
289  */
290 void
291 startprofclock(p)
292 	register struct proc *p;
293 {
294 	int s;
295 
296 	if ((p->p_flag & P_PROFIL) == 0) {
297 		p->p_flag |= P_PROFIL;
298 		if (++profprocs == 1 && stathz != 0) {
299 			s = splstatclock();
300 			psdiv = pscnt = psratio;
301 			setstatclockrate(profhz);
302 			splx(s);
303 		}
304 	}
305 }
306 
307 /*
308  * Stop profiling on a process.
309  */
310 void
311 stopprofclock(p)
312 	register struct proc *p;
313 {
314 	int s;
315 
316 	if (p->p_flag & P_PROFIL) {
317 		p->p_flag &= ~P_PROFIL;
318 		if (--profprocs == 0 && stathz != 0) {
319 			s = splstatclock();
320 			psdiv = pscnt = 1;
321 			setstatclockrate(stathz);
322 			splx(s);
323 		}
324 	}
325 }
326 
327 /*
328  * Statistics clock.  Grab profile sample, and if divider reaches 0,
329  * do process and kernel statistics.
330  */
331 void
332 statclock(frame)
333 	register struct clockframe *frame;
334 {
335 #ifdef GPROF
336 	register struct gmonparam *g;
337 #endif
338 	register struct proc *p;
339 	register int i;
340 	struct pstats *pstats;
341 	long rss;
342 	struct rusage *ru;
343 	struct vmspace *vm;
344 
345 	if (CLKF_USERMODE(frame)) {
346 		p = curproc;
347 		if (p->p_flag & P_PROFIL)
348 			addupc_intr(p, CLKF_PC(frame), 1);
349 #if defined(SMP) && defined(BETTER_CLOCK)
350 		if (stathz != 0)
351 			forward_statclock(pscnt);
352 #endif
353 		if (--pscnt > 0)
354 			return;
355 		/*
356 		 * Came from user mode; CPU was in user state.
357 		 * If this process is being profiled record the tick.
358 		 */
359 		p->p_uticks++;
360 		if (p->p_nice > NZERO)
361 			cp_time[CP_NICE]++;
362 		else
363 			cp_time[CP_USER]++;
364 	} else {
365 #ifdef GPROF
366 		/*
367 		 * Kernel statistics are just like addupc_intr, only easier.
368 		 */
369 		g = &_gmonparam;
370 		if (g->state == GMON_PROF_ON) {
371 			i = CLKF_PC(frame) - g->lowpc;
372 			if (i < g->textsize) {
373 				i /= HISTFRACTION * sizeof(*g->kcount);
374 				g->kcount[i]++;
375 			}
376 		}
377 #endif
378 #if defined(SMP) && defined(BETTER_CLOCK)
379 		if (stathz != 0)
380 			forward_statclock(pscnt);
381 #endif
382 		if (--pscnt > 0)
383 			return;
384 		/*
385 		 * Came from kernel mode, so we were:
386 		 * - handling an interrupt,
387 		 * - doing syscall or trap work on behalf of the current
388 		 *   user process, or
389 		 * - spinning in the idle loop.
390 		 * Whichever it is, charge the time as appropriate.
391 		 * Note that we charge interrupts to the current process,
392 		 * regardless of whether they are ``for'' that process,
393 		 * so that we know how much of its real time was spent
394 		 * in ``non-process'' (i.e., interrupt) work.
395 		 */
396 		p = curproc;
397 		if (CLKF_INTR(frame)) {
398 			if (p != NULL)
399 				p->p_iticks++;
400 			cp_time[CP_INTR]++;
401 		} else if (p != NULL) {
402 			p->p_sticks++;
403 			cp_time[CP_SYS]++;
404 		} else
405 			cp_time[CP_IDLE]++;
406 	}
407 	pscnt = psdiv;
408 
409 	/*
410 	 * We maintain statistics shown by user-level statistics
411 	 * programs:  the amount of time in each cpu state, and
412 	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
413 	 *
414 	 * XXX	should either run linked list of drives, or (better)
415 	 *	grab timestamps in the start & done code.
416 	 */
417 	for (i = 0; i < DK_NDRIVE; i++)
418 		if (dk_busy & (1 << i))
419 			dk_time[i]++;
420 
421 	/*
422 	 * We adjust the priority of the current process.  The priority of
423 	 * a process gets worse as it accumulates CPU time.  The cpu usage
424 	 * estimator (p_estcpu) is increased here.  The formula for computing
425 	 * priorities (in kern_synch.c) will compute a different value each
426 	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
427 	 * quite quickly when the process is running (linearly), and decays
428 	 * away exponentially, at a rate which is proportionally slower when
429 	 * the system is busy.  The basic principal is that the system will
430 	 * 90% forget that the process used a lot of CPU time in 5 * loadav
431 	 * seconds.  This causes the system to favor processes which haven't
432 	 * run much recently, and to round-robin among other processes.
433 	 */
434 	if (p != NULL) {
435 		p->p_cpticks++;
436 		if (++p->p_estcpu == 0)
437 			p->p_estcpu--;
438 		if ((p->p_estcpu & 3) == 0) {
439 			resetpriority(p);
440 			if (p->p_priority >= PUSER)
441 				p->p_priority = p->p_usrpri;
442 		}
443 
444 		/* Update resource usage integrals and maximums. */
445 		if ((pstats = p->p_stats) != NULL &&
446 		    (ru = &pstats->p_ru) != NULL &&
447 		    (vm = p->p_vmspace) != NULL) {
448 			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
449 			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
450 			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
451 			rss = vm->vm_pmap.pm_stats.resident_count *
452 			      PAGE_SIZE / 1024;
453 			if (ru->ru_maxrss < rss)
454 				ru->ru_maxrss = rss;
455         	}
456 	}
457 }
458 
459 /*
460  * Return information about system clocks.
461  */
462 static int
463 sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
464 {
465 	struct clockinfo clkinfo;
466 	/*
467 	 * Construct clockinfo structure.
468 	 */
469 	clkinfo.hz = hz;
470 	clkinfo.tick = tick;
471 	clkinfo.tickadj = tickadj;
472 	clkinfo.profhz = profhz;
473 	clkinfo.stathz = stathz ? stathz : hz;
474 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
475 }
476 
477 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
478 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
479 
480 static __inline unsigned
481 tco_delta(struct timecounter *tc)
482 {
483 
484 	return ((tc->tc_get_timecount(tc) - tc->tc_offset_count) &
485 	    tc->tc_counter_mask);
486 }
487 
488 /*
489  * We have four functions for looking at the clock, two for microseconds
490  * and two for nanoseconds.  For each there is fast but less precise
491  * version "get{nano|micro}time" which will return a time which is up
492  * to 1/HZ previous to the call, whereas the raw version "{nano|micro}time"
493  * will return a timestamp which is as precise as possible.
494  */
495 
496 void
497 getmicrotime(struct timeval *tvp)
498 {
499 	struct timecounter *tc;
500 
501 	tc = timecounter;
502 	*tvp = tc->tc_microtime;
503 }
504 
505 void
506 getnanotime(struct timespec *tsp)
507 {
508 	struct timecounter *tc;
509 
510 	tc = timecounter;
511 	*tsp = tc->tc_nanotime;
512 }
513 
514 void
515 microtime(struct timeval *tv)
516 {
517 	struct timecounter *tc;
518 
519 	tc = (struct timecounter *)timecounter;
520 	tv->tv_sec = tc->tc_offset_sec;
521 	tv->tv_usec = tc->tc_offset_micro;
522 	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
523 	tv->tv_usec += boottime.tv_usec;
524 	tv->tv_sec += boottime.tv_sec;
525 	while (tv->tv_usec >= 1000000) {
526 		tv->tv_usec -= 1000000;
527 		tv->tv_sec++;
528 	}
529 }
530 
531 void
532 nanotime(struct timespec *ts)
533 {
534 	unsigned count;
535 	u_int64_t delta;
536 	struct timecounter *tc;
537 
538 	tc = (struct timecounter *)timecounter;
539 	ts->tv_sec = tc->tc_offset_sec;
540 	count = tco_delta(tc);
541 	delta = tc->tc_offset_nano;
542 	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
543 	delta >>= 32;
544 	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
545 	delta += boottime.tv_usec * 1000;
546 	ts->tv_sec += boottime.tv_sec;
547 	while (delta >= 1000000000) {
548 		delta -= 1000000000;
549 		ts->tv_sec++;
550 	}
551 	ts->tv_nsec = delta;
552 }
553 
554 void
555 timecounter_timespec(unsigned count, struct timespec *ts)
556 {
557 	u_int64_t delta;
558 	struct timecounter *tc;
559 
560 	tc = (struct timecounter *)timecounter;
561 	ts->tv_sec = tc->tc_offset_sec;
562 	count -= tc->tc_offset_count;
563 	count &= tc->tc_counter_mask;
564 	delta = tc->tc_offset_nano;
565 	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
566 	delta >>= 32;
567 	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
568 	delta += boottime.tv_usec * 1000;
569 	ts->tv_sec += boottime.tv_sec;
570 	while (delta >= 1000000000) {
571 		delta -= 1000000000;
572 		ts->tv_sec++;
573 	}
574 	ts->tv_nsec = delta;
575 }
576 
577 void
578 getmicrouptime(struct timeval *tvp)
579 {
580 	struct timecounter *tc;
581 
582 	tc = timecounter;
583 	tvp->tv_sec = tc->tc_offset_sec;
584 	tvp->tv_usec = tc->tc_offset_micro;
585 }
586 
587 void
588 getnanouptime(struct timespec *tsp)
589 {
590 	struct timecounter *tc;
591 
592 	tc = timecounter;
593 	tsp->tv_sec = tc->tc_offset_sec;
594 	tsp->tv_nsec = tc->tc_offset_nano >> 32;
595 }
596 
597 void
598 microuptime(struct timeval *tv)
599 {
600 	struct timecounter *tc;
601 
602 	tc = (struct timecounter *)timecounter;
603 	tv->tv_sec = tc->tc_offset_sec;
604 	tv->tv_usec = tc->tc_offset_micro;
605 	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
606 	if (tv->tv_usec >= 1000000) {
607 		tv->tv_usec -= 1000000;
608 		tv->tv_sec++;
609 	}
610 }
611 
612 void
613 nanouptime(struct timespec *tv)
614 {
615 	unsigned count;
616 	u_int64_t delta;
617 	struct timecounter *tc;
618 
619 	tc = (struct timecounter *)timecounter;
620 	tv->tv_sec = tc->tc_offset_sec;
621 	count = tco_delta(tc);
622 	delta = tc->tc_offset_nano;
623 	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
624 	delta >>= 32;
625 	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
626 	if (delta >= 1000000000) {
627 		delta -= 1000000000;
628 		tv->tv_sec++;
629 	}
630 	tv->tv_nsec = delta;
631 }
632 
633 static void
634 tco_setscales(struct timecounter *tc)
635 {
636 	u_int64_t scale;
637 
638 	scale = 1000000000LL << 32;
639 	if (tc->tc_adjustment > 0)
640 		scale += (tc->tc_adjustment * 1000LL) << 10;
641 	else
642 		scale -= (-tc->tc_adjustment * 1000LL) << 10;
643 	scale /= tc->tc_frequency;
644 	tc->tc_scale_micro = scale / 1000;
645 	tc->tc_scale_nano_f = scale & 0xffffffff;
646 	tc->tc_scale_nano_i = scale >> 32;
647 }
648 
649 void
650 init_timecounter(struct timecounter *tc)
651 {
652 	struct timespec ts0, ts1;
653 	int i;
654 
655 	tc->tc_adjustment = 0;
656 	tco_setscales(tc);
657 	tc->tc_offset_count = tc->tc_get_timecount(tc);
658 	tc[0].tc_tweak = &tc[0];
659 	tc[2] = tc[1] = tc[0];
660 	tc[1].tc_other = &tc[2];
661 	tc[2].tc_other = &tc[1];
662 	if (!timecounter || !strcmp(timecounter->tc_name, "dummy"))
663 		timecounter = &tc[2];
664 	tc = &tc[1];
665 
666 	/*
667 	 * Figure out the cost of calling this timecounter.
668 	 */
669 	nanotime(&ts0);
670 	for (i = 0; i < 256; i ++)
671 		tc->tc_get_timecount(tc);
672 	nanotime(&ts1);
673 	ts1.tv_sec -= ts0.tv_sec;
674 	tc->tc_cost = ts1.tv_sec * 1000000000 + ts1.tv_nsec - ts0.tv_nsec;
675 	tc->tc_cost >>= 8;
676 	if (print_tci && strcmp(tc->tc_name, "dummy"))
677 		printf("Timecounter \"%s\"  frequency %lu Hz  cost %u ns\n",
678 		    tc->tc_name, (u_long)tc->tc_frequency, tc->tc_cost);
679 
680 	/* XXX: For now always start using the counter. */
681 	tc->tc_offset_count = tc->tc_get_timecount(tc);
682 	nanouptime(&ts1);
683 	tc->tc_offset_nano = (u_int64_t)ts1.tv_nsec << 32;
684 	tc->tc_offset_micro = ts1.tv_nsec / 1000;
685 	tc->tc_offset_sec = ts1.tv_sec;
686 	timecounter = tc;
687 }
688 
689 void
690 set_timecounter(struct timespec *ts)
691 {
692 	struct timespec ts2;
693 
694 	nanouptime(&ts2);
695 	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
696 	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
697 	if (boottime.tv_usec < 0) {
698 		boottime.tv_usec += 1000000;
699 		boottime.tv_sec--;
700 	}
701 	/* fiddle all the little crinkly bits around the fiords... */
702 	tco_forward();
703 }
704 
705 
706 #if 0 /* Currently unused */
707 void
708 switch_timecounter(struct timecounter *newtc)
709 {
710 	int s;
711 	struct timecounter *tc;
712 	struct timespec ts;
713 
714 	s = splclock();
715 	tc = timecounter;
716 	if (newtc == tc || newtc == tc->tc_other) {
717 		splx(s);
718 		return;
719 	}
720 	nanouptime(&ts);
721 	newtc->tc_offset_sec = ts.tv_sec;
722 	newtc->tc_offset_nano = (u_int64_t)ts.tv_nsec << 32;
723 	newtc->tc_offset_micro = ts.tv_nsec / 1000;
724 	newtc->tc_offset_count = newtc->tc_get_timecount(newtc);
725 	timecounter = newtc;
726 	splx(s);
727 }
728 #endif
729 
730 static struct timecounter *
731 sync_other_counter(void)
732 {
733 	struct timecounter *tc, *tcn, *tco;
734 	unsigned delta;
735 
736 	tco = timecounter;
737 	tc = tco->tc_other;
738 	tcn = tc->tc_other;
739 	*tc = *tco;
740 	tc->tc_other = tcn;
741 	delta = tco_delta(tc);
742 	tc->tc_offset_count += delta;
743 	tc->tc_offset_count &= tc->tc_counter_mask;
744 	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_f;
745 	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_i << 32;
746 	return (tc);
747 }
748 
749 static void
750 tco_forward(void)
751 {
752 	struct timecounter *tc, *tco;
753 
754 	tco = timecounter;
755 	tc = sync_other_counter();
756 	/*
757 	 * We may be inducing a tiny error here, the tc_poll_pps() may
758 	 * process a latched count which happens after the tco_delta()
759 	 * in sync_other_counter(), which would extend the previous
760 	 * counters parameters into the domain of this new one.
761 	 * Since the timewindow is very small for this, the error is
762 	 * going to be only a few weenieseconds (as Dave Mills would
763 	 * say), so lets just not talk more about it, OK ?
764 	 */
765 	if (tco->tc_poll_pps)
766 		tco->tc_poll_pps(tco);
767 	if (timedelta != 0) {
768 		tc->tc_offset_nano += (u_int64_t)(tickdelta * 1000) << 32;
769 		timedelta -= tickdelta;
770 	}
771 
772 	while (tc->tc_offset_nano >= 1000000000ULL << 32) {
773 		tc->tc_offset_nano -= 1000000000ULL << 32;
774 		tc->tc_offset_sec++;
775 		tc->tc_frequency = tc->tc_tweak->tc_frequency;
776 		tc->tc_adjustment = tc->tc_tweak->tc_adjustment;
777 		ntp_update_second(tc);	/* XXX only needed if xntpd runs */
778 		tco_setscales(tc);
779 	}
780 
781 	tc->tc_offset_micro = (tc->tc_offset_nano / 1000) >> 32;
782 
783 	/* Figure out the wall-clock time */
784 	tc->tc_nanotime.tv_sec = tc->tc_offset_sec + boottime.tv_sec;
785 	tc->tc_nanotime.tv_nsec =
786 	    (tc->tc_offset_nano >> 32) + boottime.tv_usec * 1000;
787 	tc->tc_microtime.tv_usec = tc->tc_offset_micro + boottime.tv_usec;
788 	if (tc->tc_nanotime.tv_nsec >= 1000000000) {
789 		tc->tc_nanotime.tv_nsec -= 1000000000;
790 		tc->tc_microtime.tv_usec -= 1000000;
791 		tc->tc_nanotime.tv_sec++;
792 	}
793 	time_second = tc->tc_microtime.tv_sec = tc->tc_nanotime.tv_sec;
794 
795 	timecounter = tc;
796 }
797 
798 static int
799 sysctl_kern_timecounter_frequency SYSCTL_HANDLER_ARGS
800 {
801 
802 	return (sysctl_handle_opaque(oidp,
803 	    &timecounter->tc_tweak->tc_frequency,
804 	    sizeof(timecounter->tc_tweak->tc_frequency), req));
805 }
806 
807 static int
808 sysctl_kern_timecounter_adjustment SYSCTL_HANDLER_ARGS
809 {
810 
811 	return (sysctl_handle_opaque(oidp,
812 	    &timecounter->tc_tweak->tc_adjustment,
813 	    sizeof(timecounter->tc_tweak->tc_adjustment), req));
814 }
815 
816 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
817 
818 SYSCTL_PROC(_kern_timecounter, OID_AUTO, frequency, CTLTYPE_INT | CTLFLAG_RW,
819     0, sizeof(u_int), sysctl_kern_timecounter_frequency, "I", "");
820 
821 SYSCTL_PROC(_kern_timecounter, OID_AUTO, adjustment, CTLTYPE_INT | CTLFLAG_RW,
822     0, sizeof(int), sysctl_kern_timecounter_adjustment, "I", "");
823 
824 /*
825  * Implement a dummy timecounter which we can use until we get a real one
826  * in the air.  This allows the console and other early stuff to use
827  * timeservices.
828  */
829 
830 static unsigned
831 dummy_get_timecount(struct timecounter *tc)
832 {
833 	static unsigned now;
834 	return (++now);
835 }
836 
837 static struct timecounter dummy_timecounter[3] = {
838 	{
839 		dummy_get_timecount,
840 		0,
841 		~0u,
842 		1000000,
843 		"dummy"
844 	}
845 };
846 
847 static void
848 initdummytimecounter(void *dummy)
849 {
850 	init_timecounter(dummy_timecounter);
851 }
852 
853 SYSINIT(dummytc, SI_SUB_CONSOLE, SI_ORDER_FIRST, initdummytimecounter, NULL)
854